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function j ' : i O , l j n  x jO,ljn+ f0,lj , is known to  

Abstract: W e  study (unbounded error) pro- 
babilistic communication complexity. Our new 
results include 

Po, and second argument, X i l  is known to Pi. In 
order to compute f ,  Po, and P ,  communicate 

- one way a d  two way complexities 
differ by a t  most 1 
- certain functions like equality and the 
verification of Hamming distance have 
upper bounds that are considerably PO, and Pi have unlimited local computing 
better than their counterparts in 
deterministic, nondeterministic, or power, and the ability to realize an arbitrary 
bounded error probabilistic model 
- there exists a function which requires probability distribution over the set of mes- 
R(1ogn) information transfer 

sages they transmit in each turn, The complex- 

ity measure is the number of bits transmitted. 

with each other in turns by sending messages 

(sequences of bits) according to Some prOtOC01. 

As an aDplication, we prove that a certain 
language requires n(hlog&) time to be recog- 
nized by a 1-ta e (unbounded error) probabilis- 
tic Turing mac&ne. This bound-is optimal. (Pre- Given the input xi to Pi for i = O , l ,  the com- 
vious lower bound results [Yao- 11 require 
acceptance by bounded error computation. We 
believe that this is the first nontrivial lower 
bound on the time required by unrestricted 
probabilistic Turing machines.) 

Putation, according to SOme Protocol 4 p 9  Will be 

as follows: PO is always the first One to send a 

message. The processors communicate in 

turns. The last message is always sent by P I  

1. DEFINITIONS. and is a single bit. The last bit is the output 

produced. Each message will be sent with a 
The essentials of this model are the same as 

certain probability, determined by the proto- 
those of Yao [Yao 21 who introduced the notion 

col. A probabilistic computation can be viewed 
of communication complexity (see also [PSI 

as a stochastic process. An event in this pro- 
and [JKS] for variants of and extensions to  the 

cess is a sequence of messages PI,&, . . . ,&k 
model). 

(where message pi is sent by processor 

Two processors Po, and P ,  wish to compute Pi+lmod2). The probability distribution, given 

a function of two arguments. (We assume in by the protocol, assigns a probability to each 

most of this paper that the function is event. The result of an event is the output pro- 

boolean.) The first argument, x o ,  of the boolean duced by the associated set of messages. The 

'Research partially supported by USARO research contract DAAGZ6-8Z-K-lX10. 
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protocol (p oulputs the bit b ( b  = O  or 1) if the 

probability of events whose result is b is 1 
Formally, t i  

function 

(p(z,a,p) is the 

sage B will be 

its input and 

sequence of 

the property 

is finite and 

C y ( z , u , B ) = 1 .  
B 

perty, a 

can again be 

messages which 

col. 

Let q~ be a 

Pt for i = O , 1 .  

greater than - 

protocol can be specified by a 

p: l0,ll" x { O , l ] '  x { O , l ] +  -f [0,1]. 

probability with which the mes- 

sent by a processor, where z is 

a is the concatenation of the 

messages exchanged so f a r .  cp has 

that the set @I 3 p(z,a,@) f. O] 

p:-efix free for each a. Note that 

Due t o  the prefix freeness pro- 

concatenated sequence of messages 

decomposed into a sequence of 

is unique for the given proto- 

l~rotocol. Let xi be the input a t  

Let (#?l,pi) ,..,, (&.,Pzl) be such 

The set of all s 

tion Tv(so,r 

input x* a t  P4. 

Note that tt 

do not depend c 

Similarly p z,p 4, 

input at Po. W e  

X M 

1 
is the null string; 
i , @ 2 j + l )  = p 2 j + l  for j = 1 ,  ... 2-1; 
; - l , & j )  = p 2 j  for j=1, ..., 1 -  

eh sequences is the computa- 

nder the protocol p with the 

probabilities p 1,p 3, . . . , p 21- 1 

. the input a t  the processor PI. 

, . , p z l  do not depend on the 

therefore, define two functions 

-, [ O , l ] + ,  where M, is the set 

of all concatenated sequences of messages that 

are transmitted between Po , and P1 with posi- 

tive probability for some input. Let PI, . . . , pzl 

be the decomposition of a E M, under the pro- 

tocol p. Now, p* (z ,a) = (p . . . , pl) where 

These functions po, and p1 together with the 

decomposition for each a E Ai+, capture all the 

information contained in the protocol p. 

In the computation T,(zo,z 1) ,  the probabil- 

ity of outputting the bit 6 is 

*cpo(so,otb)*~l(zo,ab). Here, * is an 
a b  € M I  

operator, that applied to a list of real numbers, 

yields their product. 

N 

The communication complexity C,,, of the 

protocol Q is maxt I a 1 I a E MI]. The protocol 

(p computes a function f if f (xo,zl)=b iff the 

probability fo outputting the bit 6 in the 
1 

putation T,(zo,zl)  is greater than - 2 '  

The unbounded error probabilistic com- 

munication complexity is 

min{C, J p computes f 1. 
N 

A restricted model in which only one pro- 

cessor p o  is allowed to send messages is also of 

interest because of its equivalence to  the 

unrestricted two-way model. In this one-way 

model, Po sends the messages PI, . . . ,/?, with 

probabilities p 1, . . . ,pt respectively. PI  on the 

receipt of pt, outputs 1 with probability qi and 



0 with probabiIity 1-qi. The set of messages 

sent by Po and the probability distribution on it 

is entirely determined by the input a t  Po alone 

and are not influenced by the input at P I .  

Similarly, the probabilities qi a t  P I  depend only 

on its input and the message received. The 

one-way protocol 9 can therefore be completely 

specified by two functions 

po,pl:lO,lj" X M ,  --f [0,1], where M ,  is the set of 

all messages that are sent by Po with positive 

probability for some input. (oo(z,a) is the pro- 

bability with which the message a is sent by  Po 

with input 2. cp,(z,a) is the probability with 

which P I  with input 1: outputs 1 upon receiving 

the message a. Since the particular set of mes- 

sages is not relevant, qo,pl can be represented 

as functions from { O , l j "  to [0,1IK, where 

} M v l  = K .  The communication complexity of 

the protocol qa is hogza. K is also called the 

length of the protocol p. Other notions for one 

way protocols are defined in the analogous way. 
p, 

Equivalence of one-way and two-way c o m -  

plexities Finally, we exhibit a one-way protocol 

for each two way protocol such that both corn- 

pute the same function and their communica- 

tion complexities differ by most 1. 

Theorem 1: Let p be a two-way protocol. Then, 

there exists a one-way protocol p' such that 

1) (o, and q' compute the same function 
N N  

2) cv, I c, + 1 
R o o f :  Let c,o0,c,o1, and M,+, be as defined earlier 

for the two-way protocol (o. Let 

M, = M,' U M,'. a E M V b  if the last bit of a is 

b .  Let 

dzb = *p0(z,a) ; d = max dzl. 
a E M,' 1: 

We define the one-way protocol 9' such that 

M,! = M ,  U Irl 
with yq M,. 

3 qoo'(s,a) = *qao(x,a) for a E a,' 

po(x,a) for a E vo'(z,a) = -# 
1 

2d% 

plf(l : ,a)  = I-- 2d 
for a E M,O 

pi' are functions from g O , l ] "  x M p p  to [ O , l ] .  

I t  can be easily verified that q, and pf compute 

the same function. I t  is also clear that their 

complexities differ by a t  most 1. 

2. Why Communication Complexity, in particu- 

lar, Unbounded Error Probabilistic Communi- 

cation Complexity? 

There are well known reasons to study this 

measure of Complexity [Yao Z][PS]: 

-Communication is the bottleneck in 

many parallel algorithms, VLSI implemen- 

tations, and distributed systems. 

-It is closely related to other questions in 

computational complexity (lower bounds 

in restricted models of computation, like 

1-tape Turing machines, branching pro- 

grams, and monotone circuits; generaliza- 
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tion of sts tic measures of complexity, like b 
circuit size 

etc.) 

-It allows 

able 

determinism, 

choices, 

ment, where 

of them. 

-Perhaps 

source oj 

techniques 

of the 

we came 

problems 

hyperplanes 

[FL]. We 

stimulate 

mathematicians 

This unrestricted 

intended to serve 

'reliable information 

interested in 

tricted probabi: 

ments. The facts 

considerable. 

Let I(r,y) 

G(z,y )  = (z%y), 

as n-bit integers. 

Fact: al) 

b) 

I 

and Kolmogorov complexity, 

us to study, otherwise intract- 

questions (like the power of non- 

the power of probabilistic 

etc.) in a favourable environ- 

it is possible to settle some 

most importantly, it is a rich 

interesting problems and of 

for solving them. In our study 

ur.restricted probabilistic model, 

up with some combinatorial 

related to arrangements of 

[ Za] and oriented matroids 

hope that these questions will 

further research by both 

and computer scientists. 

probabilistic model is not 

as the basis for a theory of 

transfer'. Rather, we are 

understanding the power of unres- 

istic choice in parallel environ- 

below show that this power is 

= ( r = y )  ; J(z,y) = (z#y); and 

where 2 and y are interpreted 

El(1+2) = E7(1-.2) = 2 

&(1*2) = 1 

Recall that any deterministic protocol for 

I , r  or G requires n bits of information transfer, 

and every nondeterministic protocol for f or G 

requires R, bits of information transfer [Yao 21 

[PSI. Even bounded error probabilistic proto- 

cols must exchange Q(1ogn) bits to compute 

the functions I ,  1, and G [Yao 11. An optimal 

protocol for computing I can be found in the 

appendix. 

An immediate question is whether these 

facts mean that the model is trivial. After all, 

B could probabilistically guess x, perform the 

protocol for equality, and compute f (x2y) with 

just 2 bits of information transfer. For- 

tunately(?), the strategy does not work since, 

as one can verify, the computation is not reli- 

able enough. This challenges us to  t r y  to prove 

lower bounds for probabilistic information 

transfer. The results in this paper partially 

answer this challenge. 

The problem (of proving lower bounds for 

probabilistic information tranfer) requires new 

techniques: In the case of deterministic proto- 

cols, a counting argument immediately yields a 

(nonconstructive) proof of the existence of 

functions with asymptotically linear communi- 

cation complexity. For example, there are 22 

boolean functions of 2n variabIes, but only Z2'(') 

different deterministic protocols of length 1 .  

There are, on the other hand, nondenumerably 

many probabilistic protocols of length 1 ,  since 

en 

the probabilities are arbitrary. Although, by a 

1Fact a) was known to M. Rabin in the context of crossing se- 
quences for Turing machines [BO]. 
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continuity argument, we can restrict ourselves 

to  rational probabilities with bounded 

denumerators, the number of resulting proto- 

cols still makes the counting argument impos- 

sible. In the case of the bounded error proba- 

bilistic model, both the logarithmic and linear 

lower bound arguments make use of the fact 

that the error in the computation is bounded 

by a constant. 

We proved that the one way probabilistic 

model is as powerful as the two way one. In con- 

trast, we have, in the deterministic model, 

exponential gaps between not only one way and 

two way protocols, but also between k-turn and 

k + 1-turn protocols [DGSch]. We present several 

equivalent exact characterizations of the pro- 

babilistic communication complexity of a func- 

tion: one in terms of the approximations of a 

boolean matrix by rank 1 real matrices, and 

the other, a geometric one, using arrangements 

of hyperplanes. These characterizations can be 

used to construct a hierarchy of functions f$, 

that require i bits of information transfer for 

1 s i slogn.  

I t  is not known whether all functions can be 

computed using O(1ogn) information transfer. 

This question is equivalent to some combina- 

torial problems related to oriented matroids 

that appear interesting on their own. The 

equivalence follows from our Characterization 

of probabilistic communication complexity in 

terms of arrangements of hyperplanes. 

In the sequel, we present a brief outline of 

these results. 

3. RESULTS: 

We consider only one-way protocols. If p is a 

one-way protocol of length k ,  let 

p0,vl: l0,ll "-+[O,l]k be the associated proba- 

bility functions. 

Arrangements of Hyperplanes and Probabilistic 

Communication Complexity 

We present our first characterization of 

probabilistic communication complexity in 

terms of arrangements of hyperplanes. 

An arrangement A w ( H )  of hyperplanes is a 

finite set H = fhl,h2, . . . , h, 1 of hyperplanes 

in Rd for some d .  The regions of an arrange- 

ment A r r ( H )  are the nonempty connected 

components of R d ,  when the hyperplanes in H 

are deleted. Each region T of the arrangement 

can be characterized by an m bit string whose 

i t h  bit (for i=l ,  ..., m )  is 1 iff the region T is in 

the positive half space of the hyperplane a. We 

call this bit string, the signuture of the region 

T .  W e  say that the arrangement A m ( $ € )  real-  

izes  the set S, C f0,lj" of signatures if 

S, = t w ~ [ O , l j ~  1 w is a signature of some 

region CT in A m  ( U )  1 .  

We call each w€fO,1jm a r e q u i r e m e n t .  A 

requirement z u ~ [ O , l { ~  is satisfied by an 

arrangement A w ( H )  of m hyperplanes N in Rd 
for some d ,  if w E S H .  Similarly, we say that a 
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boolean valued 

satisfied by e 

hyperplanes H 

viewed as a req 

matrix M of order k x m is 

Theorem 2. 

tion f .  Let d 

which there is 

hyperplanes 6 

Then 

Po 

The proof t 

ing, for each 

(defined previc 

length k) as a 

respectively, a1 

I t  is possi 

characterizatio 

say that a real 

a boolean ma 

&X,Y 1>0, 
and, @[z,y]<O, 

Theorem 3: 

tion f ,  Let  d b 

there are d 

P x 2 " ,  and C 

M. Then 

nl 
Proof Ske tt 

M such that 0 

arrangement A r r ( H )  of m 

in Rd if each row of M when 

irement belongs to SH.  

Let hi be the matrix of a func- 

be the smallest dimension in 

sn arrangement A w ( H )  of 2" 

that  satisfies the matrix M. 

sentially consists of interpret- 

0 and Y o  9 Q O ( " 0 )  and QA"1) 

isly for one way protocols of 

hyperplane and a point of Rk 
I using a continuity argument. 

e to  give another equivalent 

using rank 1 real matrices. W e  

tatrix G is an approximation of 

six M of the same order if 

whenM[z,y] = 1 

Then M[z,y] = 0. 

Let M be the matrix of a func- 

the smallest number such that 

Ink 1 matrices 0, of order 

Oi is an approximation of 
d 

f=1 

;d1 4 E, gnogd]+l 

,: Let  0 be an approximation of 

Oi, where each 04 is a rank 
d 

i= 1 

1 real matrix. Since Oi is a rank 1 matrix, 

0, = % x b i T  for some q, and b,ER2". Let 

pO(5>=(a i a Z ( z )  3 . . ' ad (z ) ) I  and 

V , ( " ) = ( b , ( d , b , ( z ) ,  . . ' b d ( Z ) ) .  

O[zO,zl]=<(p~(z:),(pl(z)> ( < s , t >  is the inner 

product of vectors s and t ) .  We now have an  

arrangement A r r ( H )  in Rd where H consists of 

the hyperplanes ( ~ ~ ( a g ) ,  and this arrangement 

satisfies the matrix M. 

In a similar way, given an arrangement of 

hyperplanes in Rd, we can find d rank 1 real 

matrices whose sum approximates the matrix 

M. = 

A Logarithmic Lower Bound 

Theorem 4: There exists a function f such 
w 

that nogznj I C, c. Dog2n] + 1. 

Proof: Consider the function f defined as 

f ( 2 , ~ )  = bin(z)th bit of y for Osbin ( s )~n- l  

= 0 otherwise. 

I t  can be shown that if A r r ( H )  is an arrange- 

ment of 2'" hyperplanes that  satisfies the 

matrix M ,  then there is H ' r H ,  such that 

Ill' 1 = n ,  and Am(")  has Zn distinct regions. 

The number of distinct regions in any arrange- 

ment of n hyperplanes in Rd is bounded by 

5 k) [Bu]. Hence, dzn. This gives us the 
i =O 

required lower bound. 

Since any arrangement of d hyperplanes in 

general position in ~d contains 2 d  regions, we 

also achieve our upper bound.. 
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The theorem can be easily extended to yield 
N 

a complexity hierarchy for 0 1 C 1 aogn]. 

A Lower Bound for 1-tape Probabilistic Turing 

Machines: 

A 1-tape probabilistic Turing machine M is 

said to accept (reject) a string z in time t if 

the probability of the event "M, started in its 

initial configuration with input 2, will enter an 

accepting (rejecting) configuration after a t  

most t steps" is greater than - [Gi]. [Yao 11 

has obtained an R(n1ogn) lower bound on the 

time required by certain 1-tape probabilistic 

Turing machines. However, the definition of 

acceptance used in [Yao 11 is more restrictive 

(bounded error), and the proofs use the restric- 

1 
2 

tion in an essential way. As  an application of 

our results, we can prove the following. 

Theorem 5: Let 

L = @#On#y I I2 I =  Iy I=n, z,yEtO,lj*, bit 

bin(y) of x exists and is 11. Then, any proba- 

bilistic 1-tape Turing machine (PTM) that 

accepts L uses R(n1ogn) steps for some input 

of length n. 

sketch o f  the p o o f :  suppose, by contradic- 

tion, that  M is a 1-tape PTM that accepts L in 

time T(n)=o(nlogn) - i.e., for any c ,  for any 

input of length n,  n sufficiently large, i t  uses 

less than cnlogn steps (for any guess string). 

Then, from the Computation of M on input 

z#O"#y, with Z E  f O , l { " ,  Y E  ~ O , l j i o g n ,  we pro- 

duce a probabilistic protocol for the function f 

of theorem 4. The protocol uses o(1ogn) bits, 

yielding the contradiction that proves our 

claim. There is a technica1 difficulty in doing 

this: while it is easy to show that a t  each boun- 

dary of the string o€ n 0's there must be a 

guess string that causes a crossing sequence of 

length O(logn.), it is not clear that any guess 

string will cause many long crossing sequences 

(there are ZT(") guess strings, but only O ( n )  

boundaries). 

We can show, by a 'cut and paste' argu- 

ment, that, if we assume that T(n)<cnlogn, 

then for any guess sequence g , in the computa- 

tion of M with input w =x# P # y ,  using g as a 

guess string, there must be a crossing 

sequence in the middle of 0 's  that  is short 

(length <clogn) and close t o  the first # (at  a 

distance less than n6 from the right # ) ,  where E 

and 8 can be chosen t o  be sufficiently small. 

Using the short crossing sequences and the 

(short) address of their position in the string 

one can construct a probabilistic protocol of 

complexity less than logn to compute the func- 

tion f of Theorem 4. This gives us the desired 

contradiction. 

4. CONCLUSIONS AND OPEN PROBLEMS: 

Our results start  a theory of probabilistic 

information transfer for unbounded error pro- 

tocols. We provided interesting characteriza- 

tions, some surprisingly efficient protocols, and 

a nontrivial lower bound. 

I t  is pleasing that the basic questions about 

probabilistic information transfer are 
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mathematicall; 

matrices by m 
metric) play E 

analysis [ GoVI 

Euclidean spac 

geometric prot 

follow from t 

objects. Strc 

equivalent to 

problems that 

The main 

optimality of c 

superlog arithrr 

tions have low 

to settle the pi 

sider the probl 

have the Ha 

d ~ t 0 ,  ..., n]. Prc 

O(1ogn) inforn 

Similar technic 

other problem: 

function definl 

conjecture th  

(linear) probal 

ity. Proving thi 

Our lower bour 

in R": a linei 

choice of 2n r 

the existence 

arrangement ( 

these 2n requi 

nal requirerr 

Hadamard mat 
a suitable one, 

nteresting. Approximations of 

rices of rank 1 (in a different 

important role in numerical 

and the decomposition of 

by hyperplanes is a classical 

m [Bu] {Za]. Our lower bounds 

5 basic properties of these 

:thening them would be 

:ttling certain mathematical 

B interesting on their own. 

maining open problem is the 

v lower bound: Can one prove 

lower bounds, or  do all func- 

jmplexity? We have done little 

)lem. On the positive side: con- 

n of verifying whether x and y 

ning distance d for some 

col 2 in the appendix achieves 

.ion transfer for this problem. 

BS yield O(1ogn) protocols for 

But, the technique fails for the 

by a Hadamard matrix. We 

this function has maximal 

.stic communication complex- 

however, seems to be difficult. 

proof uses counting of regions 

lower bound results from a 

uirements, that  would require 

F 220(") other regions in any 

2n hyperplanes that satisfies 

ments. The choice of orthogo- 

its corresponding to the 

R of order Rn x Rn seems to be 

id hence the conjecture. 

5. APPENDIX 

Protocol 1 (Equality) 

The following set of 2-dimensional planes 

p,, and points qy in R3 define a protocol for 

computing I(x ,y ) .  Normalization of the 

coefficients of these planes and points yield a 

2-bit protocol for computing I (z ,y) .  

k 1  
m n + 3  ' ,=o m j  

Let rn = E = ___ andLk = - 

I t  is easy to verify that Cp,(i)py(i) > 0 if 
i 

a 

Protocol 2 (Verification of Hamming distance) 

Let hd, for some dEt0 , l  ,..., nj,  be such that 

hd(z,y) = 1 iff the Hamming distance between 

z and y is d .  The following protocol computes 

n hd for d = - Protocols for other d can be dev- 
2 '  

ised similarly. 

A sends two bits of its input 2 along with 

their addresses. Each pair of bits is equally 

likely to be selected. A t  B ,  after these two bits 

are received, one of the two following events 

Event I or Event 11 occurs, such that Event I 

happens with probability -. 1 
n 
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Event I: Output 1 if the Hamming distance 

between the two bits received 

and the corresponding bits of y is 1 

Output 0 otherwise. 

Event 11: Output 1 with probability 

1 
2n2(n - 1) 

I t  can be verified that this protocol indeed 

computes the function h,. - 
2 
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