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ILL-POSEDNESS FOR THE DERIVATIVE SCHRÖDINGER AND
GENERALIZED BENJAMIN-ONO EQUATIONS

H. A. BIAGIONI AND F. LINARES

Abstract. Ill-posedness is established for the initial value problem (IVP)
associated to the derivative nonlinear Schrödinger equation for data in Hs(R),
s < 1/2. This result implies that best result concerning local well-posedness
for the IVP is in Hs(R), s ≥ 1/2. It is also shown that the (IVP) associated
to the generalized Benjamin-Ono equation for data below the scaling is in fact
ill-posed.

1. Introduction

In this paper we are concerned with the ill-posedness of the initial value problems
(IVP) associated to the derivative nonlinear Schrödinger equation and the general-
ized Benjamin-Ono equation, hereafter (DNLS) and (GBO) equation respectively.

The notion of well-posedness we will use in this work is the same as in [7], that
is, the existence, uniqueness, persistence property and continuous dependence of
the solution upon the data.

To describe our results, we begin by considering the IVP associated to the DNLS
equation, that is, {

∂tu = i∂2
xu+ ∂x(|u|2u), x ∈ R, t > 0,

u(x, 0) = u0(x).(1.1)

This equation appears as a model of the Alfvén solitons in plasma physics (see
[13],[22]). From the point of view of partial differential equations it has been ex-
tensively studied (see [6], [15], [16], [19], [20] and references therein).

Recently, Takaoka in [19] showed that the IVP (1.1) is locally well-posed in
Hs(R), s ≥ 1/2. To prove this result he used the techniques introduced by Bourgain
([5]) and Kenig, Ponce, Vega ([8], [10]) plus a gauge transformation. He also showed
by means of an example that the best possible result using the key estimate in his
proof was indeed H1/2.

On the other hand, a scaling argument ([10]) suggests that the best possible
value to obtain local well-posedness in Hs is s = 0. Indeed, if u is a solution of
(1.1), then

uλ(x, t) = λ1/2 u(λx, λ2t),(1.2)

for any λ ∈ R, is also a solution of DNLS with data

uλ(x, 0) = λ1/2 u0(λx).
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A straightforward calculation gives

‖Ds
xuλ(0)‖ = λs ‖Ds

xu0‖

which implies that the highest derivative term in the Hs norm is invariant under
the scaling transform (1.2) for the value s = 0.

Our purpose here is to show that the IVP associated to the DNLS equation is ill-
posed in Hs, s < 1/2, which will imply that the best possible local well-posedness
result is the one in [19].

To establish this result we will follow the recent method introduced by Kenig,
Ponce, Vega [11] (see also [2], [3]), to establish ill-posedness for the IVP associated to
the cubic Schrödinger equation, KdV and mKdV equations. We will describe briefly
their method: the idea is to show that the solution does not depend continuously (or
uniformly continuously) on its data in Hs, by constructing a sequence converging
to the data in Hs while the corresponding sequence of solutions does not converge
in Hs. The sequence consists of solitary wave solutions. The extra difficulty we
have in our case is the lack of Galilean invariance for solutions of the derivative
Schrödinger equation, which is a key point in the treatment of ill-posedness for the
focusing cubic Schrödinger equation. To replace the Galilean invariance we still
have a two-parameter family of solitary wave solutions that allows us to obtain the
desired result.

We also consider the IVP associated to the GBO, that is,{
∂tu+H∂2

xu+ uk∂xu = 0, x ∈ R, t > 0, k = 1, 2, . . . ,
u(x, 0) = u0(x),(1.3)

where H denotes the Hilbert transform. For k = 1 we have the well known
Benjamin-Ono equation which was deduced by Benjamin [1] and Ono [14] as a
model in internal-wave propagation. The best result regarding local well-posedness
in Hs is due to Ponce [18], (see also [12]). He showed that the IVP associated to
the Benjamin-Ono equation is locally (globally) well-posed in Hs, s ≥ 3/2. For
the GBO equation with k > 1, local well-posedness is known in Hs, s > 3/2, for
any data. For small data, Kenig, Ponce and Vega [9] proved that (1.3) is locally
well-posed in Hs(R), with

s > 1 if k = 2,

s > 5/6 if k = 3,

s ≥ 3/4 if k ≥ 4.
(1.4)

These are the best results known to date.
Looking for the best possible local well-posedness results we argue as above: we

use a scaling argument to find the critical Sobolev indices. If u(x, t) solves (1.3)
then uλ(x, t) = λ1/ku(λx, λ2t), λ > 0, also solves (1.3) with initial data uλ(x, 0)
satisfying

‖uλ(·, 0)‖2
Ḣs

= λ2s+ 2
k−1‖u(·, 0)‖2

Ḣs
(1.5)

(Ḣs is the homogeneous Sobolev space), which implies that the highest derivative
that leaves the norm invariant is sk = 1/2− 1/k.

We can observe that the these results are far from those given by the scaling
argument. For instance, for the Benjamin-Ono equation the scaling suggests local
well-posedness for s ≥ −1/2.
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DERIVATIVE SCHRÖDINGER EQUATION 3651

Our results in this case give ill-posedness of the IVP (1.3) in Sobolev spaces with
index below the one given by the scaling argument. Here we follow closely the ideas
in [2] and [3].

The paper is organized as follows. In Section 2 we will deal with the derivative
Schrödinger equation. The result concerning the generalized Benjamin-Ono (GBO)
equation will be proved in Section 3.

2. The derivative Schrödinger equation

In this section we consider the IVP associated to the derivative Schrödinger
equation, that is, {

∂tu = i∂2
xu+ ∂x(|u|2u), x ∈ R, t > 0,

u(x, 0) = u0(x).(2.1)

The notion of well-posedness used here is the one given in the introduction but
stretched a little bit by requiring the mapping data, u0 → u(t) to be uniformly
continuous, where u(t) is the solution of (2.1). In case this requirement is not
satisfied we will say that the problem is ill-posed. Thus our main result in this
section is

Theorem 2.1. The IVP (2.1) is ill-posed in Hs(R), s < 1/2, in the sense that
the mapping data-solution, u0 → u(t) is not uniformly continuous.

Proof. It was proved in [21] that there exist solitary waves in the form

uc,ω(x, t) = e−iωteiψ(x−ct)a(x − ct)

with ω, c real numbers and ψ(·), a(·) real functions given by

a2(x) = (d3 + d5 cosh(d6x))−1;

ψ′(x) =
c

2
+

3
4
a2(x);

d3 =
c

2(−4ω − c2)
;

d2
5 =

−ω
(−4ω − c2)2

;

d2
6 = −4ω − c2.

(2.2)

Setting α = d3
d5

, it is easy to see that

ψ(x) =
c x

2
+ 3 arctan

(exp (d6x) + α

(1 − α2)
1
2

)
.

Let

ϕc,ω(x) = uc,ω(x, 0) = ei
c x
2 eig(x)a(x)

= ei
c x
2 eig(x) d6

(−ω)1/4

1
(α+ cosh(d6 x))1/2

where

g(x) = 3 arctan
(exp(d6 x) + α

(1− α2)1/2

)
.
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Setting

g̃(x) = 3 arctan
( ex + α

(1− α2)
1
2

)
, h(x) =

1
(α+ coshx)1/2

,

F (x) = eig̃(x)h(x),
(2.3)

we can write

ϕc,ω(x) =
d6

(−ω)1/4
ei
cx
2 eig̃(d6 x)h(d6 x) =

d6

(−ω)1/4
ei
cx
2 F (d6 x)

and thus

ϕ̂c,ω(ξ) =
1

(−ω)
1
4
F̂ (

ξ

d6
− c

2d6
).

Then we have, writing d61and d62 as the corresponding constants in (2.2) associated
with c1, ω1 and c2, ω2, respectively, that

‖ϕc1,ω1 − ϕc2,ω2‖2Hs =
∫

(1 + |ξ|2)s|ϕ̂c1,ω1(ξ)− ϕ̂c2,ω2(ξ)|2 dξ

=
∫

(1 + |ξ|2)s
∣∣∣ 1
(−ω1)1/4

F̂ (
ξ

d61

− c1
2d61

)− 1
(−ω2)1/4

F̂ (
ξ

d62

− c2
2d62

)
∣∣∣2 dξ

= d61

∫
(1 + |d61η|2)s

∣∣∣ 1
(−ω1)1/4

F̂ (η − c1
2d61

)− 1
(−ω2)1/4

F̂ (η
d61

d62

− c2
2d62

)
∣∣∣2 dη

' (d61)2s+1
{∫

(1 + |η|2)s
1

(−ω1)1/2

∣∣∣F̂ (η − c1
2d61

)− F̂ (
d61

d62

η − c1
2d61

)
∣∣∣2 dη

+
∫

(1 + |η|2)s
1

(−ω1)1/2

∣∣∣F̂ (η
d61

d62

− c1
2d61

)− F̂ (η
d61

d62

− c2
2d62

)
∣∣∣2 dη

+
∫

(1 + |η|2)s
∣∣∣ 1
(−ω1)1/4

− 1
(−ω2)1/4

∣∣∣2∣∣∣F̂ (η
d61

d62

− c2
2d62

)
∣∣∣2 dη}

= I1 + I2 + I3.

Let N be a large positive integer to be chosen later. Take

cj = Nj ' N, ωj = −(N4s
j +

N2
j

4
), j = 1, 2,(2.4)

so that if N1 < N2,

d6j = 2N2s
j , d61 < d62 , |d62 − d61 | = 2|N2s

2 −N2s
1 | ' |N2 −N1|N2s−1.

Now, F̂ concentrates in B1(0), where B1(0) is the ball of center 0 and radius
1. Thus if η ∈ B1(N1−2s), then |η| ' N1−2s. It follows that, by the mean value
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DERIVATIVE SCHRÖDINGER EQUATION 3653

theorem and Cauchy-Schwarz’s inequality

I1 =
(d61)2s+1

(−ω1)1/2

∫
(1 + |η|2)s

∣∣∣F̂ (η − c1
2d61

)− F̂ (η
d61

d62

− c1
2d61

)
∣∣∣2 dη

' N2s(2s+1)

√
N4s +N2

N2s(1−2s)

∫ ∣∣∣ ∫ η− c1
2d61

η
d61
d62
− c1

2d61

F̂ ′(α) dα
∣∣∣2 dη

≤ N4s

√
N4s +N2

∫ ∣∣∣ ∫ η− c1
2d61

η
d61
d62
− c1

2d61

dα
∣∣∣∣∣∣ ∫ η− c1

2d61

η
d61
d62
− c1

2d61

|F̂ ′(α)|2 dα
∣∣∣ dη

' CN
4s−1|N1 −N2|N2s−1

N2s

∫
|η|
∣∣∣ ∫ η− c1

2d61

η
d61
d62
− c1

2d61

|F̂ ′(α)|2 dα
∣∣∣ dη

' C N4s−2|N1 −N2|(I11 − I12)

(2.5)

where

I11 =
∫ ∞

0

η

∫ η− c1
2d61

η
d61
d62
− c1

2d61

|F̂ ′(α)|2 dα dη

and

I12 =
∫ 0

−∞
η

∫ η− c1
2d61

η
d61
d62
− c1

2d61

|F̂ ′(α)|2 dα dη.

We estimate each term on the right hand side of (2.5). Fubini’s theorem gives

I11 =
∫ ∞
−c1
2d61

|F̂ ′(α)|2
∫ (α+

c1
2d61

)
d62
d61

α+
c1

2d61

η dη dα

=
1
2

∫ ∞
− c1

2d61

|F̂ ′(α)|2
(
α+

c1
2d61

)2 [(d62

d61

)2

− 1
]
dα.

(2.6)

A similar argument yields

I12 =
1
2

∫ − c1
2d61

−∞
|F̂ ′(α)|2

(
α+

c1
2d61

)2 [
1−

(d62

d61

)2]
dα.(2.7)

Combining (2.6) and (2.7) it follows that

I11 − I12 =
1
2

∫
R
|F̂ ′(α)|2

(
α+

c1
2d61

)2 [
1−

(d62

d61

)2]
dα.

Observe that

(d62)2 − (d61)2

(d61)2
' 4(N4s

2 −N4s
1 )

4N4s
' (N2 −N1)N4s−1

N4s
=
N2 −N1

N
.
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Returning to (2.5), we have

I1 = C N4s−2|N1 −N2|
∫
R
|F̂ ′(α)|2

(
α+

c1
2d61

)2 [
1−

(d62

d61

)2]
dα

= C N4s−3(N1 −N2)2

∫
R
|F̂ ′(α− c1

2d61

)|2 α2 dα

' C N4s−3(N1 −N2)2N2(1−2s)‖F̂ ′‖22

= C
(N1 −N2)2

N
‖F̂ ′‖22.

(2.8)

Now we estimate I2

I2 =
(d61)2s+1

(−ω1)1/2

∫
(1 + |η|2)s

∣∣∣F̂ (η
d61

d62

− c1
2d61

)− F̂ (η
d61

d62

− c2
2d62

)
∣∣∣2 dη

=
(d61)2s+1

(−ω1)1/2

(
d61

d62

)2s+1 ∫
|η|2s

∣∣∣F̂ (η − c1
2d61

)− F̂ (η − c2
2d62

)
∣∣∣2 dη

' (d61)2s+1

(−ω1)1/2
N2s(1−2s)

∫ ∣∣∣ ∫ η− c1
2d61

η− c2
2d62

F̂ ′(α) dα
∣∣∣2 dη

≤ (d61)2s+1

(−ω1)1/2
N2s(1−2s)

∫ ∣∣∣ ∫ η− c1
2d61

η− c2
2d62

dα
∣∣∣∣∣∣ ∫ η− c1

2d61

η− c2
2d62

|F̂ ′(α)|2 dα
∣∣∣ dη

' (d61)2s+1

(−ω1)1/2
N2s(1−2s)

∣∣∣ c1
2d61

− c2
2d62

∣∣∣ ∫ ∫ η− c1
2d61

η− c2
2d62

|F̂ ′(α)|2 dαdη

' N4s−1
∣∣∣ c1
2d61

− c2
2d62

∣∣∣2‖F̂ ′‖22
' |N2 −N1|2

N
‖F̂ ′‖22.

(2.9)

Finally,

I3 = (d61)2s+1

∫
|η|2s

(
1

4
√
−ω1 − 4

√
−ω2

)2

|F̂ (η
d61

d62

− c2
2d62

)|2dη

= (d61)2s+1 ( 4
√
−ω2 − 4

√
−ω1)2

√
ω1ω2

∫
|η|2s|F̂ (η

d61

d62

− c2
2d62

)|2dη

= (d62)2s+1

(
ω2 − ω1

4 4
√

(−ωo)3

)2
1

√
ω1ω2

∫
|η|2s|F̂ (η − c2

2d62

)|2dη

' N2s(2s+1)−3 |N2
1 −N2

2 |2
N2

(
c2

2d62

)2s

‖F̂‖2

' N4s−3(N1 −N2)2‖F‖2,

(2.10)

where we have used the mean value theorem and ωo ∈]ω2, ω1[.
Set

α =
d3

d5
=

c

2
√
−ω

< 1, β2 = 1− α2 =
−4ω − c2
−4ω

;
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DERIVATIVE SCHRÖDINGER EQUATION 3655

this implies
α

β
=

c√
−4ω − c2

(and
1
β

) ' N1−2s.

We can take N large enough so that, setting θ = arctan α
β ,

π

2
− θ ' π

2
− arctanN1−2s ' N−2s,(2.11)

since 2s < 1.
Now we evaluate the L2-norm of F̂ and (F̂ )′:

‖F‖2 =
∫ ∞
−∞

dx

α+ coshx
=
∫ ∞
−∞

2exdx
2αex + e2x + 1

= 2
∫ ∞

0

du

(u+ α)2 + β2
=

2
β

arctan
u+ α

β

∣∣∣∣∞
0

=
2
β

(
π

2
− θ) ' N1−4s.

(2.12)

On the other hand, we have that

‖(F̂ )′‖2 = ‖xF‖ = 2
∫ ∞
−∞

x2 ex

2αex + e2x + 1
dx ≤ C.(2.13)

Replacing (2.12) in (2.10) and (2.13) in (2.8) and (2.9), we get, respectively

I1, I2 ≤
C (N1 −N2)2

N
; I3 ≤

C (N1 −N2)2

N2
.(2.14)

Then (2) can be estimated by

‖ϕc1,ω1 − ϕc2,ω2‖2Hs ≤
C (N1 −N2)2

N
.(2.15)

Since 2s < 1 we can choose

N1 = N and N2 = N + δNs(2.16)

to have

‖ϕc1,ω1 − ϕc2,ω2‖2Hs ≤ C δ2N2s−1 ≤ C δ2.

Next we consider the corresponding solutions uc1,ω1(x, t) and uc2,ω2(x, t) at time
t = T . As in (2), we get, from (2.12),

‖ϕc,ω‖2Hs '
d2s+1

6

(−ω)
1
2

∫
|η|2s|F̂ (η − c

2d6
)|2dη

' N2s(2s+1)

N
N (1−2s)2s‖F‖2 ' C.

(2.17)

We shall compute ‖uc1,ω1(·, T )− uc2,ω2(·, T )‖Hs , using the fact that

‖ucj,ωj(·, T )‖Hs = ‖ϕcj ,ωj‖Hs ' C,
j = 1, 2 (by the invariance of the solitary wave solutions), and

‖uc1,ω1(·, T )− uc2,ω2(·, T )‖2Hs ≥ N2s‖uc1,ω1(·, T )− uc2,ω2(·, T )‖2;

on the other hand, we have that

ucj ,ωj(x, T ) = e−iωjT eiψ(x−cj T ) d6j

(−ωj)1/4
h(d6j (x− cj T )), j = 1, 2.
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The support of ucj,ωj(T ) is concentrated in B(d6j )−1(Tcj), j = 1, 2. Thus, given
δ > 0 and T > 0 if c1, c2 are chosen such that

T (c2 − c1)� max(
1
d61

,
1
d62

) ' N−2s,(2.18)

there is no interaction and

‖uc1,ω1(·, T )− uc2,ω2(·, T )‖2 ' ‖uc1,ω1(·, T )‖2 + ‖uc2,ω2(·, T )‖2 ' N−2s.

Combining the above estimates we get

‖uc1,ω1(·, T )− uc2,ω2(·, T )‖2Hs ≥ C.

So, if we choose N such that N3s � 1
Tδ then, from the choice of c1, c2 in (2.16)

T (c2 − c1) = TδNs >> N−2s

and we get (2.18).

3. The generalized Benjamin-Ono equation

The generalized Benjamin-Ono equation has, for k = 1, an explicit solitary wave

uc(x, t) =
4c

(cx− c2t)2 + 1
,(3.1)

and for k > 1, Weinstein in [23] proved that there exists a solitary wave uc(x, t) =
ϕc(x− ct) of (1.3), that is, ϕc is a solution of

−cϕ′ + ϕkϕ′ + (Hϕ)′′ = 0(3.2)

where ϕc ∈ C∞(R) ∩H1/2(R) is positive, symmetric and decreasing in |x|.

Theorem 3.1. The initial value problem (1.3) with k = 1 is ill-posed in Hs(R),
s < −1/2 and, with k > 1, it is ill-posed in Ḣsk(R) with sk = 1/2 − 1/k in the
sense that the mapping data-solution, u0 → u(t) is not uniformly continuous.

Proof. For k = 1 and s > 1/2, c = 1/ε we have, from (3.1),

‖uε(·, 0)‖2H−s = ‖(1−∆)−s/2uε(·, 0)‖2 = 16π2

∫ ∞
−∞

e−4πε|ξ|

(1 + |ξ|2)s
dξ(3.3)

which converges uniformly as ε → 0 to 16π2‖δ‖2H−s (since δ̂ = 1). Now we prove
that uε(·, 0) converges also weakly to 4πδ: let ϕ ∈ C∞o (R), then

lim
ε→0
〈uε, ϕ〉 = lim

ε→0

∫
4/ε

x2/ε2 + 1
ϕ(x)dx = 4 lim

ε→0

ϕ(εy)
y2 + 1

dy

= 4πϕ(0) = 4π〈δ, ϕ〉,
thus implying the convergence in H−s. For t > 0 the invariance in t implies the
convergence of ‖uε(·, t)‖H−s to 4φ‖δ‖H−s but uε(·, t) → 0 weakly, since, as ϕ has
compact support,

lim
ε→0
〈uε, ϕ〉 =

∫
4/ε

(x/ε− t/ε2)2 + 1
ϕ(x)dx

= 4 lim
ε→0

∫
ϕ(t/ε+ εy)
y2 + 1

dy = 0.

This proves that the initial value problem for the Benjamin-Ono equation is locally
ill-posed in Hs(R) for s < −1/2.
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Now, for k > 1, let

ϕk,c(x) = c1/kϕ1(cx),

where ϕ1 solves (3.2) with c = 1 (ϕk,c solves (3.2) with c > 0), and

uk,c(x, t) = ϕk,c(x− ct) = c1/kϕ1(cx − c2t)
which is a solitary wave solution for (1.3) with speed of propagation c.

Let us evaluate the Ḣsk -norm of the difference of two solitary wave solutions
with speeds c1, c2 at t = 0 and t > 0:

‖(uk,c1 − uk,c2)(·, 0)‖2
Ḣsk

= ‖Dsk(ϕk,c1 − ϕk,c2)‖2

= ‖Dskϕk,c1‖2 + ‖Dskϕk,c2‖2 − 2〈ϕk,c1 , ϕk,c2〉sk .
(3.4)

We have

〈ϕk,c1 , ϕk,c2〉sk =
∫
Dskϕk,c1(x)Dskϕk,c2(x)dx

=
∫
ϕ̂k,c1(ξ)ϕ̂k,c2(ξ)|ξ|2skdξ

= (c1c2)1/k−1

∫
ϕ̂1(ξ/c1)ϕ̂1(ξ/c2)|ξ|2skdξ

= (c1/c2)1−1/k

∫
ϕ̂1(η)ϕ̂1(c1/c2η)|η|2skdη.

As θ := c1/c2 → 1 we get

lim
θ→1
〈ϕk,c1 , ϕk,c2〉sk = ‖Dskϕ1‖2 = ‖ϕ1‖2Ḣsk .(3.5)

Analogously, for i = 1, 2,

‖ϕk,ci‖2Ḣsk =
∫
|ξ|2sk |ϕ̂k,ci(ξ)|2dξ

= c
2/k−2
i

∫
|ξ|2sk |ϕ̂1(ξ/ci)|2dξ

= c
2sk+1+2/k−2
i

∫
|η|2sk |ϕ̂1(η)|2dη = ‖ϕ1‖2Ḣsk .

(3.6)

Replacing (3.5) and (3.6) in (3.4) and taking limits as θ → 1 we get

lim
θ→1
‖(uk,c1 − uk,c2)(·, 0)‖2

Ḣsk
= 0.(3.7)

Now for t > 0 we have similarly

〈uk,c1(·, t), uk,c2(·, t)〉sk =
∫
Dskϕk,c1(x− c1t)Dskϕk,c2(x− c2t)dx

=
∫
e−2πiξt(c1−c2)ϕ̂k,c1(ξ)ϕ̂k,c2 (ξ)|ξ|2skdξ

=
∫
e−2πiξt(c1−c2)c

1
k−1
1 ϕ̂1(ξ/c1)c1/k−1

2 ϕ̂1(ξ/c2)|ξ|2skdξ

= (c1c2)
1
k−1

∫
e−2πitc1η(c1−c2)ϕ̂1(η)ϕ̂1(

c1
c2
η)c2sk+1

1 |η|2skdη

= (
c1
c2

)1− 1
k

∫
e−2πitc1η(c1−c2)ϕ̂1(η)ϕ̂1(

c1
c2
η)|η|2skdη.
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Taking c1 = n + 1 and c2 = n and n → ∞ we have, by the Riemann-Lebesgue
lemma,

lim
n→∞

〈uk,n+1(·, t), uk,n(·, t)〉sk = 0;(3.8)

since

‖uk,c1(·, t)‖Ḣsk = ‖uk,c2(·, t)‖Ḣsk = ‖ϕ1‖Ḣsk
we have

‖uk,c1(·, t)− uk,c2(·, t)‖Ḣsk → 21/2‖ϕ1‖Ḣsk 6= 0.
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