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Abstract
In the extreme violence of merger and mass accretion, compact objects like
black holes and neutron stars are thought to launch some of the most luminous
outbursts of electromagnetic and gravitational wave energy in the Universe.
Modeling these systems realistically is a central problem in theoretical astro-
physics, but has proven extremely challenging, requiring the development of
numerical relativity codes that solve Einsteinʼs equations for the spacetime,
coupled to the equations of general relativistic (ideal) magnetohydrodynamics
(GRMHD) for the magnetized fluids. Over the past decade, the Illinois
numerical relativity (ILNR) groupʼs dynamical spacetime GRMHD code has
proven itself as a robust and reliable tool for theoretical modeling of such
GRMHD phenomena. However, the code was written ‘by experts and for
experts’ of the code, with a steep learning curve that would severely hinder
community adoption if it were open-sourced. Here we present IllinoisGRMHD,
which is an open-source, highly extensible rewrite of the original closed-source
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GRMHD code of the ILNR group. Reducing the learning curve was the
primary focus of this rewrite, with the goal of facilitating community invol-
vement in the codeʼs use and development, as well as the minimization of
human effort in generating new science. IllinoisGRMHD also saves computer
time, generating roundoff-precision identical output to the original code on
adaptive-mesh grids, but nearly twice as fast at scales of hundreds to thousands
of cores.

Keywords: GRMHD, magnetohydrodynamics, general relativity, black holes,
neutron stars, gamma-ray bursts, relativistic astrophysics

(Some figures may appear in colour only in the online journal)

1. Introduction and motivation

Incident gravitational wave (GW) observations have the potential to address some of the most
important unsolved problems in astronomy and theoretical astrophysics. These include testing
GR in the strong field regime, determining the engine behind short-hard gamma-ray bursts,
constraining the equation of state above nuclear densities, revealing how compact binaries
form and evolve, as well as uncovering the distributions of black hole (BH) spins and masses,
just to name a few. However, it is well known that unless some coincident electromagnetic
(EM) counterpart from the GW source is observed, GW interferometers alone may be unable
to pinpoint the source position on the sky, hindering parameter estimation [35, 45, 51, 64].
Moreover, EM signals carry additional and complementary information about the source,
lending potentially critical insights about the GW source and its environment.

Thus detections of EM counterparts to GWs could be critically important in this age of
‘multimessenger’ astronomy, and not solely when GWs are detected first. For example, it may
be possible that an EM signal itself would imply a GW source, leading to targeted searches
across the GW spectrum, from the nHz band in the case of dual AGNs, to the kHz band in the
case of stellar-mass binaries and supernovae. Beyond coincident GW detections, EM tran-
sients linked to strong-field, dynamical spacetime phenomena may themselves greatly
advance our understanding of BH accretion phenomena and matter at extreme densities.

However, without detailed theoretical models of EM counterparts to GW observations, our
interpretation of observed EM counterparts may be severely limited. Constructing such models
remains a central problem in theoretical astrophysics, for two key reasons. First, observable
signals are often sensitive to fluid flows and gravitational fields spanning many orders of mag-
nitude in lengthscale and timescale. Second, the equations governing the dynamics are highly
complex and nonlinear, requiring the evolution of the full set of Einsteinʼs equations of general
relativity, coupled to the equations of general relativistic magnetohydrodynamics (GRMHD).

Thus numerical relativity codes capable of modeling multi-scale GRMHD flows promise
to not only provide key insights into these important phenomena, but represent the starting
point for more sophisticated modeling that includes advanced EM and neutrino radiation
transport. More than a decade ago, the Illinois numerical relativity (ILNR) group led by
Shapiro was among the first to develop a dynamical spacetime GRMHD code [25] for
uniform-resolution grids. Since then, this GRMHD code (henceforth, OrigGRMHD) has been
significantly extended and improved. Its current version models multi-scale GRMHD flows
via an adaptive-mesh-refinement (AMR) vector-potential formulation. By evolving the vector
potential forward in time instead of the magnetic fields directly, this formulation guarantees

Class. Quantum Grav. 32 (2015) 175009 Z B Etienne et al

2



the no-monopole constraint B· 0 = is satisfied over the entire numerical grid, even when
multi-scale magnetized fluid flows cross AMR grid boundaries. Notably, this formulation
reduces to the standard, staggered flux-constrained-transport [11] scheme on uniform-reso-
lution numerical grids [30, 32, 36].

OrigGRMHDʼs reputation for generating models that address key unsolved problems in
theoretical astrophysics has been built upon years of hard-fought development, as there exists
no standard, proven algorithms for dynamical spacetime, multi-scale GRMHD modeling.
Over the past decade, the code has been used to model a number of astrophysical scenarios,
gleaning key new insights into these systems. For example, OrigGRMHD has produced state-
of-the-art magnetized binary neutron stars (NSs) [46, 56] and binary BH–NS
[27, 28, 31, 33, 59] models. It was also used to simulate magnetized disk accretion onto
binary BHs [36, 37, 40, 41], binary white dwarf-NS mergers [55, 58], magnetized, rotating
NSs [29], magnetized Bondi accretion [30], and magnetized hypermassive NSs
[22, 23, 47, 65, 66, 68], just to name a few. The code was also recently extended, as a separate
module, to solve the equations of GR force-free electrodynamics [60] and applied to model
both binary BH–NS [57] and pulsar magnetospheres in GR [61]. At each stage of its
development, OrigGRMHD was subjected to a large battery of stringent test-bed problems
[30], which it had to pass before being used for applications.

The field has matured considerably in the years since the first dynamical spacetime
GRMHD codes were announced, and multiple groups now possess their own independent
codes [2, 16, 21, 25, 30, 32, 39, 44, 50, 54, 63], most of which solve these equations on AMR
grids. Given the time and effort required to extend such codes to model more physics, while
still maintaining and improving the GRMHD modules, it seems clear that the community
might benefit if more of us consolidated our efforts and adopted the same dynamic-spacetime
GRMHD code.

With its proven robustness and reliability in modeling some of the most extreme phe-
nomena in the Universe, OrigGRMHD appears to be a good candidate for such community
adoption if it were open-sourced. But despite its strong track record, OrigGRMHD was not
written with community adoption in mind, instead being a code written ‘by experts and for
experts’ of the code. As such, the code lacked a number of features common to top-notch,
widely adopted open-source projects in computational astrophysics, including sufficient
documentation and code comments, fine-grained modularity, a consistent coding style, and
regular, enforced code maintenance (e.g., removal of unused and unmaintained features).

Thus the OrigGRMHD core development team came to the understanding that unless
these idiosyncrasies were fixed, open-sourcing the code would be unlikely to engender
widespread community adoption. Thus in early 2013, it was decided to rewrite OrigGRMHD
from the ground up, with a focus on the four core design principles of user-friendliness,
robustness, modularity/extensibility, and performance/scalability. Slightly more than a year
later, all of OrigGRMHDʼs core algorithms had been rewritten and the new code, Illi-
noisGRMHD, was released.

Just after the decision was made to rewrite OrigGRMHD in 2013, the first open-source,
dynamical spacetime GRMHD code, called GRHydro, was released [50]. Originally forked
from the dynamical spacetime, general relativistic hydrodynamics Whisky code [8] (not to be
confused with its closed-source successor, WhiskyMHD [39]), GRHydro shares many of the
same features of OrigGRMHD, including a number of reconstruction techniques.

However, unlike OrigGRMHD/IllinoisGRMHD, GRHydroʼs GRMHD scheme has not
been developed to forbid the generation of monopoles (i.e., violations of the B· 0 =
constraint) when magnetized fluids flow across AMR grid boundaries. As accurate modeling
of such multi-scale fluid flows is critically important in many astrophysical scenarios of
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interest to the community, GRHydroʼs adoption by members of the community has been
limited, primarily to those who simulate core collapse.

Further, one of OrigGRMHD/IllinoisGRMHDʼs key advantages is that these codes are
capable of stably modeling GRMHD flows into BH horizons over very long timescales,
without the need for special algorithms that excise GRMHD data within the BH. By contrast,
it seems that BH excision is an essential ingredient for stable GRMHD evolutions with
GRHydro in the presence of BHs. To date GRHydro has been mostly used for core collapse
(to a NS) simulations, in which no BH is present.

OrigGRMHD/IllinoisGRMHD have been demonstrated robust across a much wider
range of long-term BH simulations, and manage to do so without excision. We conclude that
making GRHydroʼs GRMHD schemes as robust may require careful specification of
boundary conditions on the excision surface coupled to an interpolation scheme across AMR
level boundaries that respects the no-monopoles constraint, e.g. [9, 10].

IllinoisGRMHD was originally designed in a standalone sandbox to maximize portability
to other parallel infrastructures, but currently adopts the latest Einstein Toolkit (ET) [48]/
Carpet [62] AMR infrastructure. IllinoisGRMHD has been proposed for inclusion within the
next ET release, and code review is underway. In the meantime, the ET community have
graciously agreed to host the IllinoisGRMHD code, in anticipation of official incorporation
upon completion of the code review process8.

In this paper, we present results from a number of code validation tests demonstrating
that IllinoisGRMHD (1) produces results identical to OrigGRMHD, (2) possesses identical or
significantly better scalability and performance than OrigGRMHD and GRHydro, (3) gen-
erates results in quantitative agreement with those of the GRHydro code, in the context of
dynamical spacetime evolutions of Tolman–Oppenheimer–Volkoff (TOV) stars.

The remainder of the paper is organized as follows. Section 2 outlines the formulation of
the GRMHD equations solved by IllinoisGRMHD, section 3 presents a basic overview of
algorithms used within IllinoisGRMHD, section 4 shows results from code validation tests,
section 5 demonstrates the outstanding performance and scalability of IllinoisGRMHD via
benchmarks, and section 6 summarizes results and describes future work.

2. Basic equations

All equations presented below are in geometrized units where G c 1= = . In these units,
Einsteinʼs equations become

G T8 , (1)π=μν μν

where G μν is the Einstein tensor and T μν the total stress–energy tensor. IllinoisGRMHD
solves the coupled Einstein–Maxwell equations assuming a perfect fluid stress–energy tensor
for the matter and infinite conductivity (ideal MHD), by evolving via high-resolution-schock-
capturing techniques the GRMHD quantities that comprise the stress–energy tensor T μν,
acting as the source for Einsteinʼs equations. With these assumptions, the GRMHD evolution
and constraint equations are derived from the following basic equations:

(i) Conservation of baryon number

( )u 0, (2)0 ρ =μ
μ

8 Instructions for downloading, compiling, and using IllinoisGRMHD may be found here: http://math.wvu.edu/
~zetienne/ILGRMHD/.
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where μ is the covariant derivative associated with the spacetime metric tensor gμν, 0ρ is
the fluid rest-mass density and uμ is the fluid four-velocity.

(ii) Conservation of energy–momentum

T T T T0, , (3)matter EM = = +μ
μν

μν μν μν

where Tμν is the sum of the perfect fluid T matter
μν and EM stress–energy tensors T EM

μν in the
ideal MHD limit (u F 0=μ

μν ).

(iii) Homogeneous Maxwellʼs equations

( )F
g

g F* 1 * 0, (4) =
−

∂ − =ν
μν

ν
μν

where F μν the Faraday tensor, F F* (1 2)ϵ=μν μνρσ
ρσ its dual (ϵμνρσ is the Levi-Civita

tensor), and g the determinant of gμν.

As written, equations (2)–(4) for the plasma, as well as equation (1) for the spacetime
metric, are not particularly well-suited for numerical evolutions, so we choose special for-
mulations of them. For the spacetime metric evolution, we choose an initial value formulation
built upon first splitting the four-metric gμν into the standard 3+1 Arnowitt–Deser–Misner
(ADM) form [5]:

( )( )s g x x t x t x td d d d d d d d . (5)ij
i i j j2 2 2α γ β β= = − + + +μν

μ ν

Here, α is the lapse function, iβ the shift vector, and ijγ the three-metric on spacelike
hypersurfaces of constant time t. This basic decomposition of the four-metric can be used to
split the Einstein equations (1) into a set of evolution equations and a set of constraint
equations that the dynamical variables must satisfy for all times—similar to Maxwellʼs
equations—with projections of T μν along and normal to the 3D spatial hypersurface existing
as source terms (see, e.g., [14] for a detailed discussion and references). This original
formulation of the Einstein equations is known as the ADM 3+1 formulation of GR. A
number of 3+1 formulations can be derived from the ADM formulation and are useful for
solving the Cauchy problem for the Einstein equations. For the purposes of this paper, we
choose the Baumgarte–Shapio–Shibata–Nakamura (BSSN) formulation [13, 67], which
introduces an auxiliary dynamical variable and conformal scalings for the dynamical
variables, casting the evolution equations in a form that allows for stable, long-term and
accurate numerical integration.

To update T μν from one time slice to the next in a simulation, IllinoisGRMHD solves
equations (2), (3), and the spatial component of equation (4) in the ideal MHD limit
(u F 0=μ

μν ), as written in conservative form (see e.g. [25]):

C F S· , (6)t ∂ + =

where F is the flux vector, C S B{ , ˜, ˜ , ˜ }i
iρ τ= ⋆ the vector of conservative variables, and S the

vector of source terms These vectors depend directly on the ‘primitive’ variables
P P v B{ , , , }i i

0ρ= , where P is the pressure, v u ui i 0= the fluid three-velocity, and B i are
the spatial components of the magnetic field (Bμ) measured by normal (or Eulerian) observers
with four velocity n (1, )iβ α= −μ (and is normal to the spatial hypersurface, B n 0=μ

μ , as
well as the metric and its derivatives. In particular, C may be written in terms of P, α and the
metric as follows:
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( )
C S

B

u

T

h u b u b b

B

˜
˜

˜
,

, (7)
i

i
i i

i

0
0

2 00

0 2 0

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

ρ
τ

α γ ρ

α γ ρ

ρ α γ α γ

γ

= =
−

+ −

⋆

⋆

⋆

where γ is the determinant of the three-metric ijγ , h P1 0ϵ ρ= + + is the specific enthalpy,

with ϵ the specific internal energy, and b B 4u( ) π=μ μ with B u( )
μ the magnetic field field

measured by an observer comoving with the fluid. Here the total stress–energy tensor T μν can
be written as follows (see [14, 24, 25] for further details and derivations)

( )T h b u u P
b

g b b
2

. (8)0
2

2⎛
⎝⎜

⎞
⎠⎟ρ= + + + −μν μ ν μν μ ν

Our choice of fluid three-velocity v u ui i 0= as a primitive variable is consistent with a
number of GRMHD codes, such as [26, 44, 53]. However, our v i differs from that of other
GRMHD codes (e.g., [6, 7, 39, 50], just to name a few) that have adopted the Valencia
formalism [4, 12], which adopts the fluid three-velocity v n

i
( ) as measured by normal observers

(also referred to as the Eulerian three-velocity), defined as:

( )u u n v (9)a a
n
a0
( )α= + ⇒

v
u

u
. (10)n

i
i i

( ) 0α
β
α

= +

Note that v n( )
μ is orthogonal to the normal vector to the 3D spatial hypersurface v n 0n( ) =μ

μ . In

terms of the fluid three-velocity used by IllinoisGRMHD v i, v n
i
( ) can be written as

( )v v
1

. (11)n
i i i
( ) α

β= +

Note that this difference in the three-velocity variable may account for some of the differences
in numerical results observed between IllinoisGRMHD and (the Valencia-based) GRHydro in
section 4, as Valencia-based codes reconstruct v n

i
( ) instead of v i.

Writing the GRMHD evolution equations in conservative form offers a number of
numerical advantages. First, when the source terms S vanish (e.g. in Minkowski spacetime), it
guarantees conservation of total rest mass ( )x*d

V
3∫ ρ , energy ( )x˜d

V
3∫ τ , and momentum

( )S x˜ d
V i

3∫ to roundoff error. When the source terms are accounted for, total ADM mass and
momentum are conserved to within truncation error. Second, it enables us to attach easily an
approximate Riemann solver, yielding a state-of-the-art high-resolution shock-capturing
(HRSC) numerical scheme, designed in part to minimize oscillations near shocks. Such
oscillations are generated by approximating the flux derivative across shocks by smooth
functions. Third, the conservative form, coupled to the HRSC scheme guarantees the shock
jump conditions (Rankine–Hugoniot) are satisfied. From an empirical perspective, finite-
volume conservative formulations, as implemented in IllinoisGRMHD, have been shown
superior at handling ultrarelativistic flows when compared to advanced artificial viscosity
(AV) schemes [3, 49], despite the fact that AV schemes are typically superior in terms of ease
of implementation and computational efficiency.

A key ingredient in a robust GRMHD code is the proper treatment of the magnetic
induction equation, which is derived from the spatial components of equation (4). In
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conservative form, these may be written:

( )B v B v B˜ ˜ ˜ 0. (12)t
i

j
j i i j∂ + ∂ − =

If the induction equation is directly evaluated in a numerical code without special techniques,
numerical truncation errors that violate the divergence-free or ‘no-monopoles’ constraint

B̃ 0 (13)i
i∂ =

will be generated. Note that this equation is simply the time component of equation (4).
Maintaining satisfaction of this constraint as the magnetic fields are evolved forward in time
(through direct evaluation of equation (12)) happens to be a nontrivial endeavor, particularly
on AMR grids. Our solution [30, 32] is to evolve the magnetic four-vector potential μ
instead of the magnetic fields directly, so that

n A , and (14) Φ= +μ μ μ

B A˜ ˜ , (15)i ijk
j kϵ= ∂

where Aμ is purely spatial (A n 0=μ
μ ) and Φ is the EM scalar potential. Here, ˜ijkϵ is the

standard permutation symbol, equal to 1 (−1) if ijk are an even (odd) permutation of 123, and
0 if one or more indices are identical. Special finite difference operators for the vector
potential are defined in IllinoisGRMHD so that the divergence of a curl is zero to roundoff
error, which implies that the divergence of equation (15) is zero and equation (13) is satisfied
automatically, even on AMR grids.

In terms of Ai, the induction equation (12) becomes

( )A v B A˜ ˜ . (16)t i ijk
j k

i
j

jϵ αΦ β∂ = − ∂ −

What remains is to choose an EM gauge, and IllinoisGRMHD chooses the ‘generalized
Lorenz gauge condition’ by default that was introduced by the Illinois Relativity group in
[36]. The covariant version of the condition is n  ξ=μ

μ
μ

μ, where ξ is a parameter with
dimensions 1 Length, chosen carefully so that the Courant–Friedrichs–Lewy factor remains
satisfied. Typically ξ is set to t1.5 maxΔ , where tmaxΔ is the timestep of the coarsest refinement
level. This gauge choice therefore yields the additional evolution equation

( )A . (17)t j
j j⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦γ Φ α γ β γ Φ ξα γ Φ∂ + ∂ − = −

Note that IllinoisGRMHD evolves not Φ but γ Φ as the EM gauge variable.
With the exception of this purely gauge evolution equation and the vector-potential

induction equation, all other GRMHD evolution equations are written in conservative form
and are solved via a HRSC scheme, as described in section 3. For completeness, the
remaining set of evolution equations evolved by IllinoisGRMHD are written in conservative
form (equation (6)) as follows

S

v

T v

T

s

T g
˜
˜

0

1

2

, (18)t

i

j

j

j j

j
i

i

2 0

,

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

ρ
τ

ρ

α γ ρ

α γ
α γ

∂ + ∂ − =
αβ

αβ

⋆ ⋆

⋆
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where

( ) ( )s T T T K T T2 , (19)i j i j ij
ij

i i
i

00 0 00 0⎡⎣ ⎤⎦α γ β β β β α= + + − + ∂

and K £ 2ij n ijγ= − is the extrinsic curvature, where £n designates the Lie derivative along the
hypersurface normal vector n (see e.g. [14] for more details).

Finally, to close the system of equations, the EOS of the matter must be specified.
IllinoisGRMHD currently implements a hybrid EOS of the form [43]

( )P P( , ) ( ) 1 ( ) , (20)0 cold 0 th 0 cold 0
⎡⎣ ⎤⎦ρ ϵ ρ Γ ρ ϵ ϵ ρ= + − −

where Pcold and coldϵ denote the cold component of P and ϵ respectively, and thΓ is a constant
parameter which determines the conversion efficiency of kinetic to thermal energy at shocks.
The function ( )cold 0ϵ ρ is related to P ( )cold 0ρ by the first law of thermodynamics

P
( )

( )
d . (21)cold 0

cold 0

0
2 0∫ϵ ρ
ρ

ρ
ρ=

All functions within IllinoisGRMHD support piecewise-defined P ( )cold 0ρ (the so-called
‘piecewise polytrope’ EOS) with up to nine different polytropic indices, except for the
conservatives-to-primitives solver, which currently supports only one.

In all code tests presented in this paper, the Γ-law EOS P ( 1) 0Γ ρ ϵ= − is adopted. This
corresponds to setting P ( 1)cold 0 coldΓ ρ ϵ= − in equation (20), which is equivalent to

Pcold 0κρ= Γ (with constant κ), and thΓ Γ= . In the absence of shocks and in the initial data
used for our tests, coldϵ ϵ= and P Pcold= .

2.1. Outer boundary conditions

We apply outer boundary conditions to primitive variables 0ρ , P, and v i, which enforce a
zero-derivative, ‘copy’ boundary condition of these quantities at the outer boundary, except
when this results in a positive incoming velocity from the outer boundary. Hence we refer to
these as ‘outflow’ boundary conditions. As our outer boundary exists as a rectangular box, if
for example v 0x < at a given point on the x xmax= boundary plane after applying the zero-
derivative boundary condition, we set v 0x = at that point. Similarly, at a given point on the
x xmin= boundary plane, if v 0x > after applying the flat outer boundary condition, v x is set
to zero. The same strategy is applied to the velocities for all other outer boundary faces.

We also apply outer boundary conditions to Aμ, linearly extrapolating values to the outer
boundary. To avoid problems caused by reflections of EM gauge waves from these imperfect
outer boundary conditions, the unit-bearing (i.e., not dimensionless) ξ parameter in the Ai

evolution equation is set to some nonzero, positive value, typically t1.5 maxΔ , where tmaxΔ is
the timestep of the coarsest refinement level.

3. Basic algorithms

Since its initial stages, one of the primary objectives driving the development of Illi-
noisGRMHD has been to remove nonrobust algorithms and obsolete code from the original
GRMHD code of the Illinois group, resulting in a reliable state-of-the-art piece of software
that is more compact and easier for beginners to learn and extend. To this end, all of the
obsolete code and functionality proven to be nonrobust in typical dynamical spacetime
evolutions has been stripped from the code, keeping within IllinoisGRMHD only the set of
algorithms used in all of the Illinois groupʼs latest GRMHD publications. Further, the core

Class. Quantum Grav. 32 (2015) 175009 Z B Etienne et al

8



algorithms themselves have been rewritten into a uniform coding standard, with large
amounts of duplicated functionality replaced with a small, optimized library of functions. This
section reviews the basic algorithms that comprise IllinoisGRMHD.

Here the algorithms that comprise the basic components of IllinoisGRMHD are intro-
duced, in the order in which they are called. At the beginning of the first timestep, the
variables P v B A{ , , , , , }i i

0ρ Φμ must be defined at every gridpoint. The following outlines the
basic steps in which these variables are updated at all gridpoints, in preparation for the next
timestep. All updates are performed by IllinoisGRMHD unless otherwise specified.

(i) First, the flux and right-hand side (rhs) terms in equations (17) and (18), for the set of
evolution variables E S A{ *, ˜ , ˜, , [ ]}i iρ τ γ Φ= , are evaluated. Three separate algorithms
are employed in this step:
(a) A HRSC evolution scheme is used to compute the flux terms of the *ρ , S̃i, and τ̃

evolution equations, as defined in equation (18). This scheme, as well as the
technique used to compute the source terms related to spacetime curvature in these
equations, is described in section 3.1.

(b) Unlike the other primitive variables, Ai and B i are defined on staggered gridpoints.
Further, our Ai evolution scheme is constructed to produce identical output to the
standard, staggered constrained transport scheme of [34]. As detailed in section 3.2,
this makes the HRSC scheme for updating Ai a bit more involved than the HRSC
scheme for evolving the unstaggered densitized density, momentum, and energy
variables.

(c) The evolution of the (staggered) EM gauge quantity [ ]γ Φ is not based on a HRSC
scheme, as this quantity generally does not exhibit sharp features in our simulations.
Its evolution algorithm is summarized in section 3.3.

(ii) Time derivative data from all evolved GRMHD variables are then passed to the method
of lines (MoL) thorn, which iteratively integrates the evolved variables forward in time.
MoL is capable of managing a number of iterative, explicit time integration techniques,
of which we typically choose the four-iteration Runge–Kutta fourth-order (RK4) scheme,
both in IllinoisGRMHD and the chosen spacetime evolution thorn.

(iii) Evaluating the time derivatives of all evolved GRMHD variables requires three
ghostzones at the outer boundary of each AMR grid. The ghostzones at the outermost
boundary are filled at each RK4 iteration, using the outer boundary update procedure
outlined in the next steps. However, ghostzones at each internal AMR grid boundary are
allowed to accumulate until the end of the fourth RK4 iteration. Since RK4 consists of
four iterations, this yields a total of 3 4 12× = AMR grid boundary ghostzones that
must be filled at the end of each full RK4 timestep. To fill these 12 ghostzones for all
evolved variables at the end of the fourth RK4 iteration, prolongation and restriction
operators are applied, which interpolate between different levels of refinement in both
space and time. Third-order, line-averaged Lagrange prolongation/restriction is
performed on Ai and γ Φ, and fifth-order Lagrange prolongation/restriction is performed
on all other GRMHD evolved variables.

(iv) Next, linear-extrapolation outer boundary conditions are applied to Ai and [ ]γ Φ , as
described in section 3.5. Then B i is computed from Ai at all gridpoints, as described in
section 3.2.

(v) The conservative variables *ρ , S̃i, τ̃ , and B̃i have at this point been updated at all needed
gridpoints, except at the outer boundary. However, the primitive variables P v B{ , , , }i i

0ρ
do not yet exist at any gridpoints. As these variables are required at the outset of the next
iteration, a conservative-to-primitives solver is called next, which at its heart employs a
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Newton–Raphson-based root-finder to invert equation (7), computing primitive variables
at each gridpoint based on the conservative variables at that point. Additionally, there are
a number of consistency checks applied both before and after this solver is called. The
procedure is outlined in section 3.4.

(vi) Next, zero-slope, outflow outer boundary conditions are applied to the set of primitive
variables P v{ , , }i0ρ , as described in section 3.5. After this step, all variables

P v B A{ , , , , }i i
0ρ μ needed to repeat this process have been defined at all gridpoints, so

to proceed to the next timestep or RK4 iteration, we simply loop to (i)(a). Values for the
conservatives at the outer boundary are not strictly required for the evolution, but are set
anyway, based on the primitive variables, in case a diagnostics utility might require that
conservatives be set at the outer boundary.

To conclude this introduction to IllinoisGRMHDʼs basic algorithms, section 3.6
describes how IllinoisGRMHD connects to the rest of the ET and its spacetime metric
evolution modules.

3.1. Evolution of ρ� , ~Si , and ~τ

To evolve the GRMHD variables, IllinoisGRMHD first evaluates the source terms of the time
evolution equations for S{ *, ˜ , ˜}iρ τ in equation (18). Derivatives of the spacetime fields appear
in the source terms, which are evaluated via standard, second-order (default) or fourth-order
finite differences. Next, the fluxes are computed via a second-order finite-volume HRSC
scheme. Since point values of gridfunctions and their volume averages are the same to second
order, our finite-volume scheme will converge at the same order as a finite-difference scheme.
We choose a finite-volume scheme, as it will enable us to more rapidly move to a higher-order
method in future releases of IllinoisGRMHD, following the strategy outlined in [30].

Computation of the flux term F F· m
m = ∂ in a given direction i x y z{ , , }∈ is per-

formed with our second-order finite-volume scheme in two steps, as detailed below. First, the
Reconstruction step computes values for the primitive variables at cell interfaces (between
gridpoints) along direction i. Then the Riemann solver solves the Riemann problem via an
inexpensive, approximate algorithm, ensuring the conservative variable fluxes between
gridpoints are appropriately constructed along direction i, even in the presence of dis-
continuities or shocks. Upon completing the Riemann solver step for a given flux direction i,
the process is repeated in the other two directions until Fm

m∂ has been evaluated and summed
in all three spatial dimensions x y z{ , , }.

The reconstruction step for *ρ , S̃i, and τ̃ : IllinoisGRMHD employs the piecewise
parabolic method (PPM) [17], incorporating the original flattening and steepening procedures
to reconstruct P at the right (PR) and left (PL) sides of each grid zone interface, along direction
i x y z{ , , }∈ . The version of PPM used within IllinoisGRMHD is designed to maintain third-
order accuracy, except at discontinuities or shocks and at local minima and maxima. As in the
GRHydro code [50] the flattening procedure within PPM was simplified to decrease the
number of required ghostzones within PPM from four to three.

After PPM reconstruction evaluates PR L, along a given direction i and the metric values
have been interpolated to each grid zone interface at fourth-order (default) or second-order
accuracy, the fluxes FR L, are then immediately evaluated via (7) and equation (18).

Next, for appropriate handling of fluxes across a given cell interface, the Riemann
problem must be solved.

The Riemann solver for *ρ , S̃i, and τ̃ : the first step in solving the Riemann problem along
direction i x y z{ , , }∈ is to compute the maximum (+) and minimum (−) characteristic speeds
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c R,L
± at each cell interface, approximating the general GRMHD dispersion relation (equation
(27) of [38]) with the following, simpler expression:

( )v c v k1 . (22)cm
2

A
2

s
2

A
2

cm
2⎡⎣ ⎤⎦ω = + −

Here, k ucmω = − μ
μ is the frequency and k K Kcm

2 = μ
μ the wavenumber of an MHD wave

mode in the frame comoving with the fluid, where Kμ is defined as the projection of the wave
vector kν onto the direction normal to uν: K g u u k( )= +μ μν μ ν

ν. cs is the sound speed, and vA

is the Alfvén speed, given by

v
b

h b
. (23)A

2

0
2ρ

=
+

With these definitions, the approximate dispersion relation (equation (22)) may then be
solved along direction i, noting that the wave vector along this direction in the comoving
frame is given by k k( , )j i

jω δ= −μ and the wave (phase) velocity by c k( )j i
jω δ=± . The

dispersion relation can then be written as a quadratic equation for c±: a c a c a 01
2

2 3+ + =± ± ,
where

( )( )
( )

( )( )

a v u v g

a v g u u v

a v u v g

1 ,

2 2 1 ,

1 , (24)

i i

i ii

1 0
2 0 2

0
2 00

2 0
2 0 0

0
2

3 0
2 2

0
2

= − −

= − −

= − −

and v v c v(1 )0
2

A
2

s
2

A
2= + − .

Though it makes c± simple to compute, this dispersion relation overestimates the max-
imum characteristic speeds by a factor 2⩽ , which has the net effect of making the code more
dissipative. Though additional dissipation may smear important physical features in our
GRMHD flows, it also acts to help stabilize evolutions. Note that this approximate dispersion
relation is widely used in multiple codes within the GRMHD community (e.g., WhiskyMHD
[39], GRHydro [50], HARM3D [53]).

Once the maximum and minimum speeds c± have been computed at left and right faces,
the standard Harten–Lax–van Leer (HLL), approximate Riemann solver [42] is then applied
to compute fluxes for the three conservative variables U S{ *, ˜, ˜}iρ τ= :

( )
F

c F c F c c U U

c c
, (25)HLL R L R L=

+ − −
+

− + + −

+ −

where c c cmax(0, , )R L= ±±
± ± , andUR,L are the conservative variables U computed from the

right and left reconstructed primitive values PR,L, respectively.
Upon computing the HLL flux at cell interfaces, the final step in evaluating the flux terms

in the evolution equations of *ρ , S̃i, and τ̃ (equation (18)) is to differentiate the computed
HLL flux terms along the same direction in which they were evaluated. After computing the
HLL flux in the x-direction we calculate the x-derivative of the flux as:

( )F

F F

x
. (26)x

x
i j k

i j k
x

i j k
x

, ,

HLL 1
2

, , HLL 1
2

, ,

Δ
∂ =

−
+ −

The remaining y- and z-terms in the Fm
m∂ sum are added to the sum as reconstruction

proceeds along the y- and z-directions, respectively.
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As the source terms of equation (18) have already been computed, to complete the
evaluation of *tρ∂ , S̃t i∂ , and ˜tτ∂ , all components of the Fm

m∂ sum are then subtracted from the
source terms. These data are then passed to the MoL thorn, which is capable of managing a
number of explicit time-stepping techniques. Although MoL supports a total-variation
diminishing third-order Runge–Kutta time integrator, we typically choose the RK4 scheme
for all evolution variables, both in IllinoisGRMHD and the chosen spacetime evolution thorn,
as we find that RK4 minimizes the total error when evolving both the spacetime and the fluid.

In parallel with evaluating the flux and source terms for *ρ , S̃i, and τ̃ , IllinoisGRMHD
employs a vector-potential-based constrained transport scheme to evolve the magnetic fields,
which is detailed in the next section.

3.2. Vector-potential-based constrained transport scheme

Constrained-transport schemes maintain B· 0 = through careful finite differencing of the
magnetic induction equation flux terms (equation (12)). Such schemes have proven highly
robust in the context of strongly curved spacetimes; in particular those inhabited by at least one
BH. These schemes are most commonly and most directly applied in the context of uniform-
resolution grids. However, their use with AMR grids can be complicated, as maintaining the
divergenceless constraint at refinement boundaries requires that special interpolations be per-
formed during prolongation/restriction. Such prolongation/restriction operators have been
devised [9, 10], but must be fine-tuned to the particular AMR implementation.

IllinoisGRMHD applies an alternative constrained-transport scheme, introduced by [20].
In this scheme, the magnetic induction equation (12) is recast as an evolution equation for the
magnetic vector potential (equation (16)). This scheme has two important advantages. First, it
produces identical output to the standard, staggered constrained-transport scheme on uniform
resolution grids and thus shares its robustness. Second, evolving the vector potential enables
us to use any interpolation scheme at AMR refinement boundaries without introducing
nonzero divergence to the magnetic fields, so long as we compute B i from the interpolated Ai.

The remainder of this section details the staggered constrained-transport scheme adopted
within IllinoisGRMHD. First, we define the staggerings of individual gridfunctions and the

Table 1. Storage location on grid of the magnetic field B i and vector potential μ. Note

that P is the vector of primitive variables P v{ , , }.i
0ρ

Variable(s) Storage location

Metric terms, P, *ρ , S̃i, τ̃ i j k( , , )

Bx, B̃x
i j k(

1

2
, , )+

By, B̃y
i j k( ,

1

2
, )+

Bz, B̃z
i j k( , ,

1

2
)+

Ax i j k( ,
1

2
,

1

2
)+ +

Ay i j k(
1

2
, ,

1

2
)+ +

Az i j k(
1

2
,

1

2
, )+ +

γ Φ i j k(
1

2
,

1

2
,

1

2
)+ + +
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computation of Bm from Am. Then the technique of reconstruction (equation (12)) on stag-
gered cell faces is outlined, and finally the Riemann solver is described.

Computation of Bm from Am: in employing the standard, staggered constrained transport
scheme, magnetic fields are defined at gridpoints that are staggered with respect to other
conservative variables, as specified in table 1. Notice that Am is staggered so that Bm may be
computed immediately from equation (15) using the following finite difference representa-
tion, accurate to second order:

( ) ( )B A A , (27)
i j k
x

i j k y z
i j k

i j k z y
i j k

1
2

, ,
1
2

, ,

1
2

, ,
1
2

, ,

1
2

, ,γ γ= ∂ − ∂
+ +

+
+

+

where

exp 6
1

2
, (28)i j k i j k i j k1

2
, , , , 1, ,

⎜ ⎟⎛
⎝

⎡⎣ ⎤⎦
⎞
⎠γ ϕ ϕ= × ++ +

( )A
A A

y
, and (29)y z

i j k z
i j k

z
i j k1

2
, ,

1
2

, 1
2

, 1
2

, 1
2

,

Δ
∂ = −+

+ + + −

( )A
A A

z
. (30)z y

i j k y
i j k

y
i j k

1
2

, ,

1
2

, , 1
2

1
2

, , 1
2

Δ
∂ =

−+
+ + + −

Here, (1 12)logϕ γ= is the BSSN conformal exponent. Using equation (27) as a template,
By and Bz can be written via straightforward permutation of vector indices x y z{ , , },
accounting for the appropriate staggerings. Our finite differencing scheme is specified so that
the divergence of a curl is identically zero to roundoff error. In this way, Bm is guaranteed to
be divergenceless at all but the outermost ghost-zones on any given refinement level, so long
as Am is computed at all points. As with the other conservative variables, reconstruction of the
flux terms for Am requires three ghostzones (as discussed in the next section), so the
prerequisite step of computing Bm from Am adds an additional ghostzone, bringing the total
number to four. However, we have found that application of a copy boundary condition on
Bm to the outermost gridpoint on each refinement level, coupled to the use of only three
ghostzones, results in qualitatively identical results to runs that use four ghostzones. We find
this to be the case even in the most stringent tests, such as a magnetized BH accretion disk
crossing multiple refinement boundaries, as in [36, 40, 41]. Thus by default, we have used
three ghostzones in all GRMHD simulations.

Flux reconstruction of the induction equation: accounting for staggerings, the evolution
equation for Az (dropping the EM gauge terms to focus on the flux term of the induction
equation) is given by

A , (31)t z
i j k

i j k
z

1
2

, 1
2

,
1
2

, 1
2

,
∂ = −

+ +

+ +

where

v B v B˜ ˜ (32)z x y y x = − +
is the flux term in the standard magnetic induction equation (12). Following [20], we compute
this flux term to staggered cell faces for Az and then evaluate the HLL flux generalized for
staggered grids. As z does not appear within a derivative of the Az induction equation (as it
does in the B̃z induction equation), the flux is not directly finite-differenced prior to passing
the rhs of At z∂ to the time-stepping routines. Instead, the spatial finite difference is computed
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after each RK4 iteration when Bm is computed from Am. Critically, the order in which spatial
and temporal derivatives are evaluated is the only difference between the standard, staggered
constrained-transport scheme and our vector-potential based staggered constrained-
transport scheme. And since spatial and temporal derivative operators commute within
IllinoisGRMHDʼs current framework, both schemes are identical on uniform meshes.

Returning to the evaluation of z , recall that primitives such as v i are defined at grid

points i j k( , , ), so computing the value z at i j k
1

2
,

1

2
,⎜ ⎟⎛

⎝
⎞
⎠+ + requires two successive one-

dimensional reconstructions of v x and v y: first in the x or y-direction and then in the y- or
x-direction, respectively. B̃x and B̃y already exist on staggered gridpoints (see table 1),
requiring only a single reconstruction in the y- and x-direction, respectively. Reconstruction is
handled via the same PPM scheme as described in section 3.1.

Approximate Riemann solver for Ai: the standard HLL formula (25) for z , generalized to
the appropriate staggered gridfunctions, is given by:

( ) ( )

( )( )
( )

c c c c c c c c

c c c c

c c

c c
B B

c c

c c
B B˜ ˜ ˜ ˜ . (33)

z x y
z

x y
z

x y
z

x y
z

x x y y

x x

x x

y y y y

y y

x x

HLL LL LR RL RR

R L R L

    
=

+ + +

+ +

+
+

− −
+

−

+ + + − − − − −

+ − + −

+ −

+ −

+ −

+ −

In the above formula, z
LR denotes the reconstructed left state in the x-direction and right state

in the y-direction. Other symbols involving z are interpreted in the similar fashion. B̃
y

R (B̃
y

L )
denotes the reconstructed right (left) state of B̃y in the x-direction, and B̃

x
R (B̃

x
L ) denotes the

reconstructed right (left) state in the y-direction. The cx
± and cy

± should be computed by taking
the maximum characteristic speed among the four reconstructed states. However, we set them
equal to the maximum over the two neighboring interface values for simplicity, as suggested
in [20], using the technique described in section 3.1 to estimate the speeds. The formula for
( )x HLL is obtained from equation (33) by permuting the indices z x→ , x y→ and y z→ ,
whereas the formula for ( )y HLL is obtained from equation (33) by permuting the indices
z y→ , x z→ and y x→ .

3.3. Evolution of the densitized EM scalar potential
ffiffiffi
γ

p
Φ

� �

Incorporating the staggering of the EM gauge variable [ ]γ Φ (as specified in table 1), the
evolution equation for [ ]γ Φ (equation (17)) may be written:

( ) ( )A˜ , (34)t i j k m
mn

n m
m

1
2

, 1
2

, 1
2

2

Term (1) Term (2) Term (3)

        
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦γ Φ αψ γ β γ Φ ξα γ Φ∂ = −∂ + ∂ −+ + +

where ψ is the standard BSSN conformal factor and the relations ˜mn mn4γ ψ γ= − and 6γ ψ=

have been applied. The left-hand side of the equation is evaluated at i j k
1

2
,

1

2
,

1

2
⎜ ⎟⎛
⎝

⎞
⎠+ + + ,

yet Am, [ ]γ Φ , and metric quantities on the rhs of this equation all possess different
staggerings. Thus special care must be taken so that the derivatives on the rhs of this equation

are evaluated at gridpoints i j k
1

2
,

1

2
,

1

2
⎜ ⎟⎛
⎝

⎞
⎠+ + + . To accomplish this, quantities within the

rhs derivatives are first interpolated to consistent points prior to evaluation of the derivatives.
Note that this strategy differs from the evolution of other GRMHD variables, in that no
reconstruction is applied. Methods for computing these terms on the rhs are as follows:
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Term (1): for the x-derivative, all quantities within the derivative operator ( A[ ] ˜mx
m

2αψ γ )

are first interpolated to i j k,
1

2
,

1

2
⎜ ⎟⎛
⎝

⎞
⎠+ + . At second-order accuracy, interpolations to

staggered gridpoints are trivial, requiring only averages of neighboring unstaggered points.

For example, interpolation of 2αψ from i j k( , , ) to i j k,
1

2
,

1

2
⎜ ⎟⎛
⎝

⎞
⎠+ + is performed in two

steps:

(i) [ ]
1

2
([ ] [ ] )i j k i j k i j k

2
, 1

2
,

2
, ,

2
, 1,αψ αψ αψ= ++ +

(ii) [ ]
1

2
([ ] [ ] ).i j k i j k i j k

2
, 1

2
, 1

2

2
, 1

2
,

2
, 1

2
, 1αψ αψ αψ= ++ + + + +

Once [ ]2αψ , ˜mxγ , Ay, and Az have been interpolated in this way to i j k,
1

2
,

1

2
⎜ ⎟⎛
⎝

⎞
⎠+ + , the

derivative A([ ] ˜ )x
xm

m
2αψ γ∂ is computed to second order as follows

( )
( ) ( )

A

A A

x
˜

˜ ˜

.

(35)

x
xm

m
i j k

xm
m

i j k

xm
m

i j k
2

1
2

, 1
2

, 1
2

2

1, 1
2

, 1
2

2

, 1
2

, 1
2⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
αψ γ

αψ γ αψ γ

Δ
∂ =

−

+ + +

+ + + + +

Other derivatives in the sum A( ˜ )m
mn

n
2αψ γ∂ are computed in the same fashion.

Term (2): the computation of this term is made easier by the fact that [ ]γ Φ is staggered

at i j k(
1

2
,

1

2
,

1

2
)+ + + already. So to evaluate the derivative, mβ is first interpolated from

i j k( , , ) to i j k
1

2
,

1

2
,

1

2
⎜ ⎟⎛
⎝

⎞
⎠+ + + using the same interpolation strategy as with Term (1).

Next, notice that this term is basically a shift advection term on the EM gauge quantity
[ ]γ Φ . Such advection terms are typically upwinded within the metric evolution thorn, so for
consistency we apply the same upwinding strategy when evaluating this derivative:

( )
( )
( )

D

D

if 0,

otherwise,
(36)m

m m
m m

m
m

⎡⎣ ⎤⎦
⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

β γ Φ
β γ Φ β

β γ Φ
∂ =

<−

+

where the second-order operators are

( )D f
f f f

x

4 3

2
(37)x i j k

i j k i j k i j k

1
2

, 1
2

, 1
2

3
2

, 1
2

, 1
2

1
2

, 1
2

, 1
2

1
2

, 1
2

, 1
2

Δ
=

− +
−

+ + +

− + + − + + + + +

and

( )D f
f f f

x

4 3

2

(38)

x i j k

i j k i j k i j k

1
2

, 1
2

, 1
2

5
2

, 1
2

, 1
2

3
2

, 1
2

, 1
2

1
2

, 1
2

, 1
2

Δ
=

− + −
+

+ + +

+ + + + + + + + +

for the derivative in the x-direction. Derivatives in the y- and z-directions follow in a
straightforward fashion.

Term (3): the computation of this term is also made easier by the fact that [ ]γ Φ is

staggered at i j k
1

2
,

1

2
,

1

2
⎜ ⎟⎛
⎝

⎞
⎠+ + + already. So to evaluate it, only α must be interpolated
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from i j k( , , ) to i j k
1

2
,

1

2
,

1

2
⎜ ⎟⎛
⎝

⎞
⎠+ + + using the same interpolation strategy as with

Term (1).

3.4. Conservatives-to-primitives solver

After the conservative GRMHD variables have been updated at all gridpoints, with boundary
conditions and prolongation/restriction operators applied, the primitive variables must then be
computed from the conservative variables. This is not a trivial endeavor, as the conservative
variables generally depend on the primitive variables in a nonlinear way, requiring the
implementation of a root-finding method. To this end, IllinoisGRMHD employs the two-
dimensional (2D) Newton–Raphson solver of [52, 53].

Truncation errors originating from spatial and temporal finite differencing, as well as
interpolation, prolongation, and restriction operations can push the evolved GRMHD quan-
tities to unphysical values, resulting in either unphysical values for the primitive variables or
no values at all. For definitions of unphysical values of the GRMHD quantities please see the
appendix A of [28]. So prior to calling the 2D Newton–Raphson solver, we perform a number
of checks that determine whether the conservative variables are in a physically valid range. If
they are not, they are modified prior to calling the root-finder. Even with these checks, the
Newton–Raphson solver will occasionally fail to find a root. This is very rare, and almost
always occurs in a low-density atmosphere or inside a BH. In such an instance, we set the
pressure to Pcold, which guarantees a successful inversion. The implementation of these checks
and modifications have been described in detail in appendix A of [28].

After the Newton–Raphson solver has successfully found a set of primitives, the pri-
mitives are checked for physicality, and if they are not in the physical range, they are
minimally modified until they return to the physical range. First, if the velocity is found to be
superluminal, the speed is reduced to IllinoisGRMHDʼs default Lorentz factor limit, which is
set to W = 10, where W is the Lorentz factor of the fluid as measured by a normal observer.
Next, IllinoisGRMHD does not include any cooling mechanism, which means that for
evolutions adopting a Γ-law equations of state, the pressure should not physically drop below
Pcold. So a pressure floor of P0.9 cold is imposed. Increasing this floor to Pcold exactly results in
large central density drifts in TOV star evolutions. Simulations can crash in the other extreme,
if P Pcold becomes too large. This typically only happens in very low density regions or inside
BHs. So at densities 1000 atmρ ρ< or deep inside BH horizons, a ceiling on P of P100 cold is
enforced (see appendix A of [28] for more details).

3.5. Outer boundary conditions for Ai,
ffiffiffi
γ

p
Φ

� �
, P, ρ0, and v i

Updating evolved variables within IllinoisGRMHD requires three ghostzones per RK4
iteration, and at the end of each iteration, outer boundary conditions are applied to Ai, [ ]γ Φ ,
P, 0ρ , and v i to fill these ghostzones. The algorithm applies the outer boundary conditions in
all directions, from the innermost gridpoint outward, as follows. For example, in the positive
x-direction, the first outer gridpoint i 1+ is defined as
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−

And for the negative x-direction, the first outer gridpoint i 1− is defined as

{ }
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As for the positive/negative y and z directions, the procedure is the same, replacing v vx y↔
and v vx z↔ , respectively.

In this way, linear extrapolation outer boundary conditions are applied to the vector
potential variables A{[ ], }iγ Φ and zero-derivative, outflow outer boundary conditions are
applied to the hydrodynamic variables P v{ , , }i0ρ . These conditions are applied to the
innermost gridpoints on the three-gridpoint-thick outer boundary surface, first in the positive
x, then y, then z directions, followed by the negative x, then y, then z directions. Next, they are
applied to the second innermost gridpoints on the outer boundary surface in all directions, and
finally to the outermost point.

In addition to full 3D Cartesian grids with no symmetries assumed, IllinoisGRMHD also
supports the application of a symmetry condition across the xy-plane. In this case the
negative z-direction outer boundary condition is not applied, letting the Cactus/Carpet parallel
AMR infrastructure impose the reflection symmetry.

3.6. Linkage of IllinoisGRMHD to the rest of the ET

In order to evolve the GRMHD equations in a dynamical spacetime context, IllinoisGRMHD
must be coupled to a separate module that evolves the spacetime metric, typically using
components of the stress–energy tensor produced by IllinoisGRMHD as source terms. The
ET is based within the Cactus infrastructure, thus modules are called ‘thorns’, of which
IllinoisGRMHD is one. ET is structured so that thorns evaluating the spacetime metric
evolution equations (i.e., the left-hand side of Einsteinʼs equations) must couple to a common
interface thorn, called ADMBase. Similarly, thorns that evaluate evolution equations gov-
erning the rhs of Einsteinʼs equations couple to an interface thorn called TmunuBase.
TmunuBase and ADMBase are designed to interface seamlessly, so that GRMHD evolution
thorns coupled to TmunuBase will automatically work with any spacetime evolution thorn
properly coupled to ADMBase. Thus, since IllinoisGRMHD is fully coupled to TmunuBase,
it is immediately compatible with all spacetime evolution formulations within ET, including
BSSN, and conformal and covariant Z4 [1] (both provided by the McLachlan [15] Thorn9).
For dynamical spacetime evolutions within this paper, IllinoisGRMHD is coupled to the
McLachlan BSSN thorn.

9 Kranc assembles numerical code, http://kranccode.org.
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4. Code validation tests

This section compares the results of IllinoisGRMHD to those of two other codes written using
the ET infrastructure: GRHydro, which is the only other open-source GRMHD code within
ET, and the original, closed-source GRMHD code of the Illinois group (OrigGRMHD), on
which IllinoisGRMHD is based. OrigGRMHD has been subjected to a large battery of
stringent test-bed problems, including but not limited to standard 1D relativistic MHD shock
tests, 2D cylindrical blast explosion tests, magnetized Bondi accretion and stellar collapse
tests as well as (self-)convergence tests [30]. Though it may be argued that IllinoisGRMHD
has not been as robustly tested as GRHydro or OrigGRMHD, we demonstrate here that
IllinoisGRMHD and OrigGRMHD results agree to roundoff error, indicating that both are
algorithmically identical, and GRHydro and IllinoisGRMHD results agree within truncation
error, indicating that both can be expected to converge to the same result.

To confirm that two codes generate results that agree to roundoff error, we measure the
number of significant digits of agreement between codes, monitoring one quantity of interest.
Given that the equations solved are highly nonlinear, roundoff-error violations in one quantity
will spread to all others, so we generally focus on one quantity of interest. In the following
sections, we monitor either the central density cρ of a NS over time, or the integral of the rest-
mass density bρ along the x-axis. We perform runs with different codes and compute the
number of significant digits of agreement between a pair of codes, s, at a given time t, via the
equation:

s t
t t

t
( ) log

( ) ( )

( )
, (41)

c c

c
10

,1 ,2
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ρ ρ

ρ
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where the subscript ‘1’ denotes the unperturbed run with OrigGRMHD, and the subscript ‘2’
denotes either the perturbed initial data run with OrigGRMHD or an unperturbed run with
IllinoisGRMHD.

The first two parts of this section (sections 4.1 and 4.2) demonstrate that IllinoisGRMHD
and OrigGRMHD generate output identical to roundoff error, in two complementary, highly
challenging tests. In the first test (section 4.1), a weakly magnetized TOV star is evolved over
many dynamical timescales and grid light-crossing times. The second test (section 4.2)
exposes both codes to a type of ‘fuzzing’, in which random initial data are evolved. Unlike the
first test, initial data in the second test contain strong shocks, highly magnetized and highly
relativistic, stochastic flows, as well as nontrivial, discontinuous spacetime-metric and
extrinsic curvature components. Despite the harshness of the second test, both codes are
shown in section 4.2 to produce roundoff-error identical results over many grid light-crossing
times. Results from these tests are highly significant, as they demonstrate that Illi-
noisGRMHD yields identical results to the ‘battle-hardened’, trusted OrigGRMHD code. We
conclude that IllinoisGRMHD must therefore pass any code validation test that OrigGRMHD
has passed, and can be used as a drop-in replacement for OrigGRMHD.

In our final validation test, both IllinoisGRMHD and GRHydro evolve unmagnetized,
stable TOV stars in a dynamical spacetime backdrop, and are shown to converge to the same
result at the expected order, though IllinoisGRMHD exhibits slightly slower central density
drift and lower Hamiltonian constraint violations at a given resolution.
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4.1. IllinoisGRMHD and OrigGRMHD: roundoff-error agreement in evolving magnetized TOV star

IllinoisGRMHD, OrigGRMHD, and GRHydro all implement double-precision, 64 bit floating
point arithmetic, which represents numbers to between 15 and 17 significant digits. Given the
sophisticated and iterative nature of these GRMHD codes, initial machine-precision differ-
ences can grow enormously over time. As an example, we multiply the initial rest-mass
density of a weakly magnetized TOV star by 1 10 15+ − , yielding a 15th significant digit
perturbation. We then perform the evolution, measuring the number of significant digits of
agreement between this perturbed run and an unperturbed evolution, through 15 dynamical
timescales and on AMR grids with multiple levels of refinement. The dashed blue line of
figure 1 plots the result from this test. Notice that the number of significant digits of
agreement quickly drops from 14 digits, plateauing to between 6 and 8 digits of agreement.

We were careful to develop IllinoisGRMHD so that its results agree with OrigGRMHD
to roundoff error, and figure 1 confirms that for this weakly magnetized TOV star test, the
number of significant digits of agreement between IllinoisGRMHD and OrigGRMHD (solid
red line) follow the same curve as the expected roundoff error intrinsic to OrigGRMHD
(dashed blue line). For full details of the physical scenario modeled here, as well as the grid
parameters, see appendix A.

4.2. IllinoisGRMHD and OrigGRMHD: roundoff-error agreement in evolving random initial data

Although we have demonstrated that when evolving weakly magnetized TOV stars on AMR
grids, IllinoisGRMHD and OrigGRMHD produce results that agree to roundoff error, one
might argue that even though there is a sharp discontinuity at the stellar surface, this code test
is insufficient for truly demonstrating roundoff-level agreement, as it lacks strong shocks and
highly relativistic, highly magnetized fluid flows. To address this potential criticism, we
developed a random initial data module that sets up both weak and strong stochastic GRMHD
flows atop an artificially-static, weak and strong-field stochastic spacetime background that is

Figure 1. Significant digits of agreement between pairs of codes, monitoring the central
density of a magnetized neutron star in a dynamic-spacetime GRMHD simulation
versus time, as measured in dynamical timescales t 1dyn 0,maxρ= . The solid red line

shows the number of significant digits of agreement between IllinoisGRMHD and
OrigGRMHD. The dashed blue line shows the expected roundoff error, measured as
the number of significant digits of agreement between OrigGRMHD and itself with a
15th-significant-digit perturbation to the initial density of the magnetized neutron star.
This run was performed on 8 parallel processes on a desktop computer. All details from
this simulation are provided in appendix A, and equation (41) is applied to measure the
number of significant digits.
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nearly conformally flat. The stochastic nature of these data means that both metric and
GRMHD quantities suffer from both weak and strong discontinuities from one spatial point to
the next, providing a robust test of the HRSC algorithms within these GRMHD codes, as well
as a confirmation of the stability of both GRMHD codes to fuzz testing. We stress that
although the chosen metric has Lorentzian signature and the spatial three-metric is positive-
definite, these initial data are for numerical convenience only and are not designed to satisfy
Einsteinʼs equations. In fact, when these GRMHD data are evolved forward in time, space-
time field variables are strictly held fixed in time.

All components of spacetime and GRMHD tensors and vectors are nonzero, randomly
fluctuating from one spatial point to the next, with each component having a unique mag-
nitude. As a result, this module has been useful in checking for typos in the GRMHD
evolution equations, which were completely rewritten in IllinoisGRMHD. For example, if by
mistake xyγ were written xzγ in any of the GRMHD equations, then because these components
have differing magnitudes, IllinoisGRMHD and the original GRMHD code of the Illinois
group would not agree to roundoff precision and the test would fail. This module was used
extensively in the first stages of IllinoisGRMHD development to find such typos, as well as
truncation-error-level algorithmic differences between the old and new codes. All such typos
and algorithmic differences were fixed and modified, respectively, so that roundoff-level
agreement could be demonstrated. A full description of the random initial data module and
grid setup is provided in appendix B.

As with the magnetized TOV roundoff-error test of section 4.1, we measure the expected
level of roundoff error by first adding a random, 15th-digit perturbation to all GRMHD

Figure 2. Significant digits of agreement between pairs of codes, monitoring the rest-
mass density 0ρ summed along the x-axis on the finest AMR level. The solid red line

shows the number of significant digits of agreement between IllinoisGRMHD and
OrigGRMHD. The dashed blue line shows the expected roundoff error, measured as
the number of significant digits of agreement between OrigGRMHD and itself with a
random 15th-significant-digit perturbation to all primitive GRMHD variables. This run
was performed on 8 parallel processes on a desktop computer, and was shown to agree
with the single-process OrigGRMHD run to roundoff-error as well. All details from
this simulation are provided in appendix B, and equation (41) is applied to measure the
number of significant digits. Unlike figure 1, where the dashed (blue) curve matches the
variability of the solid (red) curve, here the dashed (blue) curve exhibits significantly
less variability than the solid (red) curve. We find this apparent inconsistency disappears
when we substitute the integrated value of the density along the x-axis with the maximum
value along the axis. Thus the discrepancy in behavior appears to be due to the choice of
quantity adopted for this comparison. Regardless of the quantity used to measure the
differences, the results demonstrate that the two codes agree to roundoff error.
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primitive variables after they are set. Then we evolve both perturbed and unperturbed initial
data with the trusted OrigGRMHD code. The difference grows with time, but plateaus to
about 13 digits over time, as shown in figure 2.

Next, the same unperturbed initial data are evolved on the same grids with Illi-
noisGRMHD, and the results confirm that IllinoisGRMHD and OrigGRMHD indeed agree to
within expected roundoff error, through at least 25 light-crossing times. All of these runs were
performed on 8 parallel processes.

4.3. IllinoisGRMHD and GRHydro: unmagnetized TOV star convergence tests

The open-source IllinoisGRMHD and closed-source OrigGRMHD have been shown to
produce roundoff-error identical results even when evolving very harsh, relativistic, strongly
magnetized, discontinuous initial data. IllinoisGRMHD represents the second open-source,
dynamical spacetime GRMHD module, the first being GRHydro [50]. Both are based in the
ET, which provides a particularly convenient infrastructure for performing GRMHD simu-
lations in a dynamical spacetime context. GRHydro contains a large number of features,
including a variety of reconstruction options, approximate Riemann solvers, and outer
boundary options. OrigGRMHD contains many such features as well, but nearly all of these
features are not robust in the context of BH-inhabited spacetimes and have thus remained
unused for years. IllinoisGRMHD contains only the features from OrigGRMHD that have
been used in all recent papers by the Illinois NR group (e.g., [28, 33, 36, 40, 41, 59]).

This section compares results between IllinoisGRMHD and the standard, FORTRAN
version of GRHydro, using identical initial data, computational grids, dynamical spacetime
evolution (BSSN) modules, reconstruction scheme, and Riemann solver. Since Illi-
noisGRMHD has been shown to agree with OrigGRMHD to roundoff precision, these tests
can also be seen as a proxy comparison between GRHydro and OrigGRMHD.

As detailed in appendix C, both IllinoisGRMHD and GRHydro evolve the same physical
scenario in this test as in section 4.1, but with the magnetic fields inside the TOV star set to
zero. GRHydro options were chosen so that its algorithms would be identical to Illi-
noisGRMHD. Despite the basic algorithms being the same, both codes differ significantly in
how they are implemented. This difference in implementation should result in truncation-
level differences between the two codes, but instead we find slightly different convergence
properties between the codes.

A quantity Q x( )Δ that converges to zero at nth order with increasing resolution (i.e.,
decreasing grid spacing xΔ ) satisfies
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Figure 3 demonstrates that for this stable, equilibrium TOV star, truncation errors lead to
nonzero drifts in starʼs central density and the L2-Norm of the Hamiltonian constraint, which
each converge to zero at roughly second-order (n t( ) 2≈ , where n is as defined in
equation (43)). Notice that L2-Norm Hamiltonian constraint convergence order fluctuates
significantly in GRHydro evolutions, as compared to IllinoisGRMHD. Additionally, at the
highest resolution chosen (resolving the NS diameter to approximately 80 gridpoints),
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GRHydro possesses roughly 8% higher Hamiltonian constraint violation than IllinoisGRMHD,
as shown in figure 4. We conclude that IllinoisGRMHD appears to suffer from less Hamiltonian
constraint violation than GRHydro at a given resolution, and exhibits more consistent L2-Norm
constraint violation convergence to zero as resolution is increased.

However, at all resolutions, the absolute value of central density drift through 55
dynamical timescales is far higher with IllinoisGRMHD than GRHydro. We analyze the drift
at high resolution in the lower panel of figure 4, finding that the differences appear directly
after initial settling of the TOV star. These differences are not surprising, given the unique
algorithmic choices in each code (e.g., GRHydro adopts the internal energy ϵ as a primitive

Figure 3. IllinoisGRMHD and GRHydro convergence tests, for dynamic-spacetime,
unmagnetized equilibrium TOV star evolutions (with physical and numerical setup as
described in appendix C). Upper panels: convergence to zero of TOV star central density
drift t t( ) ( ) (0) 1c c cΔρ ρ ρ= − , comparing GRHydro (left plot) with IllinoisGRMHD

(right plot). Top plots show t( )cΔρ at three separate resolutions, with the low (dotted

magenta) and medium (dashed blue) resolution (LR and MR, respectively) simulation
results rescaled to high resolution (HR, solid red), assuming that t( )cΔρ converges to zero

at second order. Lower plots show implied convergence order to zero (see equation (43))
of t( )cΔρ for pairs of runs, for HR and MR (thin dashed black), and MR and LR

(thick solid red), where convergence order to zero is defined as in equation (43). Lower
panels: convergence to zero equation (43) of L2 Norm of Hamiltonian constraint
violation, H t( )∥ ∥. Top plots show H t( )∥ ∥ at three resolutions, rescaled so that LR (dotted
magenta) and MR (dashed blue) results should overlap HR (solid red) results if second-
order convergence to zero is achieved. The bottom plots show implied observed
convergence order to zero of pairs of runs: HR and MR (dashed black), and MR and LR
(dashed blue).
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variable, where IllinoisGRMHD adopts pressure P instead, just to name one). In this plot, we
fit data in the range t t5 55dyn⩽ ⩽ to a least-squares linear trendline, finding that the rate of
central density drift (i.e., the slope of the linear trendline) after 5 dynamical timescales to be
within about one standard deviation for the two codes. In addition, we verified that although
the simulation is run for about 2.3 light-crossing times, doubling the outer boundary has no
qualitative effect on the results.

In a forthcoming paper, we will demonstrate that differences between these two open-
source GRMHD codes spawn from how the GRMHD evolution algorithms are implemented,
independent of the chosen reconstruction scheme.

5. Computational performance benchmarks

We have demonstrated that although IllinoisGRMHD represents a complete rewrite of
OrigGRMHD, the two codes agree to roundoff precision. IllinoisGRMHD is also designed to
be more user-friendly, more extensible, and better documented than OrigGRMHD as well.
Furthermore, as we demonstrate in this section, IllinoisGRMHD performs and scales better
than OrigGRMHD. This stems from the fact that coding decisions within IllinoisGRMHD
were made specifically from the outset to optimize not only user-friendliness and code
readability, but also performance.

Making IllinoisGRMHD perform as well as GRHydro, on the other hand, appears to be
an unlikely goal, as the AMR-capable GRMHD algorithm adopted by IllinoisGRMHD/
OrigGRMHD is far more computationally intensive. All variables in GRHydroʼs GRMHD
scheme for AMR grids (hyperbolic divergence cleaning [19, 50]) are unstaggered, over-
lapping gridpoints. Meanwhile, IllinoisGRMHD/OrigGRMHD implement a staggered vector-
potential formulation, requiring, e.g., about 60% more expensive reconstructions to compute

Figure 4. Truncation-error analysis, comparing results from IllinoisGRMHD and
GRHydro at high resolution (HR). The top plot shows L2-Norm Hamiltonian constraint
violation, for IllinoisGRMHD (red solid) and GRHydro (blue dashed). GRHydro
exhibits about 8% higher constraint violation, so its data were multiplied by 0.92 to
achieve a good overlap with IllinoisGRMHD data. The bottom plot shows central
density drift t t( ) ( ) (0) 1c c cΔρ ρ ρ= − , at high resolution (HR) as well, for

IllinoisGRMHD (thin dashed blue) and GRHydro (thin solid red). The thick blue
and red lines are linear least-squares fits to IllinoisGRMHD and GRHydro data, from
t5 dyn to t55 dyn. The slope on the GRHydro line is ( 1.19 0.02) 10 5− ± × − , and

( 1.13 0.04) 10 5− ± × − for IllinoisGRMHD, where the errors given are standard
deviations.
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GRMHD fluxes, as they must be computed on staggered gridpoints. In addition, the evolution
of the staggered EM vector potential gauge quantity [ ]γ Φ is quite expensive, as it requires a
large number of interpolations. Of course, in exchange for this more expensive algorithm is
the guarantee that monopoles (i.e., violations of B· 0 = ) cannot be generated on grid
refinement boundaries when magnetized fluid flows cross them. GRHydro cannot guarantee
this, but IllinoisGRMHD/OrigGRMHD does.

Thus a priori, we would expect IllinoisGRMHD and OrigGRMHD to significantly
under-perform GRHydro. Remarkably, figure 5 demonstrates that for a physical system and
AMR grid hierarchy typically used in production runs, IllinoisGRMHD actually outperforms
both GRHydro and OrigGRMHD by a comfortable margin. There also exists a new,
experimental C++ version of GRHydro (henceforth, GRHydro-experimental), which was
written in part to improve performance. Indeed, performance is greatly enhanced by GRHydro-
experimental, but it at best matches IllinoisGRMHD performance at small core counts, and
scales worse than IllinoisGRMHD with increasing core count. The physical system and basic
AMR grid hierarchy is as described in appendix C; i.e., it consists of an unmagnetized,
equilibrium TOV star for which the magnetic-field is also evolved but initialized to zero.

As measured by the number of gridpoints computed per second per core on the TACC
Stampede supercomputer, at all problem scales typically used for parallel AMR runs (ranging
from 32 to 2048 cores), figure 5 shows that IllinoisGRMHD consistently outperforms the
standard GRHydro by a factor of between 1.7 and 1.8. However, IllinoisGRMHD matches
GRHydro-experimentalʼs performance, to within measurement error at 32 cores, but manages
to outperform GRHydro-experimental by about 16% at 2048 cores. Again, it is remarkable

Figure 5. Relative performance of IllinoisGRMHD (blue solid), OrigGRMHD (red
dashed), standard GRHydro (green dotted), and the experimental C++ version of
GRHydro (magenta dotted–dashed) at multiple problem scales on the Stampede
supercluster, performing an unmagnetized neutron star simulation, but with magnetic
field evolution enabled. Performance data are normalized to IllinoisGRMHD two-node
(32-core) performance (as measured by the number of gridzones computed per second
per processor core). As the number of cores was increased, the number of gridpoints
per core was kept fixed at approximately 723 for all four refined levels and 683 for the
lowest-resolution level on these AMR grids, effectively making this a weak-scaling
test. To convert performance factor to gridzones per second per MPI process (CPU
core), simply multiply by 350 000 (87 500). Two notes of caution in conversion: First,
gridzones per second evaluated is a measure that is highly sensitive to the hardware
used and software libraries linked against. Second, Performance Factor is based on the
entire code runtime, and a significant fraction of this time measured is spent outside of
the GRMHD code, e.g., evolving the spacetime metric and synchronizing ghostzones
across MPI processes, just to name a couple.
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that IllinoisGRMHD can produce performance numbers in the same ballpark as GRHydro, as
IllinoisGRMHD implements a much more expensive GRMHD algorithm.

The performance improvement over OrigGRMHD is also significant, with IllinoisGRMHD
outperforming OrigGRMHD by a factor of 1.3 at 32 cores, increasing to 1.6 at 256 and 2048
cores. In independent testing, we find that about 10–20% of the performance difference between
IllinoisGRMHD and OrigGRMHD is due to the fact that OrigGRMHD is based on an old,
unmaintained version of the Cactus/Carpet infrastructure (ca. October, 2010). For more details
on the physical system and basic grid structure of this benchmark, see appendix C.

Benchmarks presented here measure total simulation performance, and since these are
dynamical spacetime simulations, the performance gap between IllinoisGRMHD and the
other codes will certainly increase for fixed-background-spacetime simulations. Thus by
adopting IllinoisGRMHD, research groups currently using the standard version of GRHydro
or OrigGRMHD stand to boost their computational resources by a factor of between 1.6 and
1.8. Independent tests indicate that the performance gap increases to a factor of 2≈ in fixed-
spacetime-background GRMHD simulations.

Making AMR-based codes like IllinoisGRMHD, OrigGRMHD, and GRHydro scale well
is an intrinsically difficult task. AMR greatly reduces the memory and processor overhead in
our simulations, focusing resolution only where it is needed, and generating many small,
refined numerical grids in the process. When these small refined grids are parallelized,
however, they are generally split into even smaller grids, resulting in a large grid surface area
to volume ratio. As the information on the surfaces must be communicated across nodes, this
makes the performance of AMR-based codes strongly network-limited.

OpenMP10 can be used to combat this by splitting computational loops over multiple
processor cores, enabling us to use fewer parallel (MPI) processes per CPU and thus larger
grids on a given (MPI) process. This reduces the network load significantly and thus increases
overall performance .

As shown in figure 6, in production-scale benchmarks, we find that IllinoisGRMHD
performs slightly more than 40% faster as an OpenMP/MPI hybrid code than as a pure MPI
code (i.e., when running 16 MPI processes per node, OpenMP disabled), for a typical

Figure 6. IllinoisGRMHD code performance as the number of MPI processes per node
on Stampede is varied, with the total core-count fixed at 1024 (i.e., 64 Stampede
nodes). When running with 1, 2, 4, 8, and 16 MPI processes per node, the number of
threads per MPI process (OMP_NUM_THREADS) was set to 16, 8, 4, 2, and 1,
respectively. Efficiency is normalized to the 4 MPI processes per node case. Simulation
is of a neutron star with full GRMHD and spacetime evolution enabled.

10 OpenMP Architecture Review Board. OpenMP application program interface version 3.0, 2008.
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GRMHD production run on the Stampede supercluster. Although all three codes possess
some degree of OpenMP support, all of IllinoisGRMHDʼs loops have has been written with
full OpenMP (see footnote 8) support, making IllinoisGRMHD a pure OpenMP/MPI hybrid
code, just like OrigGRMHD. We finish this section by noting that all benchmark results in
figure 5 were performed using 4 MPI processes per node and 4 OpenMP threads per MPI
process, which we found maximized performance in all codes.

6. Conclusions and future work

The field of numerical relativity has matured considerably in the years since the first dyna-
mical spacetime GRMHD codes were developed, and multiple groups now possess such
codes. Given that the future of our field depends on the ability to advance and extend these
codes to model new physics, while still maintaining and improving the GRMHD modules, it
stands to reason that the community could benefit if we consolidated our efforts and adopted
the same dynamic-spacetime GRMHD code.

With its proven robustness and reliability in modeling some of the most extreme phe-
nomena in the Universe, it seems the OrigGRMHD code could be a good candidate for such
community adoption if it were open-sourced. But despite its strong scientific track record,
OrigGRMHD was not written with community adoption in mind, instead being a code written
‘by experts and for experts’ of OrigGRMHD, with a premium put on immediate applications.
As such, the code lacked a number of features common to large, open-source, community-
based codes in computational astrophysics, including sufficient documentation and code
comments, fine-grained modularity, a consistent coding style, and regular, enforced code
maintenance (e.g., removal of unused and unmaintained features).

As an open-source, from-the-ground-up rewrite of OrigGRMHD, IllinoisGRMHD aims
to fix all the former codeʼs idiosyncracies, thus facilitating widespread community adoption.
With such adoption in mind, IllinoisGRMHDʼs development has been guided by the four core
design principles of user-friendliness, modularity/extensibility, robustness, and performance/
scalability. Regarding user-friendliness, the code is well-documented, properly commented,
and requires only basic programming skills to understand and run. IllinoisGRMHD is also far
more modular and extensible than OrigGRMHD, with low-level computational fluid
dynamics routines split off from the main code into a library of extensible functions.

As for robustness, IllinoisGRMHD was designed to act as a drop-in replacement for
OrigGRMHD, and we have demonstrated that IllinoisGRMHD indeed reproduces results
from the original code to roundoff-level precision, not only when evolving magnetized NSs,
but also discontinuous, random initial data.

In addition, IllinoisGRMHD largely produces consistent results with the only other open-
source, dynamical spacetime GRMHD code, GRHydro, in that both codes exhibit approx-
imate second-order convergence. Although both codes were run with the same basic evo-
lution algorithms, results differ due to the specific details of how these algorithms were
implemented. We will explore this further in a forthcoming work, but just to name a couple of
differences, GRHydro reconstructs the specific internal energy ϵ and the Valencia-formulation
three-velocity, while IllinoisGRMHD reconstructs pressure and three-velocity defined as
v u ui i 0= . When evolving equilibrium unmagnetized TOV stars, GRHydro produces about
8% higher Hamiltonian constraint violations (as measured by the L2 Norm over the entire
grid), but significantly less absolute central density drift than IllinoisGRMHD. We find that
the rate of central density drift is identical between the two codes after the star undergoes an
initial settling over a few dynamical timescales. We conclude it is this initial settling that
causes the large discrepancy in absolute central density drift.
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Though user-friendliness, modularity/extensibility, and robustness were the primary
considerations in IllinoisGRMHDʼs development, it would be hard to convince key devel-
opers of other codes to adopt IllinoisGRMHD unless we could demonstrate at least com-
parable performance and scalability to alternative dynamical spacetime GRMHD codes. To
this end, we have shown that IllinoisGRMHD is in fact about 1.7–1.8 times faster than the
standard version of GRHydro for production-size, AMR-enabled, GRMHD runs on the
Stampede supercluster, scaling to typical high-resolution core-counts at better than 95%
efficiency.

This is a rather remarkable result, as IllinoisGRMHD implements a far more computa-
tionally expensive GRMHD algorithm than GRHydro to ensure the no-monopole constraint

B· 0 = is satisfied. This added expense forbids the generation of monopoles at AMR grid
boundaries in the case of multi-scale GRMHD flows, which GRHydro, and even its new,
experimental C++ version, which we refer to as GRHydro-experimental, cannot guarantee.
GRHydro-experimental, which was actively being written during the preparation of this
paper, is a complete rewrite of the standard, FORTRAN-based GRHydro, with a goal in part
of improving performance. Indeed, GRHydro-experimental does improve performance, but
only at best matches IllinoisGRMHDʼs performance at small core counts, with Illi-
noisGRMHD performing about 16% better at 1024–2048 cores. Though these results are
based on a single scenario and may change slightly when simulating other systems of interest,
we consider them illustrative of what one should expect.

IllinoisGRMHD also outperforms OrigGRMHD by a factor of 1.3–1.6. Thus by adopting
IllinoisGRMHD, research groups using GRHydro or OrigGRMHD stand to increase their
computational resources available for dynamical spacetime, GRMHD runs. While in terms of
performance, IllinoisGRMHD seems to be only slightly better than the experimental, C++
version of GRHydro, perhaps the two greatest advantages of IllinoisGRMHD over GRHydro
is that (1) IllinoisGRMHD does not allow the generation of magnetic monopoles when
modeling multi-scale GRMHD flows on AMR grids and (2) IllinoisGRMHD is capable of
stably modeling GRMHD flows into BH horizons over very long timescales, without the need
for special algorithms that excise GRMHD data with the BH. GRHydro requires excision to
model such flows and its GRMHD features have been mostly used for core collapse (to a NS)
simulations, in which no BH is present. We conclude that making GRHydroʼs GRMHD
schemes as robust may require careful specification of boundary conditions on the excision
surface coupled to an interpolation scheme across AMR level boundaries that respects the no-
monopoles constraint.

As mentioned previously, a forthcoming paper will analyze how differences in algo-
rithmic implementations between GRHydro and IllinoisGRMHD can lead to significantly
different results when evolving NSs. One possibility is that we may find an implementation
that results in a superior code to either original code. If such a code is found, it may prove
quite useful to reliably evolving binary NSs and BH–NSs over many orbits with a minimum
of computational expense.

Although IllinoisGRMHD is ready for production runs now, we encourage other
developers to join our effort in improving IllinoisGRMHD beyond its current state, as a great
deal of important work remains to be done. We would like to port features from GRHydro
into IllinoisGRMHDʼs library of functions, using IllinoisGRMHDʼs coding style, including
reconstruction schemes, conservative-to-primitives solvers, and more advanced approximate
Riemann solvers, just to name a few. IllinoisGRMHD was originally written in a standalone
sandbox for maximum portability, and was only recently ported into the ET. It therefore
makes minimal use of certain aspects of the ET infrastructure that could greatly extend its
usefulness. For example, the current version supports only single gamma-law EOSs, and full
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3D simulations with either no symmetries enabled, or simply bitant symmetry across the
xy-plane. The ET infrastructure provides support for arbitrary EOSs, symmetry conditions,
etc, and we intend to work with the large ET community toward making this code the
standard choice in the ET, and one the community can be proud of.
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Appendix A. Physical and computational setup for magnetized TOV star code
validation tests

The magnetized TOV star used in these tests is precisely the same stable neutron star as
described in appendix C, except it is seeded with a weak magnetic field at t = 0. This initial
magnetic field is purely poloidal, with vector potential components defined as

( )A yA P Pmax , 0 , (A.1)x b cut= − −

( )A xA P Pmax , 0 , (A.2)y b cut= −

A , 0, (A.3)z ⎡⎣ ⎤⎦γ Φ =

where Pcut is set to 4% of the maximum pressure and Ab is set so that the maximum initial
magnetic-to-gas pressure ratio 1β− is 0.83 10 3× − . Like the convergence tests, these tests are
dynamical spacetime tests, but unlike the convergence tests, IllinoisGRMHD and
OrigGRMHD codes are each coupled to the (closed-source) BSSN dynamical spacetime
module of the Illinois NR group. Further, the initial TOV star density, pressure, and spacetime
metric profiles are provided by the code of [18], which generates data for this nonrotating star
that agrees to machine precision with the TOVSolver code used in the unmagnetized tests.

These tests are also performed on AMR grids, with the coarsest grid cube extended so its
half-side-length is R10 NS, centered on the NS. Two finer AMR grid levels are nested within
this coarse grid: the next finer grid having half-side-length R5 NS and the finest having R2.5 NS.
Again, at each finer level, the grid spacing is halved, so that the cube with half-side-length

R2.5 NS has a grid spacing of x R{0.078} NSΔ ≈ . This corresponds to resolving the NS to 26
gridpoints across its diameter. The resolution is intentionally set to be very low, to guarantee
that truncation-error differences between the codes will be more strongly magnified than at
(higher) resolutions typically chosen for evolving NSs. In addition, a close outer boundary is
chosen to maximize its influence on the evolution, to check for errors in coding the outflow
outer boundary conditions. Finally, we choose our low-density atmosphere density floor to
correspond to 10 7− times the initial central density of the NS.
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Appendix B. Random initial data

The algorithm used within our random initial data module is as follows. At a given gridpoint,
the random number generator is first seeded with a unique integer based on the coordinate of
the gridpoint. The seed is then used to generate one double-precision random number

( 0.1, 0.1)ξ ∈ − . Because this random number is based entirely on the coordinate of a grid-
point, the initial data will be consistent when evolving on identical grids, regardless of how
the global grid is split among processors when generating and evolving initial data in a
parallel run.

Using this double-precision random number ( 0.1, 0.1)ξ ∈ − , we define

x L y L z L
1

7
[4 sin(10 ) sin(10 ) cos(10 )], (B.1) ξ= + + + +

where L denotes the coarsest AMR grid cube half-side-length. Thus ( , 1.1)3

70
 ∈ consists of

a strong stochastic perturbation atop a smoothly oscillating function. Given the quantities 
and ξ, all basic spacetime metric and GRMHD quantities may then be set following the
prescription detailed in table B1.

Although the resulting data are not designed to satisfy Einsteinʼs equations, be con-
formally flat, or be consistent with the BSSN formalism, we make sure the spacetime metric is
Lorentzian and the three-metric positive definite. We also enforce the BSSN constraint ˜ 1γ =
as follows. Immediately after the quantities in table B1 have been set at a given gridpoint, we
compute the resulting non-unit determinant γ̃ and then multiply the components of ĩjγ by ˜ 1 3γ− .
In this way, the unit determinant of the three-metric is enforced. After applying this con-
straint, all GRMHD and spacetime metric quantities not specified in table B1 (e.g., GRMHD
conservative variables, B i, ˜ijγ , etc) are directly computed from quantities in that table.

In tests adopting this random initial data module, we choose an AMR grid with one
refinement level centered at the origin. The coarser grid, with grid spacing 1.0, has cube half-
side-length of 10, and the finer grid, with grid spacing 0.5, has grid half-side-length of 2.
Space–time evolution modules, as well as prolongation and restriction operations on space-
time variables, are disabled.

Table B1. Prescription for setting GRMHD and spacetime metric quantities in random
initial data module. Note that the initial data employ the polytropic EOS P 0

2ρ= , and

we evolve with the gamma-law EOS P ( 1) 0Γ ρ ϵ= − with 2Γ = .

Variable Value set in random initial data module

0ρ 0.01
P 0

2ρ (Gamma-law EOS)

ϕ 0.1
α 1 0.1−
v v v{ , , }x y z {1, 1.1, 0.9} 10 1ξ× −

A A A{[ ], , , }x y zγ Φ {0.6, 1, 1.1, 0.9} 10 1ξ× −

{ , , }x y zβ β β {0.9, 1.1, 1} 10 1ξ× −

{˜ , ˜ , ˜ }xx yy zzγ γ γ 1 {10, 1, 10} 10 3ξ+ × −

{˜ , ˜ , ˜ }xy xz yzγ γ γ {1, 10, 1} 10 4ξ× −

K K K K K K{ , , , , , }xx xy xz yy yz zz {10, 2, 3, 40, 5, 60} 10 3ξ× −
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The initial maximum rest-mass density is chosen to be 10%∼ the rest-mass density of the
TOV star used in other tests. The atmospheric density floor is set to 10 6− , which is about 10 4−

times the maximum possible initial density, yielding stochastic fluctuations in density
spanning about four orders of magnitude. Additionally, the magnetic-to-gas-pressure ratio at
t = 0 ranges from 10 3∼ − (gas-pressure dominated) to about 10 (magnetic-pressure dominated)
initially. Given that initial data at a given gridpoint are independently and randomly specified,
we conclude that physical quantities at neighboring gridpoints can differ by several orders of
magnitude, making this a very harsh test. Despite the lack of coherent GRMHD flows,
throughout the evolution of these random initial data, the Lorentz factor limit of W = 10 is
exceeded and subsequently enforced about 400 times.

Appendix C. Physical and computational setup for unmagnetized TOV star
convergence tests

IllinoisGRMHD and GRHydro evolve unmagnetized, polytropic TOV star initial data, con-
sisting of a TOV star with central density of 0.129 285 309 constructed with a polytropic
equation of state P Kρ= Γ , where K = 1 and 2Γ = . This generates a model for a cold,
degenerate NS with compaction M R 0.1467NS NS ≈ . The initial data are generated using the
built-in TOVSolver thorn within the ET. The convergence tests are dynamical spacetime tests,
in which IllinoisGRMHD and GRHydro are each coupled to the McLachlan BSSN thorn. To
match IllinoisGRMHDʼs evolution algorithms, the ‘HLLE’ approximate Riemann solver is
chosen for GRHydro evolutions, along with PPM reconstruction. Though the codes differ in
their usage of these algorithms (e.g., GRHydro reconstructs the internal energy ϵ instead of
pressure P, etc), the parameters are chosen so that both codes share precisely the same
algorithms. Note that the outer boundary conditions for the spacetime variables are set to be
identical between the two codes, but the hydrodynamic boundary conditions differ. However,
this is inconsequential, as the density near the outer boundary remains within 1%≈ of the
original atmosphere value in both codes throughout the entire evolution.

These tests are performed on cubic AMR grids, so that the coarsest grid cube possesses a
half-side-length of R40 NS, centered on the NS. The AMR hierarchy—nested within this
coarse grid and also centered on the NS—consists of four, progressively higher-resolution
cubes with half-side-lengths of R15 NS, R7.5 NS, R3.75 NS, and R1.875 NS. At each finer level, the
grid spacing is halved, so that the cube with half-side-length R1.875 NS has a grid spacing of

x R{0.03906, 0.03125, 0.025} NSΔ = for low, medium, and high-resolution runs, respec-
tively. This corresponds to resolving the NS across its diameter to approximately 51, 64, and
80 gridpoints, for low, medium, and high-resolution runs, respectively. In both codes, low-
density atmosphere density floor is set to correspond to10 7− times the initial central density of
the NS.
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