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Illiquid Assets and Optimal Portfolio Choice

Eduardo S. Schwartz∗ and Claudio Tebaldi†

December 8, 2004

Abstract
The presence of illiquid assets, such as human wealth, housing

and proprietorships substantially complicates the problem of portfolio
choice. This paper is concerned with the problem of optimal asset al-
location in a continuous time model when one asset cannot be traded.
This illiquid asset, which depends on an uninsurable source of risk,
provides a liquid dividend. In the case of human capital we can think
about this dividend as labor income. The agent is endowed with a
given amount of the illiquid asset and with some liquid wealth which
can be allocated in a market where there is a risky and a riskless as-
set. The main point of the paper is that the optimal allocations to
the two liquid assets and consumption will critically depend on the
endowment and characteristics of the illiquid asset, in addition to the
preferences and liquid wealth of the agent. We provide what we be-
lieve to be the first analytical solution to this problem when the agent
has power utility of consumption and terminal wealth. We also derive
the value that the agent assigns to the illiquid asset. The risk adjusted
valuation procedure we develop can be used to value both liquid and
illiquid assets, as well as contingent claims on those assets.
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1 Introduction

The problem of optimal asset allocation is of great importance both in the
theory as well as in the practice of finance. Since the seminal work of
Markowitz (1952) scholars and practitioners have looked at the issue of how
much money should an investor optimally allocate to different assets or as-
set classes. The single period model of Markowitz (1952) was extended to
a multiperiod setting by Samuelson (1969) and then to continuous time by
Merton (1969, 1971). The traditional approach assumes that all assets can
be traded at all times. This paper is concerned with optimal asset allocation
in a continuous time model when one asset cannot be traded.

Typical examples of assets in which trading is problematic include human
wealth, housing and proprietorships. When the asset allocation problem is
solved without taking into account the existence of these “illiquid”assets the
allocation is certainly suboptimal. Consider the following example 1. Two
individuals with the same wealth, the same preferences and the same horizon
would invest in the same portfolio using the traditional asset allocation frame-
work. However, if one of the individuals is a stock broker with his human
wealth highly correlated with the stock market, and the other is a tenured
university professor with his human wealth independent of the stock market,
it would be reasonable to expect that they would have different allocations.
This is the problem we address in this paper.

There are many definitions of illiquid assets. To make the problem
tractable, in this paper we assume that illiquidity prevents the trading of
the asset over the time horizon we consider (though this time horizon could
become infinite). The illiquid asset, however, provides a liquid ”dividend”
that is related to the level of an observable state variable associated with the
illiquid asset. In the case of human wealth the dividend could be labor in-
come, in the case of the housing dividend could be the housing services, and
in the case of a proprietorship it could be distributed profits from the busi-
ness. The uncertainty that drives the illiquid asset cannot be fully diversified
in the market. Since the asset is not traded, the state variable associated
with the illiquid asset can not be interpreted as a price. In the finite horizon
case this state variable becomes the price of the asset only at the terminal
date.

We assume that the agent in endowed with a given amount of the illiquid

1This example was presented by Robert Merton in a talk in Verona, Italy in June 2003.
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asset and with some liquid wealth which can be allocated in a market where
there are two liquid assets: a risky asset and a risk free asset. The main point
of this paper is that the allocations to the two liquid assets and consumption
will critically depend on the endowment and characteristics of the illiquid
asset, in addition to the preferences and liquid wealth of the agent.

In the process of establishing the optimal allocation to the liquid assets we
also derive the value that the agent assigns to the illiquid asset. As expected,
the value that the agent assigns to the illiquid asset will always be lower than
the value it would have if it were traded. Moreover, this value depends not
only on the level of the state variable associated with the illiquid asset, but
also on the preferences of the agent. Interestingly, under our assumptions
about preferences and price dynamics this value does not depend on the
endowment of the liquid risky asset.

The problem of asset allocation in the presence of illiquid assets has been
the subject of intense research in the finance literature since the late 60’s.
Recognizing the complexity of the subject simplifying assumptions have been
introduced to make the problem tractable.

Among non tradable assets, human wealth is certainly the most relevant
source of risk in the individual allocation problem which is difficult to insure
or diversify. Bodie, Merton and Samuleson (1992) consider a long horizon in-
vestor with a riskless stream of labor income and show that an investor with
riskless non tradable human wealth should tilt his financial portfolio toward
stocks relative to an investor who owns only tradable stock. Jagannathan and
Kocherlakota (1996) show that this advice is economically sound as long as
the human wealth is relatively uncorrelated with stock returns. Zeldes (1989)
performs a numerical study of a discrete time model of optimal consumption
in the presence of stochastic income. Koo (1995) and Heaton and Lucas
(1997) introduce risky labor income and portfolio constraints in an infinite
horizon portfolio choice problem and, using a numerical simulation, focus on
how the presence of background risks from sources such as labor, influences
consumption and portfolio choice. Both papers find that investors hold most
of their financial wealth in stocks. Koo (1995) shows numerically that an
increase in the variance of permanent income shocks decreases both the opti-
mal portfolio allocation to stocks and the consumption labor income ratio of
power utility investors. In a discrete time framework Viceira (2001) consid-
ers an approximate solution and finds that positive correlation between labor
income innovations and unexpected financial returns reduces the investor’s
willingness to hold liquid risky asset because of its poor properties as an
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hedge against unexpected declines in labor income. Consistently, Heaton
and Lucas (2000) find that entrepreneurs have significantly safer portfolios
of financial assets than other investors with similar wage and wealth. Camp-
bell and Viceira (2002) provide a comprehensive discussion of the empirical
testing and of the economic implications of including human wealth in the
household portfolio choice problem.

A related literature deals with portfolio choice in the presence of assets
which cannot be traded. To our knowledge the first treatment is due to Myers
(1972, 1973) which solves the static version of the problem. In a dynamic con-
text, the problem we solve can be seen as the limit of large transaction costs
of the Grossmann and Laroque (1990) model for illiquid durables. Svens-
son and Werner (1993) provide a treatment with exponential preferences.
Longstaff, Liu and Kahl (2003) formulate and provide a numerical solution
to the optimal dynamic allocation problem of an investor with power utility
whose portfolio includes a stock which cannot be sold. Among the possible
sources of background risk in household portfolios, housing is certainly one
important asset class that is relatively illiquid and undiversified. Analyz-
ing risk and return is however complicated because of the unobservable flow
of consumption of housing services. Flavin and Yamashita (1998) consider
housing both as an asset and as a source of consumption, and obtain the
optimal portfolio allocations by simulation.

There is a large strand of the literature in stochastic optimization which
addresses the continuous time portfolio allocation problem in incomplete
markets both with through direct partial differential equation approach and
with the martingale-measure duality approach. Duffie, Fleming, Soner and
Zariphopolou (1997) study an asset allocation problem for an investor which
maximizes HARA utility from consumption in a market composed by a risky
and a riskless asset and receives an income which cannot be replicated by
other securities. This study proves existence, uniqueness and regularity of the
value function, while the optimal consumption path and the allocation strat-
egy are implicitly specified throughout a feedback expression. Koo (1998)
analyzes the same problem in the presence of constraints.

The stochastic optimization problem we discuss is strictly related to the
utility based pricing of contingent claims whose underlying assets are non
traded. Most of these references, (Davis (1999), Hobson and Henderson
(2002), Henderson (2002) and Musiela and Zariphopolou (2004a)), assume
that the agent has exponential preferences and no consumption and divi-
dends. Musiela and Zariphopolou (2004b) and Elliott and Van der Hoek
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(2004) discuss a discrete time general approach to the valuation of risky
assets in an incomplete market similar to the one we discuss in Section 2.

Our results are based on the duality approach pioneered by Cox and
Huang (1989), He and Person (1991), and Karatzas et al (1991). He and
Pages (1993) and El Karoui and Jeanblanc (1998) deal with a constrained
version of the problem when labor income risk can be diversified in the mar-
ket.

When the agent receives an uninsurable random endowment the mathe-
matical formulation of the stochastic control problem becomes difficult. Exis-
tence results under very general conditions on the price processes and on the
utility function have been obtained by Cuoco (1997) attacking directly the
primal problem, while exact results on the duality approach have been estab-
lished by Cvitanic, Schachermayer and Wang (2001) in the case of maximiza-
tion of utility from terminal wealth and extended by Karatzas and Zitkovic
(2003) to the problem with intertemporal consumption and constraints.

As far as we are aware, our paper contains the first analytical solution to
this problem when the agent has power utility of consumption and terminal
wealth. The analytical solution obtained allows us to quantify the impact
of the assets characteristics and the agent preferences on optimal asset al-
location and consumption. In particular, we show that the higher is the
correlation between the liquid and the illiquid asset, the lower will be the
allocation to the risky liquid asset. So, in the example given above the pro-
fessor would optimally invest a higher proportion of his liquid wealth in the
risky liquid asset than the stock broker. Since the human wealth of the stock
broker is highly correlated with the stock market, and his human wealth is
non tradable, he will tend to invest a smaller fraction of his liquid wealth
in the market portfolio. The value to the investor of the illiquid asset also
depends on the correlation between the two assets. Interestingly, this value
is higher for low and for high correlation and it reaches a minimum for an
intermediate correlation. This is due to the fact that for low as well as for
high correlations it is easier to hedge the endowment in the illiquid asset with
positions in the liquid risky asset.

The main contribution of the paper is to provide for a risk adjusted val-
uation procedure that can be used to value both liquid and illiquid assets.
The procedure reduces to risk neutral valuation for the liquid assets, while
the risk adjustment for valuing illiquid assets depends on the preferences of
the investor and on the volatility of the uninsurable risk.

The paper is organized as following. In Section 2 we develop a single
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period binomial example which contains the main ingredients of the approach
we pursue in the rest of the paper. Section 3 develops the continuous time
optimal allocation problem. Section 4 provides for an illustrative example
to show the main characteristics of the continuous time solution. Section 5
concludes and the Appendix contains some of the more technical results.

2 A binomial example

Consider a single period, finite state model for the optimal asset allocation
problem in the presence of an illiquid asset. Trading can occur at time t =
0 and t = T . The market is composed of three assets:

• A risk free bond bt, which pays an equal amount in any state of the
world at time T . Rf is the riskless interest rate over the period [0, T ].
Hence its final cash flow is given in terms of its initial price by:

bT = b0 (1 + Rf )

Without loss of generality we can assume b0 = 1

• A liquid risky asset with price st, which evolves along a binomial tree,
such that at time T :

sT (up) = s0us

sT (down) = s0ds with us > 1 > ds

• An illiquid risky asset with a level of ht which also evolves along a
binomial tree, such that at time T :

hT (up) = h0uh

hT (down) = h0dh with uh > 1 > dh

Note that the illiquid asset can only be traded at time T , so its level at
time 0, h0, represents an observable state variable associated with the illiquid
asset and not the price of the asset.

The state space Ω of the market at time T is completely specified by the
knowledge of the states reached by the illiquid asset and by the liquid asset.
Thus there are 4 possible states:

ω1 = (us, uh) ω2 = (us, dh) ω3 = (ds, uh) ω4 = (ds, dh)
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each of them occurs with probability P (ω = ωi) = pi, i = 1, ..., 4.
The single period problem in the absence of consumption can be stated

as follows: find the allocation at time 0 which maximizes the expected utility
of terminal wealth (at time T ) . We denote by πs

0 and πb
0 the initial dollar

amounts invested in each of the two liquid securities. Since the illiquid wealth
cannot be traded we assume that the investor has a claim of hT at time T .
Given an initial liquid endowment l0 > 0 and an initial level of the state
variable associated with the illiquid asset of h0 ≥ 0, the optimal allocations
to the liquid asset πs

0 and cash πb
0 have to be selected in order to maximize the

final expected utility of wealth. For tractability we assume a power utility
function with a coefficient of relative risk aversion of γ.

sup
(πs

0,πb
0)∈A(l0,h0)

EP [Uγ (wT )] = sup
(πs

0,πb
0)∈A(l0,h0)

EP
[

w1−γ
T

1− γ

]

where Uγ is the CRRA utility function with risk aversion parameter γ ∈
(1, +∞) and A (l0, h0) is the set of admissible plans

(
πs

0, π
b
0

)
such that wT =

lT + hT can be reached given an initial liquid wealth l0 > 0 and the level of
the initial illiquid asset (state variable) h0. Any admissible strategy

(
πs

0, π
b
0

)
must obey the financing condition:

πs
0 + πb

0 = l0

and the proportion invested in each asset cannot be changed in the interval
[0, T ].

Then, at time T the liquid wealth in units of bond will be:

lT (ω)

(1 + Rf )
=

wT (ω)

(1 + Rf )
− hT (ω)

(1 + Rf )
= πb

0 + πs
0

sT (ω)

(1 + Rf ) s0

(1)

The only decision variables in this simple setup are πb
0 and πs

0. In order to
determine the optimal value of these variables we use the duality approach:
we first determine the optimally allocated final wealth wT and then we de-
termine the optimal strategy πb

0, πs
0.

2.1 Determination of the optimally allocated wealth
using the duality approach

Consider a market composed only by the liquid asset and the bond. In this
market no arbitrage requires that exists a probability measure Q, such that
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the current price of the risky liquid asset is given by:

s0 = EQ
[

sT

1 + Rf

]
= EP [

ξQsT

]
=

4∑
i=1

qi
sT (ωi)

1 + Rf

(2)

where ξQ is the stochastic discount factor:

ξQi =
qi

pi (1 + Rf )
i = 1, .., 4

Since the illiquid risky asset can not be traded at time 0, the absence of
arbitrage does not imply a relation similar to (2) for ht. Then, Q is not
uniquely defined since we have four states of the world and only three equa-
tions (the normalization, one for the stock and one for the bond). Thus,
illiquidity generates market incompleteness and there exists a non trivial set
M of measures such that (2) is verified. These set of measures are usually
called equivalent martingale measures 2. The no arbitrage condition alone
will not provide an unique Q. However, as we discuss below, the utility max-
imizer agent selects a unique pricing measure Q∗ that applies both to the
valuation of liquid and illiquid assets.

Our first objective is to determine the optimally allocated wealth3, wT
i ,

in each of the possible states 1, .., 4 at time T . The maximization problem
can be written as:

sup
(πs

0,πb
0)∈A(l0,h0)

4∑
i=1

piUγ

(
wT

i

)
(3)

The constraints on wi
T implied by (1) in each state ωi depend on the alloca-

tions πs
0 and πb

0, thus it is not possible to fix the final wealth without knowing
the initial allocation. Cox and Huang (1989) show how to obtain the optimal
terminal wealth without knowing the optimal allocations by solving a dual
optimization problem. The basic idea is that the constraint on any admissible
vector of final wealths

{
wT

i

}
i=1,..,4

, which can be reached without violating

(1), can be characterized independently of the allocation strategy πs
0, π

b
0. The

2Strictly speaking this name is appropriate only in the multiperiod setting, where
eq.(2) becomes a martingale condition for discounted prices under Q: EQt

[
e−r(t+k)St+k

]
=

e−rtSt where r is the continuously compounded risk free rate of interest.
3The wealth that the investor has at time T , conditional on his having followed the

optimal allocation strategy (see Merton (1992)).
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set of feasible final wealths
{
wT

i

}
i=1,..,4

is the set of possible claims attainable

trading only in the liquid assets with an initial liquid endowment l0:

wT
i − hT

i

1 + Rf

= l0 + πS
0

(
sT

i

(1 + Rf ) s0

− 1

)
i = 1, .., 4

therefore by definition of martingale measure, equation (2), any attainable{
wT

i

}
i=1,..,4

has to satisfy:

4∑
i=1

qi

[
wT

i − hT
i

1 + Rf

]
= l0 ∀Q ∈M

Thus, it is possible to compute the optimal attainable wealth through the fol-
lowing constrained optimization problem where the allocation strategy does
not appear:

sup
{wT

i }i=1,..4

4∑
i=1

piUγ

(
wT

i

)
(4)

s.t. :
4∑

i=1

qi

[
wT

i − hT
i

1 + Rf

]
= l0 ∀Q ∈M

Following the dual approach we introduce the Lagrangian:

L
({

wT
i

}
i=1,..4

, {qi}i=1,..4 , λ
)

=

=
4∑

i=1

piUγ

(
wT

i

)− λ

[
4∑

i=1

qi

(
wT

i − hT
i

1 + Rf

)
− l0

]
λ > 0, Q ∈M

and applying the first order conditions we find the optimal wealths
{
wT

i

}
i=1,..4

for a fixed Q and λ:

piU
′
γ

(
wT

i

)
=

λ

(1 + Rf )
qi

wT
i (λ,Q) =

(
λ

(1 + Rf )

qi

pi

)− 1
γ

=
(
λξQi

)− 1
γ (5)
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Then we express the maximized Lagrangian as a function of λ and Q and
minimize over the possible Q ∈M:

inf
Q∈M

L
({

wT
i (λ,Q)

}
i=1,..,4

, {qi}i=1,..,4 , λ
)

(6)

= inf
Q∈M

EP

[
γ

1− γ

(
λ

(1 + Rf )

qi

pi

) γ−1
γ

]
+ λ

(
l0 + EP

[
qi

pi

hT

1 + Rf

])

Any martingale measures Q that belongs to M is constrained by (2) and
by the normalization, hence:

1 = Q
(
sT = s0us

)
us +Q

(
sT = s0ds

)
ds = (q1 + q2) us + (q3 + q4) ds

1 = q1 + q2 + q3 + q4

thus:

q1 + q2 =
1− ds

us − ds

q3 + q4 =
us − 1

us − ds

Note that no arbitrage provides a constraint on the marginal probabilities,
but these restrictions do not uniquely determine the optimal measure Q∗. To
simplify the analysis we define the probabilities of moving up or down for
the illiquid asset conditional on the state of the liquid risky asset:

f1 , Q
(
hT = h0uh | sT = s0us

)
=

q1

q1 + q2

f2 , Q
(
hT = h0dh | sT = s0us

)
=

q2

q1 + q2

f3 , Q
(
hT = h0uh | sT = s0ds

)
=

q3

q3 + q4

f4 , Q
(
hT = h0dh | sT = s0ds

)
=

q4

q3 + q4

f1 + f2 = 1, f3 + f4 = 1

Using the above no arbitrage conditions and the definitions of conditional
probabilities, we can substitute the qi’s in (6) in terms of the fi’s. Then we
can optimize over the set of martingale measures by simply imposing the first
order conditions with respect to fi, which imply:

fi

pi

∝ (
hT

i

)−γ
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Then normalization of conditional probabilities implies

f ∗i =
pih

−γ
i∑2

i=1 pih
−γ
i

i = 1, 2 (7)

f ∗i =
pih

−γ
i∑4

3=1 pih
−γ
i

i = 3, 4

Hence the optimal measure Q∗ is given by:

q∗1 =
1− ds

us − ds

f ∗1 , q∗2 =
1− ds

us − ds

f ∗2 , q∗3 =
us − 1

us − ds

f ∗3 q∗4 =
us − 1

us − ds

f ∗4

Finally λ∗ is easily determined by the condition that at optimality the
strict equality in the budget constraint holds:

EQ∗
[
wT (λ∗,Q∗)− hT

1 + Rf

]
= l0

Substituting in this equation the expression of the optimal wealth (5) and
the optimal measure Q∗ from (7), and simplifying we obtain the expression
for λ∗

λ∗ =

{
EQ∗

[(
ξQ

∗)−1/γ
]−1

(
l0 + EQ∗

[
hT

1 + Rf

])}−γ

The saddle point theorem (see e.g. Duffie (1996)) proves that the optimal
solutions (w∗

T ,Q∗, λ∗) found in the dual problem are optimal also for the
direct problem because at optimality the following min-max equality holds:

EP [Uγ (w∗
T )] = sup

{wT
i }i=1,..4

inf
λ>0, Q∈M

L
({

wT
i

}
i=1,..,4

, {qi}i=1,..,4 , λ
)

= inf
λ>0, Q∈M

sup
{wT

i }i=1,..4

L
({

wT
i

}
i=1,..,4

, {qi}i=1,..,4 , λ
)

(8)

= EP
[

γ

1− γ
(w∗

T )(γ−1)/γ

]
+ λ∗

(
l0 + EQ∗

[
h∗T

1 + Rf

])

The key results of this section are:

1. The optimal
(
wT

i

)∗
is given as a function of (λ∗,Q∗) by:

(
wT

i

)∗
=

(
λ∗

(1 + Rf )

q∗i
pi

)− 1
γ

, (9)

11



2. {(q∗i /pi) (1 + Rf )}i=1,..,4 is the optimal stochastic discount factor in the
market, such that discounted expected prices of liquid assets equal
current price under Q∗ (Q∗ is the optimal martingale measure);

3. There exists a value of the Lagrangian parameter λ∗ > 0, such that
discounted liquid optimal wealth equals initial liquid wealth:

EQ∗
[
w∗

T (λ∗,Q∗)− hT

1 + Rf

]
= l0

4. The value that the investor assigns to the illiquid asset:

ĥ0 = EQ∗
[

hT

1 + Rf

]

which is different from the level of the state variable h0, depends on
the investor preferences and is determined by the optimal valuation
measure Q∗. The investor values his total wealth at time 0 according to
the optimal pricing measure and therefore he values his current wealth
as:

w0 = l0 + ĥ0 6= l0 + h0

2.2 Determination of the optimal allocation strategy

Once the optimal final wealth for each state is known, the determination of
the optimal allocation strategy becomes the solution to a linear system of
equations. From (9), the optimal liquid final wealth in each state is given by:

(
wT

i

)∗ − hT
i =

(
λ∗

(1 + Rf )

q∗i
pi

)−1/γ

− hT
i

To obtain the optimal allocation to the liquid assets we consider separately
the states where the risky liquid asset moves up from the cases where it moves
down. To do this we take the conditional expectation of the liquid wealth
over the possible states of hT , controlling for the liquid risky asset sT . Then
the following linear system determines πs

0, π
b
0 :

l∗u ,
2∑

i=1

f ∗i

{(
wT

i

)∗ − hT
i

(1 + Rf )

}
= πb

0 + πs
0

us

(1 + Rf )

l∗d ,
4∑

i=3

f ∗i

{(
wT

i

)∗ − hT
i

(1 + Rf )

}
= πb

0 + πs
0

ds

(1 + Rf )
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The solution of this system is given by:

πb
0 = l0 − πs

0

πs
0 =

l∗u − l∗d
us − ds

(1 + Rf )

The duality approach, by determining first the optimally allocated termi-
nal wealth for each state, transforms the problem of determining the optimal
allocations into the problem of replicating a derivative, trading only in the
liquid assets, whose pay-off in each state is the optimal liquid wealth. An
additional characteristic of this approach is that the analysis also provides
for the stochastic discount factor which the agent can use to value any con-
tingent claim on the liquid and the illiquid asset. The general ideas presented
in this section carry over to the continuous time case.

3 The continuous time case

Now consider a continuous time economy where prices evolve stochastically
in a filtered probability space {Ω,F ,P} supporting a two dimensional Brown-
ian motion (W 1

t ,W 2
t ) where F = {Ft}t≤T and Ft represents the augmented

filtration generated by all the information reflected in the market up to time
t and P is the objective probability measure. We fix a final time horizon T ,
the epoch at which the non traded (illiquid) asset becomes tradable and can
be consumed.

The market is composed of three assets:

• The risk free bond Bt, whose dynamics is:

dBt = rBtdt t ≤ T

where r is the continuously compounded risk free interest rate which,
for simplicity, we assume to be constant.

• A traded liquid risky asset St, whose dynamics is:

dSt

St

= αdt + σdW 1
t t ≤ T
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where α (> r)is the continuously compounded expected rate of return
on the risky liquid asset, and σ is the continuous standard deviation of
the rate of return. 4

• An illiquid risky asset Ht (no trading is allowed until time T , when it
can be consumed), whose dynamics is:

dHt

Ht

= (µ− δ)dt + η
(
ρdW 1 +

√
1− ρ2dW 2

)
t ≤ T

where µ is the continuously compounded total expected rate of return
on the risky illiquid asset, δ is the liquid continuous rate of dividend
paid by the illiquid asset, η is the continuous standard deviation of the
rate of return, and ρ is the correlation coefficient between the dynamics
of the liquid and the illiquid risky asset. 5

Since the illiquid asset Ht cannot be traded at any time t < T , it repre-
sents the level of a state variable associated with the illiquid asset. At time
T , the state variable, HT , becomes equal to the price of the illiquid asset.

The intertemporal optimization problem of the agent is given by:

sup
(π,c)∈A(w0,h0)

EP
[∫ T

0

βce
−κuUγ (ct) du + βW e−κT Uγ (W π,c

T )

]

= sup
(π,c)∈A(w0,h0)

V (c,W π,c
T )

with Uγ (x) =
x1−γ

1− γ
for x > 0, Uγ (x) = −∞ for x ≤ 0,

where W π,c
T indicates the total wealth of the investor at time T which includes

the liquid wealth, LT , and the illiquid wealth, HT ; ct indicates consumption at
time t, κ indicates the subjective discount rate and finally βc, βW the relative
weights of final utility of wealth with respect to the utility of intertemporal

4For simplicity we assume that the liquid risky asset pays no dividends, but the analysis
would be the same if the asset paid a continuous dividend

5Since human wealth will enter in the state equation for liquid wealth equation only
through dividends, the dividend plays exactly the same role of a stochastic income for
the agent. For this reason, our allocation problem can be considered as the finite horizon
counterpart of an allocation problem in the presence of an uninsurable stochastic income
and Ht can be considered as the present value of all future wages.
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consumption. We denote the dollar amounts invested in the liquid assets by
the vector π =

(
πS

t , πB
t

)
t≤T

.

We define a consumption plan as a triple (c, π,W c,π
T ). Then the set of

admissible plans with initial liquid wealth l0, and level of the illiquid state
variable h0, A (l0, h0), is defined by the following restrictions:

• The consumption stream c and the final total wealth
(W π,c

T = HT + Lπ,c
T ) must obey the following standard technical

restrictions 6:

(c,W ) ∈ C =

{
ct ≥ 0 a.s. Ft-adapted, EP

[∫ T

0
c2
t dt

]
< +∞, t ≤ T

W π,c
T = HT + Lπ,c

T ≥ 0 a.s. W π,c
T ∈ L2 (FT )

}

• The strategy π finances a consumption stream c, given an initial liquid
wealth l0 > 0, and the initial level of the state variable h0 ≥ 0, if there
exists a strictly positive liquid wealth process:

L0 = l0 (10)

Lt = πS
t + πB

t

Any admissible plan must be self financing and therefore the dynamics
of total liquid wealth is

dLπ,c
t = δHtdt + πS

t

dSt

St

+
(
πB

t r − ct

)
dt

We require that the process πS
t is F−adapted S− integrable in order

to avoid doubling strategies (see e.g. Duffie (1996)).

To find the optimal solution we follow the duality approach described in
the binomial example. We denote with a ∼ all the discounted quantities (i.e.

S̃t = exp (−rt) St, c̃t = exp (−rt) ct, etc.), such that dS̃t/S̃t = (α− r) dt +
σdW 1

t .

6Notice that these requirements, jointly with the parametric restrictions (34) and (35)
reported in Appendix, are sufficient to guarantee that, starting with strictly positive liquid
wealth, it will never be optimal to reach negative liquid wealth. This is suggested by the
following informal argument: suppose on the contrary that a negative position in liquid
wealth is possible, then there would be a small but non vanishing probability for the
final total wealth to be negative. A formal proof should rely on the same arguments of
proposition 1 in Duffie et al. (1997).
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Then, the dynamics of discounted liquid wealth becomes (we drop the
dependence on π and c for notational simplicity):

dL̃t = δH̃tdt + π̃S
t

dS̃t

S̃t

− c̃tdt

and rearranging terms

dL̃t − δH̃tdt + c̃tdt = π̃S
t

dS̃t

S̃t

The allocation strategy is determined solely by π̃S
t . The bond amount in the

portfolio can be recovered given total liquid wealth and the stock amount.

3.1 Determination of optimal consumption and final
wealth

In the continuous time model we are considering the no arbitrage condition
implies the existence of a set of probability measures Q and correspondingly
a set of stochastic discount factors ξQt

7 such that prices of tradeable assets
are given by:

St = e−r(T−t)EQ
t [ST ] =

EP
t

[
ξQT ST

]

ξQt
∀Q ∈ D

where EQ
t denotes the conditional expectation with respect Ft under the

measure Q. Moreover, in the illiquid market we are considering there is not
an unique equivalent martingale measure. As we discuss in the Appendix,
the presence of an illiquid asset requires an enlarged set of equivalent mar-
tingale measures D. As usual in incomplete markets, the optimal equivalent
martingale measure depends on the agent’s preferences.

Following once again the duality approach suggested by Cox and Huang
(1989), the optimal pair (c∗,W ∗

T ) can be determined solving the dual problem:

sup
(c,WT )∈C

V (c,WT )

s.t. EQ
[∫ T

0

e−rtctdt + e−rT (WT −HT )−
∫ T

0

e−rtδHtdt

]
≤ l0 ∀Q ∈D

7See the Appendix for a rigorous definition of the relation between the stochastic dis-
count factor and the optimal measure
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We introduce the Lagrangian:

L (c,WT , HT , λ,Q) = V (c,WT )− λgQ (c, WT , HT ) , λ > 0, Q ∈D (11)

gQ (c,WT , HT ) , EQ
[∫ T

0

e−rtctdt + e−rT (WT −HT )−
∫ T

0

e−rtδHtdt− l0

]

and impose the first order conditions to (11):

βW e−κT U ′
γ

(
WT

(
λ, ξQT

))
= λξQT

βce
−κtU ′

γ

(
c
(
λ, ξQT

))
= λξQt

Then, the optimal value for the Lagrangian parameter λ∗ and the optimal
martingale measure Q∗ are determined by the minimization:

inf
λ>0,Q∈D

L (
c
(
λ, ξQT

)
,WT

(
λ, ξQT

)
, HT , λ,Q

)
(12)

Crucial to the determination of the explicit solution, under our assump-
tions about preferences and about the price dynamics, is the identification
of the optimal valuation measure Q∗ which is discussed in the Appendix. As
in the binomial example, the optimal measure is determined in two stages.
First, we impose the no arbitrage condition which applies to liquid assets.
Then, optimizing over the set of martingale measures, we obtain the optimal
solution to the dual minimization problem.

No arbitrage and optimality require that the stochastic discount factor,
ξ∗, which determines the optimal consumption and the optimal wealth is the
one used in a market composed only by liquid assets:

dξ∗t
ξ∗t

= −rdt− (α− r)

σ
dW 1

t (13)

ξ∗0 = 1

However, the optimal measure Q∗ also determines the value to the investor
for the illiquid asset Ht. The agent evaluates its illiquid wealth considering
also the independent source of risk, W 2

t . As shown in the Appendix the

change of measure Z2
T = W 2

T + γη (1− ρ2)
1
2 T takes into account the shadow

price of the illiquidity constraint.
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Now, let Z1
T = W 1

T + (α− r) T/σ and Z2
T = W 2

T + γη (1− ρ2)
1
2 T .

Then, under Q∗ the dynamics of the (discounted) traded asset becomes
a martingale:

dS̃t

S̃t

= σdZ1
t (14)

While the dynamics of the (discounted) state variable associated with the
non-traded asset becomes:

dH̃t

H̃t

= −νdt + η
[
ρdZ1

t +
√

1− ρ2dZ2
T

]
(15)

ν = −
[
(µ− δ − r)−

(
α− r

σ

)
ηρ− γη2

(
1− ρ2

)]
(16)

Note that the drift of the (discounted) process for the illiquid asset under
the measure Q∗ is not, in general, equal to zero.

Because of the transversality condition, in order to avoid bubbles, we
require that ν − δ > 0.

At optimality the Lagrangian parameter λ∗ is obtained by the minimiza-
tion of (12). Its value is derived in the Appendix.

In conclusion, the final wealth and consumption from the optimal allo-
cation which solve the original primal problem are given by the following
expressions:

WT (λ∗, ξ∗T ) =

(
λ∗

eκT

βW

ξ∗T

)− 1
γ

, (17)

ct (λ∗, ξ∗t ) =

(
λ∗

eκt

βc

ξ∗t

)− 1
γ

(18)

Remarkably, using results form Ocone and Karatzas (1991), it is possi-
ble to compute also the closed form expression for the optimal amount π̃S

t .
Consider the (discounted) liquid wealth net of the dividends received and
including the consumption withdrawals:

Λ̃t = L̃∗t −
∫ t

0

δH̃sds +

∫ t

0

c̃∗sds (19)

= l0 +

∫ t

0

π̃S
s

dS̃s

S̃s

t ≤ T
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Since Λ̃t is a martingale process under the optimal measure Q∗, the Clark-
Ocone formula 8 provides the expression of π̃S

t as the conditional expectation

of the Malliavin Derivative of Λ̃T with respect to the process σZ1
t :

π̃S
t = EQ∗

t

[
DtΛ̃T

]

By linearity of the derivative operator, DtΛ̃T can be decomposed as:

DtΛ̃T = DtW̃
∗
T −DtH̃T −

∫ T

0

δDtH̃sds +

∫ T

0

Dtc̃
∗
sds

Recall that expressions (17) and (18) provide explicit solutions for the optimal
wealth and consumption:

W̃T (λ∗, ξ∗T ) =

(
λ∗

βW

)− 1
γ

exp

[
− (κ− r)

T

γ
− 1

2

(
α− r

σ

)2
T

γ
+

(
α− r

σ2γ

)
σZ1

T

]

c̃t (λ∗, ξ∗t ) =

(
λ∗

βc

)− 1
γ

exp

[
− (κ− r)

t

γ
− 1

2

(
α− r

σ

)2
t

γ
+

(
α− r

σ2γ

)
σZ1

t

]

As proved in the Appendix of Detemple, Garcia and Rindisbacher (2003), the
Malliavin derivative (with respect to σZ1

t ) of a lognormal random variable
can be computed according to the usual differentiation rule, thus we get:

DtW̃T (λ∗, ξ∗T ) = Dt

(
λ∗

eκT

βW

ξ∗T

)− 1
γ

=

(
α− r

γσ2

)
W̃ ∗

T |t≤T

Dtc̃s (λ∗, ξ∗t ) = e−rsD

(
λ∗

eκs

βc

ξ∗s

)− 1
γ

=

(
α− r

γσ2

)
c̃∗s|t≤s

8Clark Ocone formula is an extension of Ito representation theorem, it states that the
random variable Λ̃T can be decomposed as follows:

Λ̃T = EQ
[
Λ̃T

]
+

∫ T

0

EQt

[
DtΛ̃T

]
σdZ1

t

where DtΛ̃T is the Malliavin derivative of the process Λ̃T . Its applications to dynamic
portfolio allocation have been discussed in Detemple Garcia and Rindisbacher (2003).
The Clark-Ocone formula loosely corresponds to the first order Taylor formula applied
to stochastic processes. Comparing the expression for Λ̃T with (19) it is immediate to
determine the expression of the allocation strategy in terms of the Malliavin derivative.
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Also H̃T is lognormally distributed (with respect to σZ1
t ), therefore

DtH̃T =
ηρ

σ
H̃T

DtH̃s =
ηρ

σ
H̃s|t≤s

Summing up the expressions for the derivatives we get the Malliavin deriva-
tive of DtΛ̃T . The explicit allocation strategy at time 0 is then given by the
expectation:

πS
0 = π̃S

0 = EQ∗
[
D0Λ̃T

]
= (20)

=

(
α− r

γσ2

)
EQ∗

[
W̃ ∗

T +

∫ T

0

c̃∗sds− H̃T −
∫ T

0

δH̃tdt

]

+

(
α− r

γσ2
− ηρ

σ

)
EQ∗

[
H̃T +

∫ T

0

δH̃tdt

]

=

(
α− r

γσ2

)
l0

+

(
α− r

γσ2
− ηρ

σ

)
h0

[
e−νT +δν−1

(
1− e−νT

)]

Finally, the actual amounts invested are:

πS
t = ertπ̃S

t

πB
t = L∗t − πS

t

Note that when no illiquid asset exists (h0 = 0) this result (20) is exactly
Merton’s (1969).

The value at time 0 of the illiquid asset for the investor is given by:

ĥ0 = EQ∗
[
H̃T +

∫ T

0

δH̃tdt

]
= h0

[
e−νT + δν−1

(
1− e−νT

)]

From this point of view h0 represents the notional (or implied, or account-
ing) value of the illiquid asset; but the price at which the investor would be

willing to sell it at time 0 is ĥ0; this value is then the value to the investor
of the illiquid asset. Illiquidity affects the value of the asset by the factor
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ĥ0/h0 ≤ 1. This cost depends on all the parameters of the two stochastic
process, in addition to the preference parameter γ. Similarly, the value at
time 0 of the total wealth of the investor is

ŵ0 = l0 + ĥ0 (21)

The amount invested in the liquid risky asset can then be written as a
function of ĥ0 and ŵ0:

πS
0 =

(
α− r

γσ2

)
ŵ0 − ηρ

σ
ĥ0 (22)

Then, the fraction of wealth invested in the liquid risky asset is given by:

πS
0

ŵ0

=

(
α− r

γσ2

)
− ηρ

σ

ĥ0

ŵ0

(23)

Note that the first term of this expression represents the exact Merton’s
proportions of total wealth, but in this case total wealth is the sum of the
liquid wealth and the value to the agent of the illiquid wealth. The second
term takes into account the diversification effect that the degree of correlation
between the risky assets has on the optimal allocation to the risky liquid
asset.

3.2 Optimal consumption stream

The optimal consumption flow at time 0 can be easily computed from equa-
tion (18) given expression (13) and the optimal value for the Lagrangian
parameter λ∗, computed in the Appendix:

c0 =

(
λ∗

βc

)− 1
γ

(ξ∗0)
− 1

γ =

(
λ∗

βc

)− 1
γ

λ∗ =

{
l0 + h0

[
e−νT + δν−1

(
1− e−νT

)]

β
1/γ
c m−1 (emT − 1) + β

1/γ
W emT

}−γ

m =
κ

γ
− r

(
1− 1

γ

)
− 1

2

(
α− r

σ

)2 (
1

γ
− 1

γ2

)
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hence:

c0 =

{
l0 + h0

[
e−νT + δν−1

(
1− e−νT

)]

m−1 (emT − 1) + (β−1
c βW )1/γ emT

}
=

ŵ0

KC

KC =
(
m−1

(
emT − 1

)
+

(
β−1

c βW

)1/γ
emT

)

As in Merton (1969), the agent will consume an amount proportional to his
total wealth, but where wealth is defined as the sum of his liquid wealth
plus the value of his illiquid wealth (which is adjusted for illiquidity). The
proportionality constant, however, is smaller that in the Merton two-asset
case because the Sharpe ratio for the two asset case is always larger that
the Sharpe ratio of the one asset case. As a consequence, illiquidity induces
the agent to reduce consumption both because the value to the investor of
the illiquid asset is smaller and also because the proportionality constant is
reduced.

3.3 The utility cost of illiquidity

Illiquidity is a constraint on possible allocations. In this Section we evaluate
the utility cost to the investor of these restrictions. For an unconstrained
investor his welfare depends only on the total amount of his initial endowment
w0, while for a constrained investor, it will depend on the level of liquid wealth
l0 and on the level of the state variable associated with the illiquid asset
h0. We compute the amount of liquid wealth lCE

0 required by a constrained
investor to reach the same level of utility of an unconstrained investor with
total wealth w0 = l0 + h0, for a fixed level of illiquid asset h0.

The optimal allocation for the unconstrained agent is given by the solution
of Merton (1969), applied on a market where there are two liquid risky assets
with risk and return characteristics corresponding to those of the two assets
St and Ht. For a given initial wealth w0, the unconstrained agent will allocate
to the two risky assets the dollar amounts:

(
πS

U

πH
U

)
=

1

γ

(
ΣΣT

)−1
(

α− r

µ− r

)
w0 (24)

From Merton (1969), the expression for the indirect utility of wealth for
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the unconstrained investor is:

V U (w0) =
(
KU

)γ (w0)
1−γ

1− γ

KU = m−1
U

(
emUT − 1

)
+

(
β−1

c βW

)1/γ
emUT

mU =
κ

γ
− r

(
1− 1

γ

)
− 1

2
M

(
1

γ
− 1

γ2

)

M =

(
α− r

µ− r

)′ (
ΣΣT

)−1
(

α− r

µ− r

)

The indirect utility of wealth for the constrained investor is easily ob-
tained replacing the optimal consumption and optimal wealth in the objec-
tive function, V (c∗,W ∗), and taking expectations:

V C (h0, l0) =
(
KC

)γ (ŵ0 (l0, h0))
1−γ

1− γ

ŵ0 (l0, h0) = l0 + h0

[
e−νT + δν−1

(
1− e−νT

)]

KC = m−1
(
emT − 1

)
+

(
β−1

c βW

)1/γ
emT

m =
κ

γ
− r

(
1− 1

γ

)
− 1

2

(
α− r

σ

)2 (
1

γ
− 1

γ2

)

Then, lCE
0 , the certainty equivalent level of liquid wealth which provides

to the constrained investor the same level of utility of an unconstrained in-
vestor with endowment w0 = l0 + h0 is given by:

V C
(
lCE
0 , h0

)
= V U (l0 + h0)

lCE
0

l0
=

(
KC

KU

)γ/(γ−1) (
1 +

h0

l0

)
− h0

l0

[
e−νT + δν−1

(
1− e−νT

)]

Since M ≥ (
α−r

σ

)2
, it can be shown that KU ≤ KC . Therefore lCE

0 ≥ l0.
As expected, the illiquidity constraint decreases the utility of the agent. The
additional liquid wealth required to compensate the investor for the illiquidity
of the asset is lCE

0 − l0.

4 Illustrative example

To gain more insight into the results obtained, in this section we illustrate
our findings through a numerical example. Consider and investor with an
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horizon of 20 years and with a coefficient of risk aversion of γ = 3 who is
allocating funds to a liquid risky asset with an expected rate of return of
α = 0.08 and volatility σ = 0.15. In addition he holds an illiquid risky asset
with a drift µ = 0.07 and volatility η = 0.20. Even though the illiquid asset
can not be traded, it pays a liquid dividend yield of δ = 0.05. Finally, there
is a liquid riskless asset with a constant interest rate r = 0.03.
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Figure 1: Allocation to the Risky Liquid Asset as a Function of h0 fixing
l0 = 1.

Figure 1 shows the allocation to the risky liquid asset as a function of h0

fixing l0 = 1, for different values of the correlation between the liquid and the
illiquid asset returns. From equation (20) this relation is linear. Note that
when we increase h0 the total wealth of the investor increases also. From the
figure we see that the allocation to the liquid risky asset increases for negative
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correlation and also for moderately positive correlation as well, while for
high correlation this allocation decreases. For sufficiently low correlation the
diversification effect of having the illiquid asset (even if it cannot be traded)
increases the optimal allocation to the liquid risky asset, even to the point of
borrowing at the risk free asset to invest in the liquid risky asset. Only when
the correlation is sufficiently high and the diversification effect of holding the
illiquid risky asset diminishes, does the optimal allocation to the liquid risky
asset decreases when h0 increases.
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Figure 2: Fraction of Total Wealth Allocated to the Risky Liquid Asset as a
Function of the Fraction of Illiquid Wealth.

Figure 2 presents a rescaled plot of Figure 1. In order to keep constant
total wealth (liquid wealth plus the value to the investor of the illiquid wealth)
this figure shows the fraction of total wealth allocated to the liquid risky asset
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as a function of the proportion of illiquid wealth, as described by equation
(23). Note that when the correlation is zero the proportion allocated to the
liquid risky assets is constant and this constant is the same as in Merton,
however, the definition of total wealth is different. When the correlation is
negative (positive) the proportion is increasing (decreasing) in the fraction
of the illiquid asset. In this graph the slope of the lines is (the negative of)
the ”beta coefficient” of the illiquid asset return with respect to the liquid
asset return, and the intercept is the usual Merton proportion.
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Figure 3: Allocation to the Risky Liquid Asset as a Function of the Correla-
tion between the Returns of the Liquid and Illiquid Assets.

Figure 3 shows the allocation to the risky liquid asset (as a proportion
of total wealth) as a function of the correlation, for different proportions
of illiquid to liquid wealth. Naturally the correlation effect is stronger the
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higher is the proportion of illiquid wealth.
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Figure 4: Shadow Price of the Illiquid Asset as Measured by ĥ0/h0 as a
Function of the Correlation for Different µ’s.

Figure 4 provides an indication of the shadow price for the illiquidity
constraint, measured by ĥ0/h0, as a function of the correlation for different
levels of the total expected return of the illiquid asset process. The value of
the illiquid asset to the investor (ĥ0) is always lower than its notional level
(h0). Interestingly, is non monotonic with respect to the correlation. For low
and high correlation the value is greater than for intermediate values. For
negative correlation the diversification potential of the illiquid asset makes
it valuable to the investor even if the agent cannot trade on it. Then, after
reaching a minimum value, the ratio starts increasing again; this is due to
the fact that the higher is the correlation, the more the illiquid asset can be
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hedged with the liquid one. Naturally, this ratio is critically dependent on
µ; the higher is µ the more valuable is the illiquid asset.
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Figure 5: Proportional Allocation to the Liquid Risky Asset as a Function
of the Risk Aversion Parameter.

Figure 5 presents the proportional allocation to the liquid risky asset as a
function of the coefficient of risk aversion for different levels of the correlation.
As expected the higher is the risk aversion the lower is the allocation to
the risky asset, and the higher the correlation the lower is the proportional
allocation.

Figure 6 shows the liquid wealth, lCE
0 , that would be required to com-

pensate the investor for the illiquidity of the constrained asset in order to
obtain the same utility as an equivalent investor that has no illiquidity con-
straints and invests a total amount l0 + h0. In this figure we plot lCE

0 as a
function of h0/l0 for different correlations and normalizing l0 = 1. First note
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Figure 6: Total Liquid Wealth Required to Compensate for Illiquidity as a
Function of h0/l0 for Different Correlations.

that even when the fraction of illiquid wealth is zero, lCE
0 is larger than 1

because in one case the agent is only investing in the liquid asset and in the
other the agent in optimizing over the two assets. Thus, for the correlation
smaller that 1 there is always an advantage to diversification. As expected,
lCE
0 is an increasing function of the fraction of illiquid wealth and a decreas-
ing function of the correlation. This last is due to the fact that the more
negative is the correlation the larger is the advantage from diversification in
the unconstrained case.
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5 Summary and conclusions

We study the problem of optimal asset allocation in the presence of an illiquid
asset. The illiquid asset cannot be traded, but it generates a liquid dividend
that can be consumed or invested in liquid assets. This liquid dividend has
many interpretations depending on the nature of the illiquid asset. An impor-
tant application is when the illiquid asset is human wealth and the dividend
is labor income. There is a vast literature in economics and finance trying
to understand the effect of stochastic labor income on optimal consumption
and asset allocation. We obtain closed form solution to this problem in the
relevant case of time separable power utility of consumption and terminal
wealth.

An important by-product of our analysis is that we derive a valuation
procedure for liquid and illiquid assets. In particular, we are able to compute
the value that the agent assigns to the illiquid asset, that is, the shadow price
of illiquidity. The framework, however, allows, given the preferences of the
investor, to value any contingent claim on the illiquid asset or on both the
liquid and illiquid asset.

The approach we develop can also be used to solve the optimal asset
allocation problem in the presence of borrowing and short selling constraints
as discussed in general terms by He and Pages (1993). In particular, it would
be interesting to study the effect that these constraints have on the value that
the agent assigns to his illiquid asset.

Perhaps the most challenging extension of our analysis is market equilib-
rium. If the risky liquid asset is the market portfolio, and the illiquid asset
of each agent in the economy is its human wealth, the aggregation problem
involves heterogeneous valuations of human wealth holdings of all the agents
in the economy. The possibility of asymmetric information effects raises the
issue of the impact of moral hazard and adverse selection on such market
equilibrium.
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6 Appendix

6.1 Determination of the optimal measure Q∗ in the
continuous time problem

The stochastic optimization problem we solve belongs to the class of util-
ity maximization problems in the presence of a random endowment. The
theoretical aspects of the duality approach have been analyzed and solved
by Cuoco (1997), Cvitanic, Schachermayer and Wang (2001), Karatzas and
Zitkovic (2003), and Hugonnier and Kramkov (2004). We refer to the above
references for a rigorous discussion of the mathematical problem and for a
proof of the existence of an optimal measure; here we identify the optimal
pricing measure Q∗ in the specific case of our dynamic allocation problem.

In particular the model described in Section 3 belongs to the class of ”Ito
process models” as defined in (Karatzas and Zitkovic (2003) Example 4.1).

The major technical difficulty in the formulation of the dual problem is
the definition of a set of admissible measures Q. The proper domain for the
dual problem D, which has been introduced in (Cvitanic, Schachermayer and
Wang (2001) pg.263), is:

D = {Q ∈ (L∞ (Ω,F ,P))∗ | ‖Q‖ = 1 and 〈Q, X〉 ≤ 0 ∀X ∈ C}
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where C is the set of FT measurable random variables in L∞ dominated by
a dynamic trading strategy admissible in the market and 〈Q, X〉 denotes the
expectation of X under the measure Q.

In order to identify uniquely the optimal solution Q∗, it is important to
provide a characterization of the elements of D (see e.g. the Appendix of
Cvitanic, Schachermayer and Wang (2001)). Since D is a subset of (L∞)∗,
each pricing measure Q is required to be only finitely additive, as opposed
to the standard case where measures are required to be countably additive.
While most of the properties of standard measures can be extended to the
finitely additive case, some properties of standard stochastic calculus do not
apply. In particular the Radon Nikodym theorem does not hold in its stan-
dard form and the corresponding derivative is not uniquely defined. For this
reason the determination of the optimal measure is more elaborate than the
standard situation.

First we formulate a conjecture about the optimal measure and then
we provide evidence that this conjecture satisfies sufficient conditions for
optimality.

We specify our conjecture using the following important property: a fi-
nitely additive measure Q ∈D defined on a domain (σ-algebra) G can be
uniquely decomposed as a sum of two terms, a regular and a purely singular
part:

Q = Qr
G +Qs

G, Qr
G ≥ 0,Qs

G ≥ 0

where the subscript indicates that such separation depends on the domain
G. As explained in (Karatzas and Zitkovic (2003) pg. 9), the separation
between the regular part and the singular part of the measure depends on
the information set (σ-algebra) where the measure is defined. Moreover the
smaller information set the bigger the regular component.

Only the regular component admits a Radon-Nikodym derivative, while
the singular part of the measure does not have a properly defined density.

In our problem the largest domain for Q is of course the full information
set for the agent FT , which is the information set where the paths for both
the Brownian motions are observed: FT = σ(W 1

T ,W 2
T ).

The regular component in FT , dQr
FT

/dP, provides the expression for the
stochastic discount factor which is defined as:

ξt = e−r(T−t)EP
t

[
dQr

FT

dP

]
(25)
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Therefore the regular component of the measure can be fixed, as in the usual
case, specifying the evolution of the stochastic discount factor ξQt .

Consider now the information set σ (W 1
T ) generated by the Brownian

motion which drives the liquid assets W 1
t≤T . Of course σ(W 1

T ) is properly
contained in FT .

We conjecture that the optimal measure Q∗ becomes completely regular,
i.e. no singular component remains, when we restrict the domain of the
measure to σ(W 1

T ). In addition, we conjecture that the Radon Nikodym
derivative for the measure restricted to the smaller information set σ(W 1

T )
has an additional factor, f ∗ (W 2

T (ω)), not present when the domain is FT :

dQr
σ(W 1

T )

dP |σ(W 1
T )

=

(
dQr

FT
|σ(W 1

T )

dP |σ(W 1
T )

)
f ∗

(
W 2

T (ω)
)

In this way the singular component Qs
FT

is determined. It has a well de-
fined Radon Nikodym derivative only when the measure is restricted on the
information set σ(W 1

T ) and such derivative is:


d

(
Qr
FT
|σ(W 1

T ) −Qr
σ(W 1

T )

)

dP |σ(W 1
T )


 =

(
dQr

FT
|σ(W 1

T )

dP |σ(W 1
T )

)
(
f ∗

(
W 2

T (ω)
)− 1

)

Our conjecture is completed by the specification of the evolution for the
stochastic discount factor ξ∗t :

dξ∗t
ξ∗t

= µξdt + σξ
1dW 1

t + σξ
2dW 2

t (26)

µξ = −r σξ
1 = −(α− r)

σ
σξ

2 = 0

and by the specification of the expression for f ∗ (W 2
T (ω)) in the singular

component ξ∗T (f ∗ (W 2
T (ω))− 1):

f ∗
(
W 2

T (ω)
)

= exp

(
−1

2
γ2η2

(
1− ρ2

)
T + γη

(
1− ρ2

)1/2
W 2

T

)

Now we provide evidence that the above conjecture is optimal. We consider
the special case where there is no intertemporal consumption and no divi-
dends (βW = 1, βc = 0, δ = 0). The extension to the case with consumption

36



and dividends does not change the nature of the results (see Karatzas and
Zitkovic (2003)).

Let ξ∗ be the stochastic discount factor corresponding to the regular com-
ponent of the optimal measure Q∗. The condition that Q∗ is an equivalent
martingale measure implies that ξ∗t St and ξ∗t Bt have to follow a martingale
process under P and this is equivalent to:

µξ = −r (27)

and that:

σξ
1 = −(α− r)

σ
(28)

Given the expression for f ∗ (W 2
T (ω)) which we determine below, the con-

ditions for optimality given in (Cvitanic, Schachermayer and Wang (2001)
equation (4.1) pg. 264) are verified and in particular the condition that the
expectation with respect to the singular component of the measure of the
optimal wealth (17):

EP

[
(
f ∗

(
W 2

T (ω)
)− 1

)
ξ∗T

(
λ∗

eκT

βW

ξ∗T

)− 1
γ

| σ(W 1
T )

]
= 0

if and only if:
σξ

2 = 0

Finally we determine the expression for f ∗ (W 2
T (ω)) by solving a new opti-

mization problem related with the original one. In this problem the only
source of uncertainty is given by W 2

T (ω) while the specific path for the noise

term which drives the liquid risky asset,
{

W 1
T (ω)

}
t≤T

, is supposed to be

known. Then the only asset whose evolution is uncertain is the illiquid asset:

Ht = h0 exp

((
µ− 1

2
η2

)
t + ηρW 1

t (ω) + η
(
1− ρ2

)1/2
W 2

t (ω)

)

for W 1
t (ω) = W 1

t (ω)

The risky asset price is the product of two components:

Ht = Rt

(
W 1

t (ω)
)

Hc
t ,
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one deterministic

Rt

(
W 1

t (ω)
)

= h0 exp

((
µ− r − 1

2
η2ρ2 + gη

(
1− ρ2

)1/2
)

t + ηρW 1
t (ω)

)

and one stochastic component, Hc
t :

Hc
t = exp

{(
r − 1

2
η2

(
1− ρ2

)− gη
(
1− ρ2

)1/2
)

t + η
(
1− ρ2

)1/2
W 2

t (ω)

}

which evolves according to the stochastic differential equation:

dHc
t

Hc
t

=
(
r − gη

(
1− ρ2

)1/2
)

dt + η
(
1− ρ2

)1/2
dW 2

t (ω)

Hc
0 = 1

where, for convenience, the drift for the stochastic process Hc
t is parametrized

by g.
The original problem involves the utility maximization of final wealth of

an investor with power utility function:

EP

[
(LT + HT )1−γ

1− γ

]

Now consider a related artificial problem for a fixed path for the noise
W 1

t (ω) 9. In this artificial problem the investor has a utility of terminal
wealth of the HARA class given by:

EP

[
(KT + VT )1−γ

1− γ

]

where KT is a constant and the agent can invest in a complete market com-
posed by one risky asset Hc

t (W 2
T (ω)) and one riskless asset with rate of return

r. In this artificial market we are assuming that the risky asset Hc
t (W 2

T (ω))
is tradable. Vt is the wealth at time t and evolves as

dVt

Vt

= p
dHc

t

Hc
t

+ (1− p) rdt

9Below we consider the conditions under which the solution to this artificial problem
is equivalent to the solution of the original problem.
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where p is the proportion of wealth invested in the risky asset.
When g is constant the problem can be solved using the duality approach

(see Merton 1992) and the optimal allocation in this artificial market is given
by a constant proportion optimal strategy:

p =
−gη (1− ρ2)

1/2

γη2 (1− ρ2)

Observe that by construction the risk premium g in this artificial market
parameterizes the changes of measure W 2

t → Z2
t = W 2

t − gT . 10

Our objective is to determine g such that the investor will optimally
allocate all his wealth to the risky asset (p = 1). In that case:

Vt = Hc
t

and, assuming that

KT = LT

(
W 1

T (ω)
)

R−1
T

(
W 1

T (ω)
)

then at optimality the artificial problem would be equivalent to the original
one. Following an argument introduced in Karatzas and Cvitanic (1996), we
impose the condition that the optimal unconstrained allocation in the arti-
ficial market coincides exactly with the constrained solution in the original
allocation problem. Thus we determine the parameter g such that the in-
vestor is indifferent between a continuous trading strategy on Hc

t and a buy
and hold strategy.

1 =
−gη (1− ρ2)

1/2

γη2 (1− ρ2)

g = −γη2
(
1− ρ2

)

Since the term −γη2 (1− ρ2) does not depend on the specific path followed
by the risk source W 1

t the above analysis holds for all paths W 1
T (ω) and,

10The corresponding Radon Nikodym derivative:

f
(
W 2

T (ω)
)

= exp
(
−1

2
g2T + gW 2

T (ω)
)

parameterizes the admissible singular components of the optimal measure in the original
problem.
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therefore, it uniquely defines the singular measure in the original problem.
The corresponding optimal expression for f ∗ (W 2

T (ω)) is then given by:

f ∗
(
W 2

T (ω)
)

= exp

(
−1

2
γ2η2

(
1− ρ2

)
T + γη

(
1− ρ2

)1/2
W 2

T

)

and the optimal measure in the original problem is completely determined.
An additional independent verification that the above solution to the

dual problem is optimal could be carried out formulating the dual problem
in terms of a dynamic programming problem. It can be verified that the
above solution verifies the Hamilton Jacobi Bellman (HJB) equation for the
dual problem and provides via convex duality also the solution for the HJB
equation of the primal problem.

6.2 Computation of λ∗

In order to conclude the computation we need to compute the optimal λ∗

such that at optimality:

EQ∗
[(

WT (λ∗,Q∗)−HT −
∫ T

0

δHtdt

)
+

∫ T

0

ξ∗t ct (λ∗,Q∗) dt

]
= l0

or equivalently the λ∗ which minimizes the expression

λ∗ = arg inf
λ∈R+

{
γ

1− γ
λ(γ−1)/γ(EP

[∫ T

0

βce
−κu

(
eκu

βc

ξ∗u

)(γ−1)/γ

du

]

+βW e−κT

(
eκT

βW

ξ∗T

)(γ−1)/γ

) + λ

(
l0 + EQ∗

[(
HT +

∫ T

0

δHtdt

)])}

then applying first order conditions with respect to λ we get:

(λ∗)−1/γ =
l0 + EQ∗

[(
HT +

∫ T

0
δHtdt

)]

EP
[∫ T

0
βce−κu

(
eκu

βc
ξ∗u

)(γ−1)/γ

du + βW e−κT
(

eκT

βW
ξ∗T

)(γ−1)/γ
]

then:

λ∗ =





l0 + EQ∗
[
HT +

∫ T

0
δHtdt

]

∫ T

0

(
eκu

βc

)−1/γ

EQ∗
[
ξ
∗(−1/γ)
u

]
du +

(
eκT

βW

)−1/γ

EQ∗
[
ξ
∗(−1/γ)
T

]





−γ

(29)
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and finally we compute the explicit formula for the expectations:

EQ∗ [HT ] = h0 exp

[
(µ− δ − r)−

(
α− r

σ

)
ηρ− γη2

(
1− ρ2

)]
T (30)

EQ∗
[∫ T

0

δHtdt

]
= h0δ

∫ T

0

exp

{[
(µ− δ − r)−

(
α− r

σ

)
ηρ

]
t

}
dt

= h0δ
exp (−νT )− 1

−ν
(31)

−ν = (µ− δ − r)−
(

α− r

σ

)
ηρ− γη2

(
1− ρ2

)

EQ∗ [
ξr(−1/γ)
u

]
= exp (mt) (32)

m =
κ

γ
− r

(
1− 1

γ

)
− 1

2

(
α− r

σ

)2 (
1

γ
− 1

γ2

)
(33)

thus we finally obtain the expression for λ∗:

λ∗ =

{
l0 + h0

[
e−νT + δν−1

(
1− e−νT

)]

β
1/γ
c m−1 (emT − 1) + β

1/γ
W emT

}−γ

Substituting (30,31), (32) into (29) we get expression for the dynamics
for the stochastic discount factor given in the main part of the paper.

Throughout the paper the following restrictions are assumed on the pa-
rameters: the standard transversality conditions in order to avoid the possi-
bility of growth of discounted utility (see e.g. Merton (1992, pg. 110)):

m =
κ

γ
− r

(
1− 1

γ

)
− 1

2

(
α− r

σ

)2 (
1

γ
− 1

γ2

)
(34)

and an additional transversality condition on the evolution of the illiquid
asset to avoid bubbles:

ν > δ. (35)
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