
Illiquidity Premia in Asset Returns:

An Empirical Analysis of

Hedge Funds, Mutual Funds, and

U.S. Equity Portfolios∗

Amir E. Khandani
†

and Andrew W. Lo
‡

This Revision: June 24, 2009

Abstract

We establish a link between illiquidity and positive autocorrelation in asset returns among a
sample of hedge funds, mutual funds, and various equity portfolios. For hedge funds, this link
can be confirmed by comparing the return autocorrelations of funds with shorter vs. longer
redemption-notice periods. We also document significant positive return-autocorrelation
in portfolios of securities that are generally considered less liquid, e.g., small-cap stocks,
corporate bonds, mortgage-backed securities, and emerging-market investments. Using a
sample of 2,927 hedge funds, 15,654 mutual funds, and 100 size- and book-to-market-sorted
portfolios of U.S. common stocks, we construct autocorrelation-sorted long/short portfolios
and conclude that illiquidity premia are generally positive and significant, ranging from
2.74% to 9.91% per year among the various hedge funds and fixed-income mutual funds.
We do not find evidence for this premium among equity and asset-allocation mutual funds,
or among the 100 U.S. equity portfolios. The time variation in our aggregated illiquidity
premium shows that while 1998 was a difficult year for most funds with large illiquidity
exposure, the following four years yielded significantly higher illiquidity premia that led to
greater competition in credit markets, contributing to much lower illiquidity premia in the
years leading up to the Financial Crisis of 2007–2008.
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1 Introduction

One of the most important characteristics of a financial asset is the ease with which it can be

traded, i.e., its liquidity. Although fundamental to the very meaning of an “asset”, liquidity

is remarkably difficult to define, and even more challenging to measure. At the most intuitive

level, a liquid asset is one that can be: (1) traded quickly; (2) traded in large quantities; and

(3) traded with little impact on the prevailing price. While appealing from a practitioner’s

perspective, these qualitative traits do not easily lend themselves to quantitative analysis,

hence it is not a simple task to use these traits to identify illiquidity risk or to estimate

an illiquidity premium from asset-return data.1 However, the need for an easily computed

liquidity measure has never been more urgent as investors, portfolio managers, and regulators

struggle to address the cascade of repercussions from the so-called “toxic assets” at the center

of the Financial Crisis of 2007–2008.

One commonly cited measure of liquidity is the magnitude of the bid/offer spread, mea-

sured as a percentage of the average of bid and offer prices (see, for example, Amihud and

Mendelson, 1986). However, this measure can only be applied to those securities for which

we observe regular bids and offers, i.e., those that trade on organized exchanges and with

designated marketmakers. Since these are, by construction, among the most liquid securities

of all, to limit our attention to this narrow class seems counter to our primary objective of

developing a broadly applicable measure of illiquidity risk.

Another possible liquidity measure is trading volume—either dollar volume or percent-

age turnover (see, for example, Brennan, Chordia and Subrahmanyam, 1998, and Lo and

Wang, 2000). While this measure can be applied more broadly in principle than the percent-

age bid/offer spread, it is impractical because volume data is rarely available and virtually

impossible to hand-collect for hedge-fund investments and other private partnerships.

However, in their studies of hedge-fund returns, Lo (2001) and Getmansky, Lo, and

Makarov (2004) observe that illiquid hedge funds such as private-equity and emerging-market

debt funds typically have large positive return autocorrelation, while more liquid hedge funds

1A short digression on terminology may be appropriate here. While much of the literature on liquidity
refers to a “liquidity premium”, we prefer to use the term “illiquidity premium” because, in the same way
that risk (not safety) requires a premium, illiquidity is the undesirable characteristic that, ceteris paribus,
requires additional compensation for investors to willingly hold a security with such a characteristic.
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such as equity market-neutral and managed futures funds have statistically insignificant

return autocorrelations. Accordingly, they argue that autocorrelation can serve as a proxy for

liquidity. Their logic is disarmingly simple: in a frictionless market, any predictability in asset

returns can be immediately exploited, eliminating such predictability as Samuelson (1965)

first observed in his paper “Proof That Properly Anticipated Prices Fluctuate Randomly”.

Of course, the more formal general-equilibrium extensions by LeRoy (1973) and Lucas

(1978) that account for time-varying expected returns due to risk aversion and other factors

imply only that marginal-utility-weighted prices are martingales. But over sufficiently short

holding periods, expected returns should not vary much, hence the martingale hypothesis

should be a reasonable approximation for prices, implying serially uncorrelated returns.

Therefore, if returns exhibit statistically significant autocorrelation, either the market for

that security is grossly inefficient, or some market friction is preventing arbitrageurs from

exploiting such predictability. Lo (2001) and Getmansky, Lo, and Makarov (2004) argue

that this friction is generally an indication of some form of illiquidity.

In this paper, we test their argument explicitly by analyzing the relation between liquid-

ity and autocorrelation among a broad sample of hedge funds, mutual funds, and portfolios

of U.S. stocks. We begin by confirming that autocorrelation is indeed a proxy for illiquidity

by showing that a hedge fund’s redemption-notice period—a direct and measurable form of

illiquidity specified through contractual terms—is positively related to its return autocorre-

lation. In particular, using over 2,900 hedge funds in the Lipper/TASS Database from 1986

to 2006, a cross-sectional regression of individual funds’ redemption-notice periods against

return autocorrelation yields a positive slope coefficient with a t-statistic of 14.8.

Having established the fact that liquidity can indeed be captured by return autocorrela-

tion, we then turn to the task of estimating the risk premium associated with illiquidity by

applying the standard asset-pricing approach of computing expected-return spreads between

the extreme quintile portfolios of assets sorted according to their autocorrelations. Among

hedge funds, this spread—which can be viewed as an illiquidity premium—is 3.96% on an

annualized basis. Within hedge-fund categories, those that are known to involve illiquid as-

sets, e.g., Convertible Arbitrage and Fixed Income Arbitrage, exhibited the largest illiquidity

premia (9.91% and 7.08%, respectively), but even the Managed Futures category—usually

considered among the most liquid of hedge funds—exhibited an illiquidity premium of about
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4.91%, suggesting significant variability in liquidity among such funds.

For our sample of mutual funds and U.S. equity portfolios—by construction, highly liq-

uid investment vehicles—the only group that exhibit any statistically significant illiquidity

premia are the fixed-income mutual funds, for which the spread is 2.74%.

Finally, we analyze the time-series evolution of these illiquidity premia over the period

from 1998 to 2006, and show that while 1998 was a difficult year for funds with significant

illiquidity exposure, the four years subsequent to 1998 were filled with great returns for these

funds. However, we argue that from 2002 to 2006, increased competition and higher levels

of leverage eventually reduced the illiquidity premium to near zero.

In Section 2, we provide a brief review of the literature, and in Section 3 we summarize

the data used throughout our study. Section 4 contains the cross-sectional regression analysis

of hedge-fund redemption periods and return autocorrelation. In Section 5, we report the

results of our expected-return spreads for autocorrelation-sorted portfolios, and in Section

5.5, we investigate the time-series properties of the illiquidity premia since 1998. We conclude

in Section 6.

2 Literature Review

At the most basic level, the notion of liquidity is related to the ease of trading a security.

While the standard frictionless asset-pricing models cannot address this issue directly, a

number of extensions of the neoclassical framework have been proposed to account for trading

activity. For example, the seller of a hard-to-trade asset may incur an inventory cost that

arises because a buyer may not be present at the time a seller needs to cash out, and the seller

may be forced to enter into a transaction with a designated marketmaker. The marketmaker

will charge the seller a fee by giving the seller an amount less than the fair price of the security

to take on the risk of holding that security until a buyer is found. The connection between

marketmaking activity and transaction costs has been considered in many studies including

Grossman and Miller (1988), Amihud and Mendelson (1986, 1988), and Biais (1993). Search

friction, associated with trading assets that lack a centralized market, is another approach

to incorporating illiquidity into asset-pricing models. Duffie, Garleanu and Pedersen (2005,

2007) model such search and bargaining features and derive their impact on asset prices.
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Private information has been proposed as another source of illiquidity risk in asset-pricing

models. In any transaction, designated marketmakers—who are required to trade with

all counterparties—are disadvantaged when trading against more informed agents and will

therefore increase their bid-offer spreads to protect against such adverse selection. Naturally

this effect is most pronounced among securities that trade less frequently, and, therefore, have

a slower information discovery process. This view of transaction costs has been developed in

Glosten and Milgrom (1985), Easley and O’Hara (1987), and Easley, Hvidkjaer, and O’Hara

(2002), among others. Amihud, Mendelson, and Pedersen (2005) provide a comprehensive

review of this literature.

More generally, the literature on the impact of illiquidity on asset prices seems to divide

into two distinct perspectives. One perspective is to view liquidity as just another deter-

ministic characteristic of a security such as a transaction cost, and because economic agents’

preferences are based on an asset’s net return, net of transaction costs, assets with higher

costs must offer a higher gross expected return, ceteris paribus. This is the approach taken

by Amihud and Mendelson (1986), Eleswarapu and Reinganum (1993), Eleswarapu (1997),

and Aragon (2004).

Alternatively, liquidity can be viewed as a systematic risk factor. From this perspective, a

deterministic transaction cost is not sufficient to capture liquidity risk. As argued by Chacko

(2005), if trading costs exist but are not time-varying, the buyer or seller of a security can

incorporate these costs into his decision-making process, and such costs should have no first-

order effects on asset prices in equilibrium. Along this line of reasoning, theoretical models

such as Vayanos (1998) and Vayanos and Vila (1999) have shown that illiquidity-related

costs can only be a second-order determinant of asset prices since bid-offer spreads are so

small relative to typical equilibrium risk premia. Alternatively, some models predict that

illiquidity should not matter in equilibrium because agents would simply reduce the impact

of such costs by adjusting their portfolios less frequently. But, as noted in Hasbrouck (2005),

the extent to which agents actually do this is unclear, since observed levels of trading volume

are much higher than those predicted by standard equilibrium asset-pricing models.

But if trading costs are time-varying and unknown in advance, then their impact on

equilibrium asset-prices can be more substantial because of the additional risks they impose

on investors if such risks were not diversifiable or readily insurable. Pastor and Stambaugh
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(2003) and Acharya and Pedersen (2005) have examined the systematic nature of illiquidity

risk.

But as Hasbrouck (2005) observes, these two perspectives are not mutually exclusive.

Cross-sectional and deterministic variation in liquidity can be priced as a simple character-

istic, while stochastic and systematic variation over time may give rise to a risk factor. But

while these two perspectives may both apply, they have very different empirical implica-

tions. In estimating a security’s liquidity at a point in time, if such costs are assumed to be

relatively stable and non-stochastic, then a reasonable approach is to compute its average

trading cost relative to a simple benchmark over the recent past. However, under the risk-

factor perspective, a much longer time series is needed, long enough to be able to estimate

its stochastic properties with a reasonable degree of precision.

These two distinct perspectives, and the challenges they pose for empirical work, may

explain why there has been relatively little consensus on how to measure illiquidity risk.

One manifestation of these challenges is the irony that the literature most directly focused

on measuring liquidity—the market microstructure literature—relies almost exclusively on

transactions data from standardized exchange-traded equity securities, among the most liq-

uid assets in the world. While transactions costs still matter even in these highly competitive

markets, their stochastic properties may have little bearing on the illiquidity risk premia that

characterize the broader universe of investment opportunities available to investors.

A major advantage of our study—and the main reason we are able to detect larger and

more dynamic illiquidity premia—is that we make use of hedge-fund returns. It is well

known that certain types of hedge funds invest in illiquid assets and generate a significant

portion of their returns from providing liquidity to the market, i.e., from bearing illiquidity

risk. Therefore, hedge-fund returns should be an ideal place to search for illiquidity premia.

Lo (2001, 2002) and Getmansky, Lo, and Makarov (2004) were among the first to document

the fact that the monthly returns of many hedge funds are highly serially correlated, with

autocorrelations as high as 60% in some cases—and that such persistence is due to the

presence of illiquid assets in which the hedge funds invested.

Their argument is based on Samuelson’s (1965) observation that forward-looking asset

prices—formed rationally and using all publicly available information—should approximate a
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random walk with respect to that information.2 If not, then it should be possible to construct

a trading strategy that exploits deviations from the random walk. Apart from issues such as

risk aversion and time-varying expected returns—which should not be as relevant at shorter

time scales such as with monthly returns—hedge funds should exhibit the most random

returns of all, given their broad and unrestricted investment mandates, their incentives for

producing positive returns, and the competitiveness of the industry. Yet Lo (2001, 2002)

and Getmansky, Lo, and Makarov (2004) document much larger deviations from the random

walk for certain hedge funds than for the returns of typical individual U.S. equities. They

conclude that the only reason such predictability persists in hedge-fund returns is that it

cannot be exploited in the same way that such predictability can be exploited in publicly

traded securities.3 And the most likely reason why such predictability cannot be exploited

is that some of the underlying securities cannot easily be traded to take advantage of the

persistence in monthly returns, i.e., they are too illiquid to be traded the same way that

exchange-listed securities are traded.4

Illiquidity in hedge-fund returns has several other potentially important implications.

For example, Asness, Krail and Liew (2001) show that hedge funds tend to have significant

exposure to lagged market returns, and argue this is due to difficulties in properly marking-

to-market the values of their portfolios. But such difficulties arise only if those assets do not

trade frequently, i.e. if the assets are illiquid. In a more recent study by Agarwal, Daniel,

2More precisely, prices should follow martingales with respect to the particular filtration that characterizes
the information structure of the economy.

3For example, if the monthly returns of stock XYZ exhibited significant positive autocorrelation, then an
investor could follow a simple trading rule in which he buys XYZ when XYZ’s return this month is positive,
sells XYZ when XYZ’s return this month is negative, and holds the position until next month. Such a strategy
would yield a positive expected return due to the predictability in monthly returns, and if enough securities
exhibited such autocorrelation, a very profitable portfolio trading strategy can be constructed, eventually
eliminating much of the predictability in returns. See Lehmann (1990), Lo and MacKinlay (1990a), and
Khandani and Lo (2007, 2008) for further discussion of such strategies and their implications for the random
walk.

4Getmansky, Lo, and Makarov (2004) consider several other possible explanations such as time-varying
expected returns, time-varying leverage, and incentive fees and high-water marks, and conclude that these
other sources cannot account for the empirical levels of autocorrelation observed in the historical data. How-
ever, they do acknowledge that another possibility that cannot easily be ruled out is “return smoothing”,
the deliberate (and fraudulent) manipulation of monthly portfolio net asset values (NAVs) to reduce the
volatility of monthly returns, which improves the hedge fund’s reported Sharpe ratio. Of course, as Get-
mansky, Lo, and Makarov (2004) observe, the only types of assets for which a hedge-fund manager has
sufficient discretion and latitude to manipulate NAVs to any appreciable extent are illiquid assets, so this
interpretation is still consistent with the argument that return autocorrelation in hedge-fund returns is a
sign of illiquidity.
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and Naik (2007), the authors argue that hedge-fund managers have an incentive and the

ability to inflate their returns in December by either under-reporting in an earlier month

or borrowing from next January’s returns. This reflects a great level of flexibility on the

manager’s part in “marking” the value of their holdings.

These two studies are closely related to the “nonsynchronous trading” phenomenon in

the market microstructure literature, in which return-autocorrelation is spuriously induced

by using stale prices to compute returns (see, for example, Campbell, Lo, and MacKinlay

1997, Chapter 3). In contrast to the studies by Lo and MacKinlay (1990b) and Kadlec

and Patterson (1999), which conclude that it is difficult to generate return autocorrelations

in weekly U.S. equity portfolios much greater than 10% to 15% through nonsynchronous

trading effects alone, Getmansky, Lo, and Makarov (2004) argue that in the context of hedge

funds, a significantly higher levels of autocorrelation can be explained by the interactions of

illiquidity and performance smoothing, of which nonsynchronous trading is a special case. To

see why, note that the empirical analysis in the nonsynchronous-trading literature is devoted

exclusively to exchange-traded equity returns, while hedge funds often include hard to price

over-the-counter products in their portfolios, hence the corresponding conclusions for equity

returns may not be relevant in this context.

Of course, the challenges of marking hard-to-value assets to market, and the consequences

for computing risk-adjusted performance are not unique to hedge funds, and can be even

more severe for private equity and venture capital investments. Gompers and Lerner (1997)

argue that inaccurate marking-to-market of private equity investments can result in signif-

icant under-estimation of their exposures to standard risk factors like the aggregate stock

market, leading to an over-estimate of their risk-adjusted returns if the risk factors carry

positive risk premia. This is also related to the well-documented impact of stale prices

on the computation of daily NAVs of certain open-end mutual funds, as documented by

Bhargava, Bose, and Dubofsky (1998), Chalmers, Edelen, and Kadlec (2001), Goetzmann,

Ivkovic, and Rouwenhorst (2001), Boudoukh et al. (2002), Greene and Hodges (2002), and

Zitzewitz (2003), among others. In these studies, spurious return-autocorrelations—driven

by badly marked mutual fund NAVs—imply significant wealth transfers from buy-and-hold

shareholders to opportunistic investors who decide to buy or sell positions in these funds

based on forecasted future returns.
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3 The Data

To investigate illiquidity across as broad a spectrum of assets as possible, we use three types

of return data in our analysis—hedge funds, mutual funds, and U.S. equity portfolios—

which we describe in Sections 3.1–3.3, respectively. To construct risk-adjusted returns, we

also make use of several broad-based market indexes which are described in Section 3.4.

3.1 Hedge Funds

The hedge-fund data we use is obtained from the Lipper/TASS Database, which contains his-

torical returns as well as the legal structure, investment style, management fee type, contact

information, fund flows, and self-reported sources of risk exposures of several thousand indi-

vidual hedge funds. The database is divided into two parts: “Live” and “Graveyard” funds.

Hedge funds are included in the Live database if they are considered active as of the date of

the snapshot. Once a hedge fund decides not to report its performance, liquidates, closes to

new investment, restructures, or merges with other hedge funds, the fund is transferred into

the Graveyard database. A hedge fund can only be listed in the Graveyard database after

having been listed in the Live database. Since the Lipper/TASS database fully represents

returns and asset information for live and dead funds, the effects of “survivorship bias” are

minimized. However, the Graveyard database became active only in 1994, so funds that were

dropped from the Live database prior to 1994 are not included in the Graveyard database,

creating the possibility of a certain degree of survivorship bias.5

However, the database is subject to “backfill bias”, which is created when a newly ad-

mitted fund’s prior return history is included in the database. Since funds do not need to

meet any specific requirements to be included in the Lipper/TASS database, funds are more

likely to become part of the database after having achieved an attractive return history.

Given the voluntary nature of reporting, another potential issue is the “self-selection bias”

arising from the fact that funds with very good or very bad performance may decide to stop

reporting their returns. Agarwal and Naik (2005) provide a more comprehensive review of

5For studies attempting to quantify the degree and impact of survivorship bias, see Brown, Goetzmann,
Ibbotson, and Ross (1992), Schneeweis and Spurgin (1996), Fung and Hsieh (1997b, 2000), Hendricks, Patel,
and Zeckhauser (1997), Brown, Goetzmann, and Ibbotson (1999), Carpenter and Lynch (1999), Horst,
Nijman, and Verbeek (2001), Baquero, Horst, and Verbeek (2002), and Carhart et al. (2002).
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other hedge-fund data sources and their corresponding biases.

We obtained our snapshot of the Lipper/TASS data in January 2008. However, because

funds sometimes report their returns with a delay of several months, we use data only up

to December 2006 in our study.6 As of January 2008, this database contained 8,729 funds,

with each fund assigned to one of 11 investment-style categories listed in Appendix A, based

on the fund’s self-reported description of its activities. We have limited our study to funds

with at least 5 years of monthly return history in our sample period from January 1986 to

December 2006. Funds that report returns at frequencies other than monthly, e.g., quarterly,

have also been excluded from the study. These filters yield 2,927 funds that comprise the

sample used in our study. Table 1 gives a breakdown of the funds used in this study, and

Table 2 reports some summary statistics for our sample.

3.2 Mutual Funds

Our sample of mutual funds is obtained from the University of Chicago’s Center for Research

in Security Prices Survivor-Bias-Free U.S. Mutual Fund Database, based on a February

2008 download. This data set also suffers from some biases as noted in the accompanying

documentation provided by CRSP. For example, there is an obvious selection bias that favors

the historical data of the best past-performing private funds that become public. See the

CRSP documentation for further discussion of this and other biases.

As with our hedge-fund sample, we include only those mutual funds with at least 5 years

of monthly returns during our sample period from January 1986 to December 2006. Funds

with missing months were excluded from the study. For purposes of comparison with our

sample of hedge funds, we have assigned “Live” and “Graveyard” classifications to mutual

funds in our sample based on their reporting history—a mutual fund is counted as Live if

it reported returns in December 2006, and is considered a Graveyard fund otherwise. We

use the “Main Category” field to classify funds into one of the following categories: Asset

Allocation, Convertible, Equity, Fixed Income, and Money Market. We discard all Money

6This may bias our sample to slightly overestimate Graveyard funds, and underestimate Live funds as
of December 2006, since Lipper/TASS categorizes funds based on the information available until January
2008. This effect is not as relevant in our analysis because we do not perform separate analyses based on the
Live/Graveyard classification. We break out Live and Graveyard funds in Table 1 only to provide a better
sense for the diversity in our sample.
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Panel A: Hedge Funds


Category
 Live
 Graveyard
 Combined


 Convertible Arbitrage         
 57
 44
 101
   

 Dedicated Short Bias          
 12
 13
 25
   

 Emerging Markets              
 102
 80
 182
   

 Equity Market Neutral         
 106
 47
 153
   

 Event Driven                  
 157
 97
 254
   

 Fixed Income Arbitrage        
 69
 39
 108
   

 Fund of Funds                 
 437
 194
 631
   

 Global Macro                  
 56
 70
 126
   

 Long/Short Equity Hedge       
 562
 344
 906
   

 Managed Futures               
 135
 173
 308
   

 Multi-Strategy                
 110
 23
 133
   


2,927


Panel B: Mutual Funds


Category
 Live
 Graveyard
 Combined
 Failed the Unit 

Root Test


 Asset Allocation              
 981
 152
 1,133
   
 1

 Convertible                   
 59
 15
 74
   
 0

 Equity                        
 6,580
 1,046
 7,626
   
 88

 Fixed Income                  
 3,578
 510
 4,088
   
 53

 Info. N/A                     
 10
 3,068
 3,078
   
 395

 Money Market                  
 1,335
 225
 1,560
   
 1,460

 Unclear (Multiple Categories) 
 50
 0
 50
   
 0


To be Used in the Study


To be Used in the Study
 17,609 -1,560-395 = 15,654


Table 1: Breakdown for the composition of hedge-fund and mutual-fund data used in this
study. Funds with less than 5 years of monthly returns over the January 1986 to December
2006 sample period are excluded. Hedge funds are categorized as either “Live” or “Grave-
yard” by Lipper/TASS. For purposes of comparison, we categorize mutual funds as “Live” if
they reported returns in December 2006, and as “Graveyard” otherwise. We exclude mutual
funds in the “Money Market” category, as well as funds for which we do not have category
information and which failed the unit-root test outlined in the Appendix.
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Market funds since such funds exhibit very little variation in illiquidity exposure (at least

until the Financial Crisis of 2007–2008), and have very different return properties than

those of typical mutual funds. In particular, such low-risk vehicles exhibit very little return

variation over time, and are highly liquid by construction.

Because the “Main Category” field has only been available since July 2003, about 20%

(3,078) of the funds that meet our minimum return-history requirement do not have any

category information. These funds are included in any analysis that does not require category

information, with the following exception. As noted above, we exclude all Money Market

funds from our sample. Some of the funds that lack category information are in fact Money

Market funds. To identify such funds, we apply a standard unit-root test and exclude any

funds for which we fail to reject the null hypothesis of a unit root at the 5% level of significance

(see Appendix A.2 for the details of the unit-root test used). 395 funds are excluded due to

this filter.

Because we use historical end-of-year category information, there are 50 funds that have

had multiple classifications over our sample period. These funds are included in any analysis

that does not require category information, but are omitted from any analysis in which fund

category is relevant.

These filters leave a total of 15,654 mutual funds in our sample. Table 1 contains a

breakdown of these funds by category and status, and Table 2 provides basic summary

statistics for these funds.
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  Mean SD   Mean SD   Mean SD   Mean SD   Mean SD   Mean SD   Mean SD

Hedge Fund Categories
 Convertible Arbitrage         101   0.82 0.40 1.93 1.52 -0.27 1.55 7.63 11.77 0.77 1.37 38  17  5  13  
 Dedicated Short Bias          25   0.21 0.47 5.91 3.34 0.30 0.39 5.28 2.60 0.09 0.16 9  12  37  26  
 Emerging Markets              182   1.33 1.12 6.63 4.10 -0.33 1.50 9.17 7.89 0.27 0.24 17  11  24  27  
 Equity Market Neutral         153   0.72 0.39 2.16 1.48 0.34 0.93 5.57 3.99 0.46 0.33 11  20  27  29  
 Event Driven                  254   0.98 0.61 2.45 2.57 -0.20 1.34 7.93 9.20 0.54 0.29 23  15  15  23  
 Fixed Income Arbitrage        108   0.75 0.53 2.13 1.66 -1.32 2.91 17.22 23.58 0.57 0.45 19  20  26  32  
 Fund of Funds                 631   0.70 0.36 2.25 1.68 -0.13 1.27 7.27 7.36 0.43 0.25 19  15  23  28  
 Global Macro                  126   0.86 0.94 4.70 2.90 0.38 0.97 6.16 3.83 0.23 0.17 8  14  35  28  
 Long/Short Equity Hedge       906   1.18 0.64 4.75 2.79 0.39 1.14 6.72 5.72 0.30 0.17 13  14  30  29  
 Managed Futures               308   0.91 0.72 6.05 3.85 0.31 0.81 5.41 3.91 0.18 0.13 0  12  40  30  
 Multi-Strategy                133   0.95 0.54 3.04 2.78 -0.05 1.97 9.97 13.19 0.48 0.35 18  17  19  25  

Mutual Fund Categories
 Asset Allocation              1,133   0.52 0.24 2.63 0.79 -0.50 0.39 4.13 1.84 0.22 0.10 5  7  65  24  
 Convertible                   74   0.72 0.20 3.24 0.81 -0.35 0.48 5.41 2.20 0.23 0.08 10  6  48  28  
 Equity                        7,626   0.73 0.49 5.34 1.91 -0.35 0.52 4.34 3.23 0.15 0.10 8  8  55  28  
 Fixed Income                  4,088   0.44 0.13 1.25 0.62 -0.49 0.60 4.94 4.90 0.41 0.20 8  11  26  22  
 Info. N/A                     3,078   0.53 0.39 2.92 2.64 -0.38 0.92 5.08 7.13 0.75 1.22 21  30  37  32  
 Money Market                  1,560   0.28 0.50 0.41 6.59 -0.01 0.81 2.76 7.45 1.84 0.39 94  10  0  6  
 Unclear (Multiple Categories) 50   0.56 0.28 3.31 1.87 -0.39 0.60 4.00 1.34 0.41 0.64 11  11  62  29  

Kurtosis

Q-Stat (3 
Lags) p-

Value (%)
Category Count

Sharpe Ratio ρρρρ1 (%)Mean (%) SD (%) Skewness

Table 2: Summary statistics for all hedge funds and mutual funds with at least 5 years of monthly returns during the January
1986 to December 2006 sample period. Results are given for different categories of hedge funds and mutual funds. All entries
are based on monthly returns and not annualized. The last column contains the p-value of the Ljung-Box Q-statistic using
the first 3 return autocorrelations.
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3.3 U.S. Equity Portfolios

Our sample of U.S. equity portfolios consists of the now-standard 100 size- and book-to-

market-sorted portfolios constructed at the end of each June by double-sorting portfolios into

market-capitalization and book-to-market deciles.7 We use value-weighted-portfolio returns

in our analysis. The historical data for these portfolios is available for a much longer period

but we confine our attention to the January 1986 to December 2006 period to facilitate

comparisons across all three of our datasets. Out of the 100 portfolios, 3 portfolios had

missing data due to the absence of securities in the relevant intersection of size and BE/ME

decile;8 we include these portfolios in our analysis when they do have data for the relevant

time periods.

Table 3 contains summary statistics of the monthly returns of these portfolios, and to

conserve space, we aggregate the data in two ways, either by size or book-to-market deciles.

When sorted by size, the relation between autocorrelation and liquidity becomes apparent

given the fact that smaller-capitalization stocks are generally considered less liquid and

harder to trade.9

7This data was obtained from Kenneth French’s web site:

http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/

According to the description supplied with the data, the size decile breakpoints for year t are the NYSE
market-cap deciles at the end of June. The book-to-market value at the end of June in year t is defined as
the book equity for the last fiscal year-end in year t−1 divided by the market value of equity for December of
year t−1, and the book-to-market decile breakpoints also correspond to those of the NYSE book-to-market
deciles. The portfolios for July of year t to June of year t+1 include all NYSE, AMEX, and NASDAQ
stocks for which we have market equity data for December of year t−1 and June of year t, and positive
book-equity for year t−1. Firms with negative book-equity are not included in any portfolio. Please see
French’s documentation for further details.

8 In particular, size-decile-6/book-to-market-decile-10 and size-decile-10/book-to-market-decile-8 did not
contain any observations for the period from July 2000 to June 2001, and size-decile-10/book-to-market-
decile-10 did not contain any observations from July 1999 to June 2000 and again from February 2001 to
June 2001.

9See, for example, Mech (1993) and Lewellen (2002).
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  Min Mean Max   Min Mean Max   Min Mean Max   Min Mean Max   Min Mean Max   Min Mean Max   Min Mean Max

S1   0.15 1.24 1.65 5.04 6.41 8.81   -0.83 -0.12 1.04 6.05 8.38 15.54 0.02 0.21 0.31 13  23  33  0  0  3  
S2   0.19 1.22 1.80 5.21 6.56 9.02   -1.20 -0.34 0.66 5.48 7.73 11.92 0.02 0.20 0.31 7  15  26  0  3  10  
S3   0.56 1.24 1.60 4.76 6.04 8.48   -1.24 -0.82 -0.05 5.11 6.67 8.60 0.07 0.22 0.30 3  14  23  0  5  27  
S4   0.69 1.15 1.54 4.96 6.00 8.34   -1.33 -0.78 -0.11 4.79 6.74 8.67 0.08 0.20 0.29 6  11  21  0  9  30  
S5   0.75 1.22 1.43 4.93 5.85 7.98   -1.12 -0.78 -0.07 4.07 6.78 8.48 0.09 0.22 0.29 0  10  16  3  15  32  
S6*   0.74 1.20 1.84 4.63 5.47 7.86   -0.93 -0.67 -0.27 4.62 6.07 6.93 0.09 0.22 0.30 4  9  13  0  29  86  
S7   1.05 1.27 1.44 4.54 5.36 7.10   -1.14 -0.69 0.33 4.40 7.01 9.00 0.18 0.24 0.30 -2  6  14  3  36  97  
S8   1.02 1.22 1.48 4.45 5.44 7.57   -0.92 -0.58 -0.02 3.90 5.81 8.52 0.15 0.23 0.30 -4  4  12  3  45  89  
S9   1.05 1.21 1.50 4.18 5.05 6.24   -1.08 -0.58 -0.32 3.76 5.18 6.72 0.20 0.24 0.30 -6  3  10  14  52  95  
S10*   0.58 1.06 1.25 4.59 5.30 6.97   -0.92 -0.39 0.43 4.21 5.68 10.16 0.11 0.20 0.26 -5  0  4  8  66  97  

BE/ME1   0.15 0.77 1.26 5.02 7.64 9.02   -0.37 -0.09 0.42 4.07 5.50 7.85 0.02 0.11 0.21 1  8  23  0  32  92  
BE/ME2   0.60 1.03 1.22 4.79 6.33 8.18   -0.93 -0.37 0.53 4.61 6.15 8.25 0.07 0.17 0.24 0  8  20  0  16  79  
BE/ME3   0.81 1.12 1.33 4.98 5.99 7.71   -0.95 -0.54 0.28 5.23 6.95 8.52 0.13 0.19 0.26 -1  9  21  0  16  73  
BE/ME4   1.03 1.22 1.50 4.87 5.70 7.43   -1.24 -0.64 0.66 4.97 7.43 11.92 0.19 0.22 0.26 -3  8  23  0  21  97  
BE/ME5   1.04 1.22 1.37 4.59 5.19 5.78   -1.19 -0.87 -0.31 5.59 6.90 9.00 0.20 0.24 0.27 1  11  20  0  9  33  
BE/ME6   1.05 1.28 1.60 4.49 5.15 6.24   -1.22 -0.60 1.04 5.00 7.35 15.54 0.21 0.25 0.30 -2  9  20  0  28  95  
BE/ME7   1.07 1.36 1.80 4.76 5.08 5.74   -1.33 -0.77 -0.39 4.21 6.60 9.18 0.22 0.27 0.31 -5  10  24  0  37  89  
BE/ME8*   0.58 1.28 1.55 4.18 4.92 5.81   -1.05 -0.65 -0.27 3.90 6.09 8.72 0.11 0.26 0.31 -6  10  25  0  32  97  
BE/ME9   1.13 1.35 1.65 4.59 5.32 6.97   -1.20 -0.66 0.43 4.55 7.25 10.16 0.16 0.26 0.31 2  11  27  0  31  78  
BE/ME10*   0.99 1.38 1.84 5.50 6.17 6.89   -0.95 -0.54 0.08 3.76 5.83 7.29 0.14 0.22 0.30 -4  15  33  0  29  86  

Kurtosis Sharpe Ratio ρρρρ1 (%)
Q-Stat (3 Lags) p-

Value (%)Decile Mean (%) SD (%) Skewness

Table 3: Summary statistics for the raw monthly returns of 100 size- and book-to-market-sorted decile portfolios from January
1998 to December 2006, aggregated by size or book-to-market decile, for value-weighted returns. Some deciles have missing
data for certain months, and are marked with asterisks (see footnote 8 for details).
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3.4 Risk Factors

To control for common factors other than illiquidity in our sample of asset returns, we

propose using various subsets of the following 9 risk factors:10

1. Fama-French U.S. Market Index

2. Lehman U.S. Aggregate Government Bond Index11

3. Lehman Universal High-Yield Corporate Index

4. Goldman Sachs Commodities Index

5. Traded-Weighted U.S. Dollar Index

6. Fama-French High-Minus-Low (HML) Book-to-Market Index

7. Fama-French Small-Minus-Big (SMB) Capitalization Index

8. Fama-French Momentum Index

9. First-difference of the VIX Volatility Index

The first 5 factors capture broad sources of common risk due to equities, fixed-income, credit,

commodities, and currency markets. The next 3 factors have been studied extensively in the

recent asset-pricing literature, and the last factor measures exposure to aggregate volatility

shifts, which is particularly relevant for certain types of hedge funds.12

Table 4 contains summary statistics for these 9 factors over the sample period from

January 1986 to December 2006. It is worth noting that the only two factors with statisti-

cally significant autocorrelation are the Lehman Universal High-Yield Corporate Index and

the CBOE Volatility factor. The former index exhibits significant positive autocorrelation,

which, we argue below, is a sign of illiquidity. This is consistent with the fact that such

10For a discussion of common factors in hedge-fund returns, see Fung and Hsieh (1997a, 2001), Agarwal and
Naik (2004), Capocci and Hübner (2004), and Hasanhodzic and Lo (2007). For common factors in mutual-
fund returns, see Sharpe (1992). The Fama-French U.S. Market, SMB, HML, and Momentum factors are
obtained from the Wharton Research Data Services (WRDS). The Goldman Sachs Commodities Index and
the Trade Weighted U.S. Dollar Index are obtained from the Global Financial Database. The total return
of the Lehman U.S. Aggregate Government Bond and Universal High-Yield Corporate Indexes are obtained
from Datastream. We use the monthly total returns for the U.S. Market, Lehman U.S. Government Bond,
Lehman High-Yield, and the Goldman Sachs Commodities Index to capture the effects of any dividend
and/or coupon payments on the time series of returns.

11Following the acquisition of Lehman Brothers by Barclays Bank in 2008, all Lehman indexes have now
been rebranded “Barclays” indexes.

12For example, funds using options-based strategies will have exposure to this volatility factor. Because
this factor has much higher volatility than the others, we rescale it to have the same monthly volatility as
the U.S. Stock Market factor. This has no effect on the factor’s explanatory power, but merely affects the
interpretation of its factor loading.
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an index likely suffers from non-trading and mark-to-market issues since it is the tracking

index for high-yield corporate bonds, which generally trade less frequently. The volatility

factor exhibits negative autocorrelation, not a sign of illiquidity, but rather a well-known

implication of the volatilities of financial asset returns, which tend to be highly persistent

GARCH processes, implying negatively autocorrelated first-differences.

Fama-French US Market Index
 1.03
 4.38
 -1.03
 6.42
 3.92
 -5.40
 -4.11
 67.70

Lehman US Aggregate Government Bond Index
 0.73
 1.63
 0.06
 3.67
 11.77
 -9.42
 -1.13
 9.30

Lehman US Universal High-Yield Corporate
 1.24
 3.67
 0.38
 11.05
 37.50
 6.27
 -2.53
 0.00

Goldman Sachs Commodities Index
 0.90
 5.42
 0.34
 4.14
 9.11
 -10.78
 2.57
 11.80

Trade Weighted USD Index
 -0.12
 2.54
 0.34
 3.46
 7.91
 0.61
 -1.42
 67.00


Change in the CBOE Volatility Index
 -2.58
 451.25
 2.78
 26.82
 -17.32
 -7.71
 -13.17
 0.37

Rescaled CBOE Volatility Index*
 -0.03
 4.38
 2.78
 26.82
 -17.32
 -7.71
 -13.17
 0.37


Fama-French Small-Minus-Big Index
 0.06
 3.50
 0.83
 10.98
 -3.40
 2.67
 -13.42
 16.95

Fama-French High-Minus-Low Index
 0.38
 3.18
 0.09
 6.04
 9.40
 5.72
 8.74
 17.51

Fama-French Momentum Index
 0.78
 4.44
 -0.68
 9.25
 -3.70
 -6.22
 4.72
 59.42


Skewness
 Kurtosis
 Rho1 (%)
 Rho2 (%)
 Rho3 (%)
 Q-Stat (3 Lags) 

p-Value (%)


Name
 Mean (%)
 SD (%)


Table 4: Summary statistics for risk factors used to account for common sources of variation
among the monthly returns of hedge funds, mutual funds, and portfolios of U.S. equities,
from January 1986 to December 2006 . All statistics are based on monthly returns and are
not annualized. The “Rescaled CBOE Volatility Index” has been rescaled to have the same
volatility as the U.S. Stock Market factor over the entire sample period.

Correlation (%)
 MARKT
 LH_GO
 LH_HY
 GSCI
 USD
 VIX_S
 SMB
 HML
 UMD


MARKT
 100.00
 7.07
 51.71
 -3.26
 8.45
 -61.75
 20.07
 -48.86
 -8.26

LH_GO
 100.00
 23.16
 -1.73
 -20.98
 14.72
 -19.04
 6.66
 13.89

LH_HY
 100.00
 -12.10
 9.60
 -32.99
 26.04
 -13.21
 -18.62

GSCI
 100.00
 -11.55
 -0.21
 8.08
 3.41
 11.24

USD
 100.00
 -11.68
 6.11
 4.07
 -7.28

VIX_S
 100.00
 -21.75
 24.42
 10.01

SMB
 100.00
 -43.59
 12.30

HML
 100.00
 -8.68

UMD
 100.00


Table 5: Correlation matrix of the monthly returns of 9 risk factors, from January 1986 to
December 2006. MARKT: U.S. Stock Market; LH GO: Lehman U.S. Aggregate Government
Bond Index; LH HY: Lehman U.S. Universal High-Yield Corporate Index; GSCI: Goldman
Sachs Commodities Index; USD: Trade Weighted U.S. Dollar Index; VIX S: Rescaled CBOE
Volatility Index; SMB: Small-Minus-Big Index; HML: High-Minus-Low Index; UMD: Mo-
mentum Index.

Finally, for purposes of illustrating the relation between illiquidity and return autocor-

relation in commonly cited equity, fixed-income, and emerging-market indexes, we use the

monthly total returns of several popular indexes for these asset classes listed in Table 6, over
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the sample period from January 1986 to December 2006 whenever possible.13

S&P 500 Large Cap Index
 1.05
 4.33
 -0.83
 5.96
 -1.25
 -3.78
 -0.97
 93.75

S&P 400 Mid Cap Index
 1.27
 4.79
 -0.86
 6.21
 6.43
 -8.54
 -9.09
 17.01

S&P 600 Small Cap Index
 1.01
 5.27
 -1.19
 7.62
 11.30
 -3.84
 -13.71
 3.97

Wilshire 5000 Index
 1.03
 4.37
 -1.03
 6.55
 3.64
 -5.01
 -3.82
 72.71

Wilshire 750 Large Cap Index
 1.03
 4.42
 -0.84
 5.72
 0.49
 -5.12
 -1.35
 86.91

Wilshire 1750 Small Cap Index
 1.09
 5.41
 -1.06
 6.84
 13.28
 -6.17
 -11.98
 3.30


0.00
 0.00
 0.00

S&P/IFC Emerging Markets Composite Global Index
 0.96
 6.43
 -0.57
 4.70
 17.45
 8.99
 -4.20
 1.72

S&P/IFC Emerging Markets Investable Composite Index
 1.07
 6.47
 -0.57
 4.73
 13.86
 6.04
 -2.80
 15.91


US Gov - 5 Year   Index
 0.57
 1.37
 -0.08
 3.00
 14.42
 -6.63
 1.34
 8.38

US Gov - 10 Year Index  
 0.68
 2.19
 -0.02
 3.43
 9.30
 -11.14
 0.25
 10.37

US Gov - 30 Year Index  
 0.84
 3.34
 0.14
 3.94
 6.91
 -11.37
 3.20
 11.55

US AAA Corp. Bond Index
 0.77
 1.51
 -0.09
 4.27
 15.47
 -6.57
 -2.12
 4.61

Merrill Lynch Mortgages Index
 0.68
 1.07
 -0.16
 4.07
 15.09
 -11.71
 -2.16
 3.79


Kurtosis
 Rho2 (%)
 Rho3 (%)
Name
 Mean (%)
 SD (%)
 Skewness
 Rho1 (%)

Q-Stat (3 Lags) 


p-Value (%)


Table 6: Summary statistics for the monthly returns of various equity, fixed-income, and
emerging market indexes, from January 1986 to December 2006 (except for the Wilshire
1750 Small Cap, Merrill Lynch Mortgages, and the S&P/IFC Emerging Markets Investable
Composite Indexes; see footnote 13). All values are based on monthly total returns and are
not annualized.

4 Autocorrelation and Illiquidity

Following Lo (2001) and Getmansky, Lo, and Makarov (2004), we propose using return

autocorrelation as a measure of an asset’s degree of illiquidity. To gauge the universality

of this proposed measure of illiquidity, Table 6 shows the characteristics of the monthly

returns for several representative equity and fixed-income factors, including the p-values

of the Ljung-Box Q-statistic that measures the joint significance of the first three sample

autocorrelation coefficients.14 The null hypothesis of no autocorrelation cannot be rejected

for the indexes that include the largest and most liquid sets of assets, such the S&P 500 and

the Wilshire 750 Large Cap indexes. But the story is quite different for the smaller stocks

13These data were obtained from the Global Financial Database. The Wilshire 1750 Small Cap Index
is available until March 2006, the Merrill Lynch Mortgages Index is available until February 2004, and the
S&P/IFC Emerging Markets Investable Composite Index starts in January 1989.

14Box and Pierce (1970) proposed the following statistic for test the significance of the first k auto corre-
lation values

Qm = T

m
∑

k=1

ρ2(k)·

Under the null hypothesis of no auto correlation, this statistic is asymptotically distributed as χ2

m. Ljung
and Box (1978) proposed the following finite-sample correction which provides a better fit to the χ2

m
for

smaller samples sizes:

Qm = T (T + 2)
m

∑

k=1

ρ2(k)

T − k
.
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in the same market, i.e., the S&P 600 Small Cap or the Wilshire 1750 Small Cap indexes,

for which the null of no autocorrelation can be rejected at the 5% significance level.

To highlight the differences in predictability between tradable and non-tradable assets,

we compute the same statistics for two emerging-markets indexes. The first index, the

S&P/IFC Emerging Markets Composite Index, is simply a “tracking” index while the second,

the S&P/IFC Emerging Markets Investable Composite, is an “investable” index that is

presumably more easily tradable by construction. Observe that the null hypothesis can

be easily rejected for the “tracking” index while the null cannot be rejected in the case of

the “investable” index. This difference is consistent with Samuelson’s (1965) argument that

“properly anticipated prices fluctuate randomly”. Because the investable index is more easily

tradable, any significant autocorrelation in its returns can be more easily exploited than in

case of the non-investable index. In short, tradability is directly related to the degree to

which future price movements can be “properly anticipated”.

We find a similar pattern among fixed-income indexes—for the most liquid U.S. gov-

ernment bond funds, the Q-statistics cannot reject the null hypothesis of white noise, but

they do reject the null hypothesis for indexes tracking corporate bonds and mortgage-backed

securities, which are considerably more illiquid.

These results motivate the more formal empirical analysis of Sections 4.1–4.2, in which

we show more directly that return autocorrelation is, indeed, a measure of illiquidity among

a broad set of financial assets.

4.1 Redemption-Notice and Lock-Up Periods

To demonstrate that return autocorrelation captures illiquidity, we begin by focusing on

hedge funds, for which we have auxiliary measures of illiquidity such as redemption-notice

and lock-up periods. The former is the amount of notice that hedge-fund investors must

provide to a fund manager before being able to withdraw an investment from the fund,

which can vary from one day to several months. The latter is the amount of time for which a

hedge-fund investor agrees to leave an investment in a fund, typically one year. Liang (1999)

has advocated the use of “lock-up periods” as a measure of the liquidity of hedge funds, and

Aragon (2004) uses both the lock-up and redemption-notice periods as control variables to

account for different liquidity characteristics of hedge funds.
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To develop some intuition for the variability of these measures in our sample of funds, we

report in Table 7 some summary statistics for both variables across the different categories

of hedge funds in our sample.15 Each part of this table is sorted by the relevant measure in

descending order. Categories known to involve strategies with illiquid securities such as Event

Driven and Convertible Arbitrage appear near the top of the rankings of both measures, while

categories that involve more liquid exchange-traded securities such as Managed Futures and

Global Macro are at the bottom. Also, note that a substantial percentage of funds in each

category have no lock-ups at all, hence the redemption-notice period is the primary liquidity

constraint imposed on hedge-fund investors.

Panel A: Redemption Notice Period


   
    
    
 < 10
 10-30
 > 30


Event Driven            
    
 254
    
 50
    
 10%
 33%
 57%

Fund of Funds           
    
 631
    
 40
    
 16%
 26%
 58%

Convertible Arbitrage   
    
 101
    
 37
    
 15%
 47%
 39%

Fixed Income Arbitrage  
    
 108
    
 34
    
 29%
 33%
 38%

Multi-Strategy          
    
 133
    
 34
    
 20%
 44%
 35%

Equity Market Neutral   
    
 153
    
 32
    
 16%
 50%
 33%

Long/Short Equity Hedge 
   
 906
    
 31
    
 15%
 59%
 26%

Emerging Markets        
    
 182
    
 27
    
 32%
 43%
 24%

Dedicated Short Bias    
    
 25
    
 25
    
 28%
 60%
 12%

Global Macro            
    
 126
    
 20
    
 33%
 55%
 13%

Managed Futures         
    
 308
    
 8
    
 62%
 34%
 4%


Panel B: Lockup Period


None
 Up to 1 Year
 More 


Event Driven            
    
 254
    
 5.4
    
 60%
 35%
 6%

Long/Short Equity Hedge 
   
 906
    
 4.4
    
 65%
 32%
 3%

Convertible Arbitrage   
    
 101
    
 3.1
    
 74%
 25%
 1%

Multi-Strategy          
    
 133
    
 2.8
    
 74%
 25%
 2%

Equity Market Neutral   
    
 153
    
 2.5
    
 78%
 20%
 1%

Emerging Markets        
    
 182
    
 2.1
    
 84%
 13%
 3%

Fixed Income Arbitrage  
    
 108
    
 1.9
    
 82%
 17%
 1%

Dedicated Short Bias    
    
 25
    
 1.9
    
 80%
 20%
 0%

Fund of Funds           
    
 631
    
 1.9
    
 86%
 12%
 1%

Global Macro            
    
 126
    
 1.0
    
 93%
 6%
 1%

Managed Futures         
    
 308
    
 0.5
    
 96%
 4%
 0%


Average Lockup Period 

in Months


Count
 Lockup Distribution
Category


Average Redemption 

Notice Period (Days)


Count
Category

Redemption Distribution (Days)


Table 7: Summary statistics for redemption-notice and lock-up periods among Lipper/TASS
hedge funds from January 1996 to December 2006, sorted by the average values of each of
the two measures by category. See Appendix A for the definitions of these categories.

To quantify the degree of association between return autocorrelation and redemption-

notice periods, we estimate a simple cross-sectional regression of one measure on the other.

15See Section 3.1 for the empirical properties of our sample of hedge funds, and Appendix A.1 for the
definitions of the various hedge fund categories.
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Table 8 contains the estimates for the cross-sectional regression:

Redemptioni = α + λρ1,i + ǫi (1)

for all hedge funds in our data set, as well as by category. These results show strong

positive relations between redemption-notice periods and return autocorrelations for the

entire sample of hedge funds and for almost all categories. For the entire sample of hedge

funds, the estimated slope coefficient of 42.1 implies that for every 10 percentage points of

a hedge fund’s return autocorrelation, the expected redemption-notice period is higher by

42.1 × 0.10 = 4.2 days. This illiquidity/autocorrelation relation is even stronger for multi-

strategy funds, where the cross-sectional regression has an R2 of 11.5% and a 10-percentage-

point increase in autocorrelation adds 5.5 days to the expected redemption-notice period.

Category
 Count
 Alpha
 T-stat
 RSQ (%)


All 
 2927
 25.8(40.6)
 42.1(14.8)
 7.0


Convertible Arbitrage   
    
 101
 26.0(4.64)
 28.5(2.14)
 4.4

Dedicated Short Bias    
    
 25
 21.9(4.42)
 35.7(1.11)
 5.2

Emerging Markets        
    
 182
 21.6(6.18)
 31.8(1.88)
 1.9

Equity Market Neutral   
    
 153
 27.9(12.9)
 37.0(3.97)
 9.5

Event Driven            
    
 254
 42.7(11.4)
 31.6(2.31)
 2.1

Fixed Income Arbitrage  
    
 108
 27.6(7.25)
 34.1(2.51)
 5.6

Fund of Funds           
    
 631
 32.9(18.5)
 39.7(5.38)
 4.4

Global Macro            
    
 126
 19.4(10.4)
 12.4(1.03)
 0.9

Long/Short Equity Hedge 
    
 906
 31.7(34.7)
 -3.7(-0.7)
 0.1

Managed Futures         
    
 308
 8.22(10.6)
 16.6(2.53)
 2.1

Multi-Strategy          
    
 133
 24.1(7.21)
 55.4(4.11)
 11.5


Table 8: Estimates of the cross-sectional regression Redemptioni = α + λρ1,i + ǫi for all
hedge funds in our sample as well for each of the 11 categories, using data from January
1986 to December 2006. Redemption-notice periods are measured in days, and t-statistics
are reported in parenthesis.

In fact, the only hedge-fund category for which the λ coefficient is negative is Long/Short

Equity Hedge, but given the liquidity of such strategies, it is not surprising that the λ coef-

ficient is small in magnitude and statistically insignificant, and the regression’s explanatory

power is virtually zero (R2 =0.1%).

These results provide more direct confirmation that return autocorrelation is indeed a

useful proxy for illiquidity.
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4.2 A Comparison of Hedge Funds and Mutual Funds

Having established a direct empirical link between illiquidity and return autocorrelation

in Section 4.1, we now apply this measure to mutual funds, for which measures such as

redemption-notice periods are not relevant. Figure 1 shows the histogram of estimated first-

order autocorrelations for all the mutual funds in our sample (see Section 3.2), and also

include the corresponding histogram for our sample of hedge funds for comparison. Figure

1 shows that hedge-fund returns tend to have higher autocorrelation than mutual funds,

with the exception of a group of mutual funds that seem to have autocorrelation values

near 1. This anomalous group consists of money market mutual funds that have near-unit

roots in the time series of their returns due to their short-term interest-rate exposures, hence

their unusually high autocorrelation coefficients. For funds with such non-stationary returns,

autocorrelation is not well-defined and is therefore not a relevant measure of illiquidity. For

this reason, we test for unit roots in our dataset and exclude those funds for which the null

hypothesis of a unit root cannot be rejected (see Appendix A.2 for further details).

When funds with unit roots are excluded, Figure 1 shows that mutual funds are consider-

ably more liquid than hedge funds as measured by their autocorrelations. In particular, Table

2 shows that the average p-values of the Q-statistics of the first three autocorrelations range

from 65% (Asset Allocation) to 26% (Fixed Income) for mutual funds, but range from 40%

(Managed Futures) to 5% (Convertible Arbitrage) for hedge funds. These extremes conform

well to common intuition regarding liquidity—among mutual funds, asset-allocation funds

are among the most liquid and fixed-income among the most illiquid, and among hedge

funds, managed futures are considered among the most liquid while convertible arbitrage

funds are much less liquid (see Table A.1 of Appendix A.2 for the results of formal statistical

significance tests).

5 Estimating Illiquidity Premia

Having established a significant relationship between return autocorrelation and illiquidity

in Section 4, we now exploit this relationship to estimate the illiquidity premia in asset re-

turns. In Section 5.1 we describe our methodology, and in Sections 5.2 and 5.3, we apply

this methodology to raw and risk-adjusted mutual-fund and hedge-fund returns, respectively.
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Figure 1: Histogram of first-order autocorrelation coefficients of mutual funds and hedge
funds, based on raw returns from January 1986 to December 2006. Note that some mutual
funds have unusually high autocorrelation due to near-unit roots in their returns.
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To see how illiquidity might be related to specific investment styles, in Section 5.4 we es-

timate the illiquidity premia associated with each of the 11 hedge-fund categories in the

Lipper/TASS database.

5.1 Methodology

Our approach for estimating the illiquidity premia of a collection of assets begins by rank-

ing them by their estimated autocorrelation coefficients on a rolling basis over past 5-year

periods, and creating 5 quintile portfolios based on these rankings in January of each year.

The first such ranking is constructed for January 1991 since our sample period begins Jan-

uary 1986 and the first 5-year subperiod is available as of January 1991. We then calculate

the equal-weighted raw or risk-adjusted returns of these quintile portfolios, based on risk

adjustments that will be explained shortly, for each month of the subsequent year. The time

series of these 5 portfolio returns—which we will refer to as the liquidity portfolios—will

serve as the input to much of our analysis. To get a more direct measure of the impact of

liquidity, we also compute the time series of the return differences between the least- and

most-liquid portfolios, i.e., the return differences of the highest and lowest serial-correlation

quintile portfolios. We shall refer to this portfolio as the liquidity spread portfolio in the

discussion that follows.

Of course, the return differences of serial-correlation-sorted portfolios may also be due to

differences in non-liquidity-based risk factors, and we attempt to control for such factors in

two ways:

1. Time-Series Regression. Estimate the following regression for each of the 5 quintile

portfolios from January 1991 to December 2006, and take the estimated alphas as the

risk-adjusted measure of the portfolios’ expected returns:

Rp,t = αp +
K

∑

k=1

βp,kΛk,t + ǫp,t , p = 1, . . . , 5 (2)

where {Λk,t} is a collection of K risk factors. Repeat the same analysis for the returns

of the liquidity spread portfolio.

2. Rolling Residuals. Using betas estimated from a rolling 5-calendar-year window for
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each fund i and the realized factors {Λk,t} in each month t, compute the fitted value

of the regression for fund i in month t and subtract it from the total monthly return

to yield the risk-adjusted return for that fund:16

R̃i,t ≡ Ri,t −
K

∑

k=1

β̂i,k,t∗Λk,t (3)

where β̂i,k,t∗ is obtained from the time series regression (2) applied to fund i’s returns

over the 5-calendar-year window ending in the most recent December prior to month t.

Then, average these risk-adjusted returns within each quintile portfolio p to construct

the risk-adjusted quintile portfolio return R̃p,t:

R̃p,t =
1

m

m
∑

i=1

R̃i,t . (4)

where m is the number of funds or securities in quintile p, p = 1, . . . , 5.

The first approach is the most natural way to address the most immediate question regarding

the link between risk-adjusted returns and liquidity, but it suffers from two shortcomings.

First, by conducting a single time-series regression over the entire sample, we implicitly

assume that the factor loadings are constant through time. Such an assumption is often

used in studies of equity portfolios, but may be less reasonable for hedge funds that exhibit

more dynamic investment strategies. Second, obtaining an estimate of risk-adjusted expected

returns for the entire sample period does not allow us to gauge the time variation in illiquidity

premia, which we suspect is substantial. The second approach is designed to deal with these

two shortcomings.

The time-series average of the residuals from the second approach yields a measure similar

to the alpha calculated from the first approach, but the monthly realizations of the residuals

provide additional information about the evolution of illiquidity premia over time, and we

focus on this issue in Section 5.5.17

16Note that in (3) we adopt the assumption that the alpha from the first regression is zero, and use only
the estimated slope terms to calculate the residual returns.

17Of course, the residuals from (2) can also be used as measure of liquidity premium for each month,
but the second approach is preferable for this purpose as it uses two non-overlapping time periods for the
estimation of betas and the subsequent residual calculation, respectively.
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To check the robustness of our analysis to the risk-adjustment process, we use the fol-

lowing four sets of factors in each of the two approaches described above:

1. Market Only: The U.S. Stock Market index only;

2. 4-Factor Set: The U.S. Stock Market index plus size (SMB), value (HML), and

momentum;

3. Broad Factor Set: All 9 factors listed in Table 4;

4. Lagged Market: Current and first lagged return of the U.S. Stock Market index.

Our proposal to use both current and lagged returns of the stock market in the “Lagged Mar-

ket” factor set is motivated by Scholes and Williams (1977), who first argued that the “total”

beta of a portfolio is best measured by the sum of both current and lagged market exposures,

particularly in the presence of stale prices. Asness, Krail and Liew (2001) demonstrate that

many hedge funds have significant exposure to lagged market returns, and Getmansky, Lo,

and Makarov (2004) show that a lagged market beta can proxy for more general forms of

illiquidity. While this lagged coefficient may be sufficient for capturing illiquidity exposures

in portfolios of U.S. equities, it may not adequately capture the illiquidity of certain hedge

funds with little equity exposure, e.g., fixed-income or convertible arbitrage strategies (see

Table 9).

Before turning to our main analysis, we provide some summary statistics in Table 9 for

the exposures of various assets to the risk factors in the Broad Factor Set. These risk factors

explain a larger proportion of the time-series variation in the returns of mutual funds and

portfolios of stocks than the returns of hedge funds. For example, the median R2 values for

mutual funds are all above 80%, whereas for all but one category of hedge funds (Dedicated

Short Bias), the median R2 values are below 51%. As expected, by far the most dominant

risk factor among equity mutual funds and stock portfolios is the MARKT factor, while

the Lehman U.S. Aggregate Government Bond Index is the most important factor among

fixed-income mutual funds. Due to the more complex and dynamic nature of the investment

strategies employed by hedge funds, their risk exposures are not as clear as those of mutual

funds, except for the large negative exposure to the market factor among Dedicated Short

Biased funds.
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Because some of the risk factors are also serially correlated,18 we must consider the poten-

tial relation between the autocorrelation of asset returns and their beta exposures to various

factors. This can be accomplished by treating the estimated betas and autocorrelations for

each fund in each of the 5-calendar-year estimation windows as an observation of a pair of

random variables (ρi, βi,k). All such observations are then pooled together and the cross-

sectional correlation is calculated and reported in Table 10. Note that funds with higher

autocorrelation also tend to have higher exposure to the Lehman U.S. Universal High-Yield

Corporate Index (shown under column LH HY) in Table 10, and to size (shown under column

SMB in Table 10).

Also, the momentum factor seems like a logical candidate to “explain” positively auto-

correlated returns. However, Table 10 shows that this is not the case, hence any premium

arising from our analysis is apparently distinct from the well-known momentum premium.

18For example, Table 4 shows that the Lehman U.S. Universal High-Yield Corporate Index has a first-order
autocorrelation of 37.5%.
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Med 25% 75% Med 25% 75% Med 25% 75% Med 25% 75% Med 25% 75% Med 25% 75% Med 25% 75% Med 25% 75% Med 25% 75% Med 25% 75% Med 25% 75%

Hedge Funds
All 11,666 43.9 7.3 82.7 21.2 3.0 52.8 4.6 -16.5 27.8 4.4 -7.5 17.6 2.0 -1.1 6.6 4.4 -7.4 19.2 5.3 -3.5 16.9 10.0 1.3 23.5 6.5 -3.1 20.0 2.7 -2.7 11.2 42.0 27.4 58.6 
Convertible Arbitrage 408 64.7 36.8 92.2 -0.8 -8.0 6.5 -2.4 -16.9 7.7 13.0 6.1 24.5 0.6 -0.6 2.6 2.5 -5.7 12.6 0.5 -4.4 5.7 4.2 1.1 10.1 0.8 -3.3 5.1 -0.8 -2.9 1.8 32.8 21.5 42.5 
Dedicated Short Bias 119 61.2 33.8 122.3 -108.7 -140.5 -50.3 4.7 -13.0 30.3 -1.2 -10.6 10.0 0.6 -4.5 6.1 -4.1 -15.0 7.0 -1.6 -21.2 6.9 -17.7 -57.8 -5.7 18.4 1.9 42.5 -6.3 -15.7 8.0 73.5 66.0 80.4 
Emerging Markets 749 51.1 -38.3 111.4 62.2 23.9 101.8 -15.0 -119.8 24.6 21.4 4.4 50.7 3.4 -1.2 12.3 15.1 -4.7 48.6 2.4 -14.4 20.0 16.7 4.7 32.5 15.7 2.3 36.7 4.7 -4.7 15.8 43.3 30.4 55.6 
Long/Short Equity 3,409 50.8 8.4 95.3 51.7 24.1 81.4 3.6 -20.0 25.1 0.1 -11.8 14.9 2.3 -2.1 7.7 5.6 -9.1 22.0 8.8 -4.6 23.9 21.3 7.1 41.6 9.5 -10.1 30.5 3.6 -5.7 15.8 51.3 36.0 67.3 
Equity Market Neutral 445 45.5 20.9 88.4 2.7 -2.9 16.3 3.9 -7.8 16.9 0.1 -5.2 7.7 0.7 -1.6 3.2 1.1 -9.4 8.8 0.3 -4.6 7.1 1.2 -4.8 9.8 0.8 -5.8 11.5 1.9 -2.3 8.4 27.0 19.9 39.1 
Event Driven 1,138 63.0 36.6 88.2 10.3 2.1 25.9 -6.2 -21.7 6.5 14.5 2.8 29.8 0.7 -1.7 3.4 3.6 -3.6 11.3 1.4 -4.7 7.6 7.7 2.8 16.1 8.3 2.8 16.5 0.9 -1.9 4.1 42.7 29.8 56.1 
Fixed Income Arbitrage 379 54.3 24.9 82.9 0.8 -4.1 6.9 4.8 -11.7 22.3 5.3 -1.4 16.9 0.5 -1.0 2.8 2.4 -1.9 8.3 1.7 -2.9 8.3 1.1 -1.8 4.6 1.9 -2.0 9.1 0.4 -1.6 3.1 26.3 18.2 39.4 
Fund of Funds 2,514 29.6 7.2 56.0 20.3 7.9 37.6 4.8 -10.6 19.3 5.8 -0.7 12.4 2.4 0.5 5.2 6.2 -2.9 18.7 6.8 1.1 14.5 9.4 3.6 17.3 6.2 0.6 14.1 5.3 0.6 11.1 48.5 34.1 63.5 
Global Macro 467 42.5 -9.8 87.8 11.3 -3.7 45.7 20.5 -3.3 55.5 3.4 -13.2 20.9 0.9 -3.5 6.9 3.9 -18.5 28.1 3.5 -8.2 16.9 7.7 -2.0 21.0 10.2 -5.6 24.4 3.2 -3.8 13.2 30.1 20.0 45.9 
Managed Futures 1,469 19.4 -25.2 75.6 6.6 -13.0 27.4 61.6 8.0 114.7 -13.4 -34.9 8.0 6.4 -2.8 16.5 -1.4 -28.2 26.2 9.1 -6.0 25.1 4.1 -15.4 18.6 4.3 -16.1 19.7 1.7 -7.7 16.6 26.9 19.3 36.6 
Multi-Strategy 569 50.4 15.1 81.5 15.7 2.1 47.9 0.4 -14.2 15.3 4.9 -3.1 16.0 1.6 -0.5 4.4 3.8 -7.4 13.0 5.8 -2.2 16.9 8.1 2.0 18.7 4.5 -1.6 13.6 2.3 -1.2 6.9 41.2 25.3 57.0 

Mutual Funds
All 85,845 -4.4 -19.3 10.6 65.9 2.9 99.2 14.1 -7.3 55.1 2.8 -3.0 9.7 0.0 -1.4 2.5 -0.7 -5.6 2.8 0.4 -3.3 4.4 1.5 -2.4 14.0 4.2 -1.5 15.9 0.3 -3.1 3.9 87.0 72.8 93.2 
Asset Allocation              6,172 -5.6 -16.9 5.0 59.9 49.3 68.3 21.5 10.7 31.2 1.6 -2.1 6.7 0.3 -0.8 1.8 -1.4 -5.4 2.5 0.6 -2.3 4.0 -1.1 -6.3 4.4 6.5 0.9 15.0 -0.8 -4.3 2.3 93.8 88.9 96.6 
Equity                        40,038 -6.1 -28.9 15.6 99.1 87.0 112.8 -4.3 -19.7 8.6 -1.8 -9.3 7.3 1.6 -1.6 5.8 -0.9 -13.4 8.1 1.9 -4.3 10.6 10.8 -6.2 37.9 10.3 -13.2 35.5 0.9 -6.4 10.9 89.3 81.1 93.7 
Fixed Income                  30,121 -2.8 -12.5 8.1 1.6 -0.7 4.7 61.5 43.8 73.0 5.2 2.2 11.6 -0.6 -1.4 0.2 -0.4 -2.1 1.2 -0.2 -2.8 1.9 0.6 -1.2 2.5 3.0 0.1 6.3 0.3 -1.1 1.3 80.0 68.3 90.4 
Convertible                   562 0.8 -13.5 18.1 63.2 54.1 72.2 -0.2 -14.2 11.0 14.8 7.4 22.0 2.5 0.3 4.7 -1.6 -7.5 2.8 6.2 2.6 10.8 18.6 14.7 26.2 2.9 -5.1 14.4 4.9 -1.6 12.8 87.4 83.1 91.0 

Stock Portfolios 1,681 4.3 -22.6 31.6 103.9 89.9 118.1 -0.8 -18.7 18.4 -2.6 -15.1 9.3 -0.5 -5.6 4.5 1.9 -8.6 12.5 0.1 -8.5 7.9 58.7 19.4 93.1 35.7 1.2 66.1 -5.0 -13.1 4.1 84.0 77.6 88.3 

Alpha (bps) MARKT x 100Asset LH_GO x 100Count LH_HY x 100 GSCI x 100 USD x 100 VIX_S x 100 SMB x 100 HML x 100 UMD x 100 R2 (%)

Table 9: Summary of the estimated exposures to 9 risk factors based on all 5-calendar-year estimation windows from 1986
to 2006. For each factor, the median (boldface) and the 25th and 75th percentiles are reported. Also included are the same
statistics for the regression intercept, α, and R2. The alphas are multiplied by 10,000, i.e., measured in units of basis points,
and the factors exposures are multiplied by 100 for expositional convenience. The number of observations for each fund type
is reported. MARKT: U.S. Stock Market; LH GO: Lehman U.S. Aggregate Government Bond Index; LH HY: Lehman U.S.
Universal High-Yield Corporate Index; GSCI: Goldman Sachs Commodities Index; USD: Trade Weighted U.S. Dollar Index;
VIX S: Rescaled CBOE Volatility Index; SMB: Small-Minus-Big Index; HML: High-Minus-Low Index; UMD: Momentum
Index.
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Count MARKT LH_GO LH_HY GSCI USD VIX_S SMB HML UMD
Panel A:  Hedge Funds

All 11,666  -3 -17 12 -3 3 3 8 4 -7
Convertible Arbitrage 408  -32 -2 -4 -20 -27 -14 -12 5 1
Dedicated Short Bias 119  15 -6 5 22 -6 -2 -7 -17 9
Emerging Markets 749  -1 -14 1 -6 8 6 13 8 -3
Long/Short Equity 3,409  -5 -10 4 -2 10 9 8 2 -6
Equity Market Neutral 445  4 7 -3 -7 0 -6 5 8 -12
Event Driven 1,138  -6 -18 14 5 6 14 6 10 2
Fixed Income Arbitrage 379  -15 -15 -3 -11 -7 -12 8 0 4
Fund of Funds 2,514  8 -20 15 4 5 12 15 5 -3
Global Macro 467  -2 -9 -4 6 -9 -5 -2 14 0
Managed Futures 1,469  -3 10 -5 7 -18 13 7 -8 -9
Multi-Strategy 569  -14 -31 15 1 6 13 4 9 -4

Panel B:  Mutual Funds
All 85,845  -5 -9 10 -1 0 15 17 0 -2
Asset Allocation              6,172  -1 -13 13 -5 -3 12 30 15 -5
Equity                        40,038  8 -12 2 -2 1 23 32 5 -1
Fixed Income                  30,121  -2 -28 21 3 -7 16 -11 -21 -3
Convertible                   562  -41 13 17 -18 -19 -11 3 26 -39

Panel C:  U.S. Stock Portfolios 1,681  -17 -2 10 -12 5 5 53 3 -5

Table 10: Cross-sectional correlations between estimated autocorrelations, ρ̂i, and factor exposures, β̂i,k. These values are
calculated based on the estimates for autocorrelation and factor exposure values over all 5-calendar-year estimation windows
between 1986 and 2006 for each specified subgroup of assets. MARKT: U.S. Stock Market; LH GO: Lehman U.S. Aggregate
Government Bond Index; LH HY: Lehman U.S. Universal High-Yield Corporate Index; GSCI: Goldman Sachs Commodities
Index; USD: Trade Weighted U.S. Dollar Index; VIX S: Rescaled CBOE Volatility Index; SMB: Small-Minus-Big Index; HML:
High-Minus-Low Index; UMD: Momentum Index.
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5.2 Illiquidity Premia in Raw Returns

Table 11 gives a summary of the average returns for the 5 liquidity portfolios as well as the

liquidity spread portfolio based on raw returns, i.e., returns unadjusted for risk exposures,

from 1986 to 2006.19 These results are limited by certain data availability issues. For

example, our mutual-fund sample contains only 74 Convertible mutual funds, hence we do

not report the results for this subgroup in Table 11 since, in most years, each of the 5

liquidity portfolios would have contained too few funds to eliminate the noise and yield

statistically reliable numbers. This limitation is even more severe among hedge funds (see,

for example, Table 1), hence we have combined all hedge funds into three sub-groups based

on a priori knowledge regarding the liquidity of the instruments used in their investment

strategies and the length of their redemption notice period as reported in Table 7. These

three sub-groups are: (1) the “Most Illiquid” subset, containing Convertible Arbitrage, Fixed

Income Arbitrage, and Event Driven categories; (2) the “Most Liquid” subset, containing

Managed Futures, Dedicated Short Bias, and Global Macro categories; and (3) the remaining

5 categories, which we refer to as the “Medium Liquidity” subset.20

The results shown in Table 11 provide some initial evidence that there is a link between

expected returns and autocorrelation, even before adjusting for other sources of risk. For

example, the average return is almost monotonically increasing in portfolio liquidity when

all hedge funds are used in constructing the portfolios (see the first row in Table 11). Also,

the difference between the highest and lowest portfolios, i.e., the liquidity spread, is also

positive, although not statistically significant. A surprising observation is that the subset of

hedge funds that contains the most liquid set of strategies shows the largest value for the

liquidity spread, 4.24%, versus only 1.69% among the illiquid subset of funds. We will see

later that this holds even after adjusting for various risk exposures, suggesting substantial

variation in liquidity within this category.

In contrast, for the entire sample of mutual funds, there is no evidence for a link between

autocorrelation and expected returns (see row 5 of Table 11). However, the link is much

19These averages, and the average liquidity spread, are annualized arithmetically, i.e., by multiplying the
monthly values by 12.

20Note that we include the Fund of Funds category in this group even though they have a slightly longer
redemption-notice period compared to Convertible Arbitrage and Fixed Income Arbitrage, since we believe
that the longer period is partially due to the delegated nature of fund management in these funds.
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clearer among the Fixed Income mutual funds and, to some extent, among the Equity mutual

funds, while there is no relation among Asset Allocation Funds. This should be expected

as Asset Allocation funds typically implement their investment views through highly liquid

index futures and forward contracts. In fact, as seen in Table A.1 in Appendix A.2, the

null hypothesis of zero autocorrelation can only be rejected for 0.4% of Asset Allocation

mutual funds while the same metric is 5.5% and 15.2% for Equity and Fixed Income funds,

respectively.

Finally, Table 11 points to a potential link between expected returns and autocorrelation

even among the 100 stock portfolios used in this study. Given the strong link between

autocorrelation and size reported in Table 3, one may suspect that the effect captured here

is the well-known size effect. We will see in Section 5.3 that controlling for size (using the

SMB factor) does not fully eliminate this effect.

Low
 2
 3
 4
 High
 Difference


All Hedge Funds
  7.73 (4.17)
  9.60 (5.02)
  10.43 (4.50)
  11.77 (6.00)
  11.28 (6.25)
  3.54 (1.70)
 192

Illiquid Hedge Funds
  9.09 (5.64)
  11.20 (7.71)
  10.95 (7.42)
  11.70 (7.63)
  10.78 (8.63)
  1.69 (1.47)
 192

Medium Liq. Hedge Funds
  11.12 (5.99)
  11.80 (5.40)
  13.51 (5.56)
  11.91 (4.77)
  11.97 (5.35)
  0.86 (0.49)
 192

Liquid Hedge Funds
  3.31 (1.20)
  6.75 (2.49)
  7.72 (2.47)
  6.92 (2.46)
  7.55 (2.70)
  4.24 (1.48)
 192


All Mutual Funds
  9.22 (3.84)
  9.44 (3.89)
  8.65 (4.48)
  8.02 (4.39)
  8.95 (4.94)
  -0.27 (-0.12)
 192

Asset Allocation Mutual Funds
  8.87 (4.73)
  9.27 (4.54)
  8.90 (4.40)
  8.67 (4.25)
  8.73 (5.08)
  -0.14 (-0.15)
 192

Equity Mutual Funds
  11.48 (3.68)
  11.58 (3.45)
  11.69 (3.39)
  12.15 (3.31)
  13.28 (3.53)
  1.80 (0.96)
 192

Fixed Income Mutual Funds
  5.70 (5.77)
  5.88 (5.74)
  5.94 (6.06)
  6.12 (6.33)
  7.40 (7.61)
  1.70 (2.56)
 192


Stocks (100 Value Weighted)
  15.18 (4.36)
  14.91 (4.04)
  15.58 (3.90)
  16.97 (4.05)
  18.88 (3.91)
  3.70 (1.25)
 192


Count
Funds Used

Average Return (% Annualized)


Table 11: Average returns of autocorrelation-sorted portfolios for mutual funds, hedge
funds, and U.S. equity portfolios. Assets in the specified subset are grouped into 5
portfolios based on the first-order autocorrelation coefficients of returns estimated over
the prior 5 years. The equal-weighted average return for each of the 5 quintiles is cal-
culated for each month in the following year. This procedure is repeated from 1991
to 2006, yielding a total of 192 data points between January 1991 to December 2006.
Reported t-statistics are based on Newey-West estimators using 3 lags. The “Differ-
ence” column reports the average of the difference in returns of the high- minus low-
autocorrelation quintiles. The 3 subsets of hedge funds are defined as: “Illiquid Hedge Funds”
= {Convertible Arbitrage, Fixed Income Arbitrage, Event Driven}, “Liquid Hedge Funds”
= {Managed Futures, Global Macro, Dedicated Short Bias}. The remaining 5 categories
are placed in the “Medium Liquidity Hedge Funds” group. Stock portfolios are the standard
100 two-way sorted portfolio based on market capitalization and book-equity/market-equity.
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5.3 Illiquidity Premia in Risk-Adjusted Returns

Tables 12 and 13 report the average annualized returns of the liquidity portfolios based on

the two risk adjustments and four sets of risk factors described in Section 5.1. We have

also repeated the relevant row from Table 11 (labeled “raw”) to facilitate the comparison

of these risk-adjusted-return results with those using raw returns. The results from the two

approaches for risk adjustment are qualitatively similar to those with raw returns. The

average annualized risk-adjusted return for the liquidity spread portfolios, i.e. the difference

between the least and most liquid set of funds, reported in the column “Difference”, is

almost always positive and very often statistically different from zero. It seems that our risk

adjustments have been successful is reducing the volatility of the portfolio returns, hence

the estimated spreads are more precise and more often statistically significant than for raw

returns.

Based on the data presented in Panel A of Tables 12 and 13, the illiquidity premium is

even visible among all funds after risk adjustment. But, as expected, the premium is more

pronounced among hedge funds since they contain the most significant and exotic forms of

illiquidity. The liquidity spread for hedge funds, estimated using the first method of risk

adjustment with the Broad Factor Set is 3.96% per year. With the same Broad Factor Set,

the second risk-adjustment method produces a premium of 4.85%. The estimated premium

among the most illiquid hedge funds is 3.90% and 3.87% based on the first and second

risk-adjustment methods, respectively, in both cases using the Broad Factor Set. Similar to

the pattern in Table 11 for raw returns, the liquidity spread seems to be larger among the

most liquid hedge funds. For example, Table 12 produces a risk-adjusted liquidity spread

of 4.95% for this subset of funds based on the Broad Factor Set, while Table 13 shows that

the second risk-adjustment method produces even a larger spread of 7.42%. Note that in

all these cases, the results produced by the Lagged Market model is very similar to those

produced by the other risk models, suggesting that including a lagged U.S. stock market

factor does not adequately capture illiquidity as measured by autocorrelation.

Among the mutual funds categories, the Asset Allocation mutual funds do not exhibit

any statistically significant liquidity spreads (see rows 6 through 10 in Panel C of Tables 12

and 13). However, the Fixed Income funds do show positive liquidity spreads which are, in
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all but one case, statistically significant (see rows 16 through 20 in Panel C of Tables 12

and 13). For example, the liquidity spread based on the Broad Factor Set using the first

risk-adjustment method is 2.74% while the second method produces a slightly smaller but

still statistically significant spread of 1.11%. The results among the Equity mutual funds

(rows 11 through 15 in Panel C of Tables 12 and 13) are not as clear. For example, the first

risk-adjustment method produces illiquidity premia that are not distinguishable from zero

for this subset of funds, while the second method produces a premium that come close to

the critical level in only one case (see row 14 in Panel C of Table 13). Contrary to the case

of hedge funds, the Lagged Market Model seems to capture most of the illiquidity premium

among equity mutual funds. This is not surprising since the lagged exposure to the market

factor is no doubt due to the illiquidity of the underlying equities. Hedge funds, on the

other hand, have considerably more heterogeneous sources of illiquidity, hence controlling

for a lagged U.S. equity factor does not change the results in a any significant way as seen

in Tables 12 and 13.

The results from the 100 stock portfolios shown in Panel D of these two tables are

also mixed. For all but the second risk-adjustment method and the Lagged Market model,

the estimated liquidity spreads are positive, but not statistically significant in most cases.

Controlling for the size (SMB) factor seems to reduce the magnitude of this premium—

for example, from 4.37% to 2.14% in Table 13—it does not seem to make it economically

irrelevant. In fact, after controlling for size, the estimates seem to be more accurate as seen

by the larger t-statistics (compare rows 2 vs. 3 in Panel D in Tables 12 and 13). Lagged

exposure to the U.S. Stock Market Factor seems to capture most of the illiquidity premium

among this group of assets.
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5.4 Illiquidity Premia Among Hedge-Fund Categories

In this section, we apply the same analysis of Section 5.3 to each of the 11 hedge-fund

categories in the Lipper/TASS database, and the results are summarized in Table 14. Given

the wide array of strategies used by hedge funds and, in particular, the nonlinearities and

volatility exposures of some of those strategies, it would be reasonable to expect that risk

adjustments based on the Broad Factor Set would produce the most accurate set of results.

Therefore, we only report the risk-adjusted results using the Broad Factor Set to conserve

space. Due to data availability issues discussed in Section 5.2, for certain categories we can

only construct liquidity portfolios for the more recent part of the sample period. For this

reason, we report the number of monthly observations available for each category in Table

14.

Table 14 shows that the most illiquid categories of funds—in particular Convertible Ar-

bitrage and Fixed Income Arbitrage funds—exhibit large and, in most cases, statistically

significant illiquidity premia. In fact, these results suggest that the high illiquidity premium

in the “Most Liquid” category of hedge funds found in Table 12 and 13 (recall that this

subset includes Global Macro, Dedicated Short Bias, and Managed Futures) is primarily

driven by the large premium among Managed Futures funds.

One surprising result in Table 14 is the negative illiquidity premium among Global Macro

hedge funds. Although the premium is only statistically significant in Panel A, the result

does seem to be robust as it is negative in all three cases. This also seems to be robust

to different sets of factors used for risk adjustment; for example, using the second method

with the U.S. Stock Market index as the only risk factor produces a premium of −6.5%,

while using the 4-Factor Set produces a premium of −8.2% (note that these results are not

reported in Table 14).

Table 14 also reports the results for the average of the 11 individual time-series, one

for each of the 11 categories. This result is labeled as “All (Category Neutral)” since it

includes all available hedge fund returns, and the liquidity spread is estimated as 3.93%,

which is in line with earlier estimates. The reason for the qualifier “Category Neutral”

is the fact that, by construction, the autocorrelation quintiles are not biased toward any

one category of funds, in contrast to Tables 12 and 13 where the highest-autocorrelation
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Low
 2
 3
 4
 High
 Difference


Panel A: All Funds


All
 Raw
  9.18 (4.06)
  9.42 (4.18)
  8.94 (4.64)
  8.33 (4.65)
  9.25 (5.66)
  0.07 (0.03)
 192

All
 Market Only
  1.61 (1.61)
  1.63 (1.87)
  2.69 (3.17)
  3.61 (3.08)
  5.47 (5.02)
  3.86 (2.20)
 192

All
 4-Factor Set
  1.00 (0.95)
  0.60 (0.71)
  0.89 (1.26)
  1.42 (1.16)
  3.15 (2.81)
  2.15 (1.13)
 192

All
 Broad Factor Set
  -0.75 (-0.84)
  -0.90 (-1.22)
  -0.75 (-1.06)
  -0.70 (-0.68)
  0.94 (1.04)
  1.69 (1.04)
 192

All
 Lagged Market
  1.45 (1.42)
  1.55 (1.69)
  2.64 (2.83)
  3.44 (2.73)
  5.07 (4.62)
  3.62 (2.08)
 192


Panel B: Hedge Funds


All Hedge Funds
 Raw
  7.73 (4.17)
  9.60 (5.02)
  10.43 (4.50)
  11.77 (6.00)
  11.28 (6.25)
  3.54 (1.70)
 192

All Hedge Funds
 Market Only
  4.93 (2.71)
  7.00 (4.28)
  7.03 (3.76)
  7.59 (5.44)
  7.82 (4.69)
  2.89 (1.20)
 192

All Hedge Funds
 4-Factor Set
  3.30 (1.91)
  5.45 (3.04)
  5.25 (2.64)
  5.24 (4.13)
  6.04 (3.66)
  2.74 (1.16)
 192

All Hedge Funds
 Broad Factor Set
  0.99 (0.64)
  2.95 (1.78)
  3.05 (1.76)
  3.42 (3.03)
  4.95 (3.86)
  3.96 (2.30)
 192

All Hedge Funds
 Lagged Market
  5.52 (3.00)
  6.70 (4.04)
  6.88 (3.59)
  6.78 (4.46)
  6.61 (3.54)
  1.09 (0.43)
 192


Illiquid Hedge Funds
 Raw
  9.09 (5.64)
  11.20 (7.71)
  10.95 (7.42)
  11.70 (7.63)
  10.78 (8.63)
  1.69 (1.47)
 192

Illiquid Hedge Funds
 Market Only
  6.39 (4.80)
  9.07 (7.52)
  8.67 (6.16)
  9.82 (6.94)
  9.66 (7.66)
  3.27 (3.24)
 192

Illiquid Hedge Funds
 4-Factor Set
  5.44 (3.61)
  7.52 (7.15)
  7.36 (5.48)
  8.83 (5.90)
  8.62 (7.43)
  3.18 (3.08)
 192

Illiquid Hedge Funds
 Broad Factor Set
  3.75 (3.17)
  6.29 (5.38)
  6.99 (6.06)
  7.81 (6.24)
  7.65 (7.12)
  3.90 (4.10)
 192

Illiquid Hedge Funds
 Lagged Market
  5.55 (3.81)
  8.00 (6.93)
  7.66 (5.39)
  8.43 (5.65)
  8.59 (6.69)
  3.04 (2.87)
 192


Medium Liq. Hedge Funds
 Raw
  11.12 (5.99)
  11.80 (5.40)
  13.51 (5.56)
  11.91 (4.77)
  11.97 (5.35)
  0.86 (0.49)
 192

Medium Liq. Hedge Funds
 Market Only
  6.22 (5.10)
  6.97 (4.54)
  7.78 (4.74)
  6.23 (3.44)
  7.56 (3.77)
  1.34 (0.66)
 192

Medium Liq. Hedge Funds
 4-Factor Set
  5.08 (4.64)
  5.72 (3.78)
  5.40 (3.74)
  3.56 (2.18)
  5.44 (2.85)
  0.37 (0.17)
 192

Medium Liq. Hedge Funds
 Broad Factor Set
  2.95 (2.61)
  4.68 (3.07)
  3.30 (2.45)
  2.19 (1.68)
  4.29 (2.88)
  1.34 (0.78)
 192

Medium Liq. Hedge Funds
 Lagged Market
  6.31 (5.33)
  6.31 (4.13)
  6.93 (4.04)
  5.09 (2.59)
  6.31 (2.86)
  0.00 (0.00)
 192


Liquid Hedge Funds
 Raw
  3.31 (1.20)
  6.75 (2.49)
  7.72 (2.47)
  6.92 (2.46)
  7.55 (2.70)
  4.24 (1.48)
 192

Liquid Hedge Funds
 Market Only
  2.61 (0.88)
  6.75 (2.39)
  9.72 (2.96)
  8.02 (2.91)
  7.76 (3.00)
  5.15 (2.03)
 192

Liquid Hedge Funds
 4-Factor Set
  -0.58 (-0.19)
  3.28 (1.09)
  7.96 (2.29)
  5.46 (1.82)
  5.67 (2.06)
  6.26 (2.30)
 192

Liquid Hedge Funds
 Broad Factor Set
  -3.43 (-1.25)
  -0.87 (-0.32)
  2.44 (0.85)
  1.11 (0.43)
  1.52 (0.56)
  4.95 (1.88)
 192

Liquid Hedge Funds
 Lagged Market
  3.85 (1.29)
  8.16 (2.72)
  10.67 (3.19)
  8.49 (3.07)
  8.90 (3.29)
  5.05 (1.98)
 192


Count
Funds Used
 Factor Set

Alpha (Annualized in %)


Table 12a: Average returns of risk-adjusted liquidity portfolios, adjusted according to a
time-series regression using the entire historical sample. Assets in the specified subset are
grouped into 5 portfolios based on autocorrelations estimated over the preceding 5 years.
Equal-weighted average returns for each of the 5 groups are calculated for each month in
the following year. The resulting 192 such monthly returns (January 1991 to December
2006) are used to estimate the regression Rp,t = αp +

∑

βp,kΛk,t + ǫp,t, from which αp is
used to measure risk-adjusted return. The four sets of factors used to estimate the αp’s are:
“Market Only”, which contains the concurrent return of the aggregate U.S. stock market;
the “Four-Factor Set”, which contains the return for the aggregate U.S. stocks market plus
size, value, and momentum factors; the “Broad Factor Set”, which contains 9 risk factors
(the Fama-French U.S. Market Index, the Lehman U.S. Aggregate Government Bond Index,
the Lehman Universal High-Yield Corporate Index, the Goldman Sachs Commodities Index,
the traded-weighted U.S. Dollar Index, the Fama-French High-Minus-Low (HML) Book-to-
Market Index, the Fama-French Small-Minus-Big (SMB) Capitalization Index, the Fama-
French Momentum Index, and the first-difference of the VIX Volatility Index); and “Lagged
Market”, which contains the concurrent and lagged return of the aggregate U.S. stock market.
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Low
 2
 3
 4
 High
 Difference


Panel C: Mutual Funds


All Mutual Funds
 Raw
  9.22 (3.84)
  9.44 (3.89)
  8.65 (4.48)
  8.02 (4.39)
  8.95 (4.94)
  -0.27 (-0.12)
 192

All Mutual Funds
 Market Only
  1.17 (1.17)
  1.00 (0.94)
  2.29 (2.70)
  3.30 (2.60)
  4.89 (3.73)
  3.71 (1.82)
 192

All Mutual Funds
 4-Factor Set
  0.63 (0.58)
  0.13 (0.12)
  0.63 (0.87)
  1.16 (0.84)
  2.46 (1.68)
  1.84 (0.79)
 192

All Mutual Funds
 Broad Factor Set
  -1.05 (-1.12)
  -1.03 (-1.13)
  -1.09 (-1.57)
  -1.00 (-0.90)
  0.25 (0.22)
  1.30 (0.68)
 192

All Mutual Funds
 Lagged Market
  0.93 (0.90)
  0.90 (0.81)
  2.29 (2.47)
  3.20 (2.35)
  4.57 (3.39)
  3.64 (1.75)
 192


Asset Allocation Mut. Funds
 Raw
  8.87 (4.73)
  9.27 (4.54)
  8.90 (4.40)
  8.67 (4.25)
  8.73 (5.08)
  -0.14 (-0.15)
 192

Asset Allocation Mut. Funds
 Market Only
  2.34 (3.52)
  2.12 (3.76)
  1.89 (2.89)
  1.54 (2.11)
  3.46 (3.49)
  1.12 (1.17)
 192

Asset Allocation Mut. Funds
 4-Factor Set
  1.50 (2.20)
  1.12 (2.51)
  0.75 (1.50)
  0.09 (0.19)
  1.55 (2.39)
  0.05 (0.07)
 192

Asset Allocation Mut. Funds
 Broad Factor Set
  -0.37 (-0.92)
  -0.65 (-2.40)
  -0.73 (-2.17)
  -1.38 (-3.27)
  -0.46 (-0.76)
  -0.09 (-0.13)
 192

Asset Allocation Mut. Funds
 Lagged Market
  2.45 (3.85)
  2.18 (3.79)
  1.95 (2.93)
  1.62 (2.04)
  3.26 (3.01)
  0.81 (0.81)
 192


Equity Mutual Funds
 Raw
  11.48 (3.68)
  11.58 (3.45)
  11.69 (3.39)
  12.15 (3.31)
  13.28 (3.53)
  1.80 (0.96)
 192

Equity Mutual Funds
 Market Only
  0.67 (0.85)
  -0.08 (-0.10)
  -0.36 (-0.44)
  -0.31 (-0.28)
  1.26 (0.72)
  0.60 (0.33)
 192

Equity Mutual Funds
 4-Factor Set
  -0.92 (-1.26)
  -1.19 (-1.42)
  -1.39 (-1.89)
  -1.37 (-1.61)
  -1.39 (-1.47)
  -0.47 (-0.41)
 192

Equity Mutual Funds
 Broad Factor Set
  -0.58 (-0.77)
  -0.60 (-0.69)
  -0.87 (-1.16)
  -0.60 (-0.70)
  -1.20 (-1.28)
  -0.62 (-0.52)
 192

Equity Mutual Funds
 Lagged Market
  0.37 (0.45)
  -0.28 (-0.30)
  -0.56 (-0.61)
  -0.58 (-0.50)
  0.51 (0.29)
  0.14 (0.08)
 192


Fixed Income Mutual Funds
 Raw
  5.70 (5.77)
  5.88 (5.74)
  5.94 (6.06)
  6.12 (6.33)
  7.40 (7.61)
  1.70 (2.56)
 192

Fixed Income Mutual Funds
 Market Only
  4.89 (4.59)
  5.45 (4.94)
  5.45 (5.29)
  5.68 (5.58)
  6.89 (7.16)
  2.00 (2.89)
 192

Fixed Income Mutual Funds
 4-Factor Set
  3.69 (2.94)
  3.96 (3.12)
  3.94 (3.47)
  4.24 (3.82)
  5.65 (5.45)
  1.96 (2.66)
 192

Fixed Income Mutual Funds
 Broad Factor Set
  -1.12 (-1.74)
  -0.86 (-1.44)
  -0.64 (-1.31)
  -0.35 (-0.95)
  1.62 (3.35)
  2.74 (3.56)
 192

Fixed Income Mutual Funds
 Lagged Market
  4.92 (4.49)
  5.55 (4.81)
  5.52 (5.14)
  5.83 (5.54)
  6.80 (6.96)
  1.87 (2.98)
 192


Panel D: Stocks


Stocks (100 Value Weighted)
 Raw
  15.18 (4.36)
  14.91 (4.04)
  15.58 (3.90)
  16.97 (4.05)
  18.88 (3.91)
  3.70 (1.25)
 192

Stocks (100 Value Weighted)
 Market Only
  3.84 (1.77)
  3.39 (1.48)
  2.71 (1.34)
  4.66 (1.75)
  6.88 (1.99)
  3.04 (1.00)
 192

Stocks (100 Value Weighted)
 4-Factor Set
  0.08 (0.09)
  -1.39 (-1.19)
  -0.64 (-0.63)
  -0.48 (-0.47)
  2.19 (2.13)
  2.10 (1.55)
 192

Stocks (100 Value Weighted)
 Broad Factor Set
  0.94 (0.91)
  -0.33 (-0.29)
  -0.66 (-0.65)
  -0.17 (-0.16)
  1.69 (1.79)
  0.75 (0.54)
 192

Stocks (100 Value Weighted)
 Lagged Market
  2.89 (1.19)
  2.42 (0.98)
  1.78 (0.80)
  3.15 (1.12)
  3.72 (1.12)
  0.83 (0.29)
 192


Funds Used
 Factor Set

Alpha (Annualized in %)


Count


Table 12b: (Continued).
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Low
 2
 3
 4
 High
 Difference


Panel A: All Funds


All
 Raw
  9.18 (4.06)
  9.42 (4.18)
  8.94 (4.64)
  8.33 (4.65)
  9.25 (5.66)
  0.07 (0.03)
 192

All
 Market Model
  1.69 (2.47)
  1.43 (2.13)
  1.70 (2.55)
  2.31 (3.24)
  4.73 (6.11)
  3.04 (3.71)
 192

All
 4-Factor Set
  0.56 (0.84)
  0.85 (1.40)
  0.97 (1.58)
  1.40 (2.02)
  2.95 (4.91)
  2.39 (3.26)
 192

All
 Broad Factor Set
  -0.52 (-1.09)
  -0.26 (-0.51)
  -0.12 (-0.25)
  0.08 (0.21)
  2.00 (4.33)
  2.52 (4.62)
 192

All
 Lagged Market
  2.08 (3.09)
  1.37 (1.92)
  1.39 (1.88)
  1.80 (2.37)
  3.69 (4.67)
  1.61 (1.89)
 192


Panel B: Hedge Funds


All Hedge Funds
 Raw
  7.73 (4.17)
  9.60 (5.02)
  10.43 (4.50)
  11.77 (6.00)
  11.28 (6.25)
  3.54 (1.70)
 192

All Hedge Funds
 Market Model
  4.71 (2.82)
  7.92 (4.39)
  8.09 (3.88)
  8.38 (5.36)
  7.64 (5.53)
  2.93 (1.51)
 192

All Hedge Funds
 4-Factor Set
  3.56 (2.13)
  6.01 (3.51)
  6.60 (3.26)
  6.34 (4.79)
  5.21 (4.51)
  1.64 (0.94)
 192

All Hedge Funds
 Broad Factor Set
  1.19 (0.64)
  4.38 (2.32)
  5.41 (2.46)
  5.71 (3.85)
  6.04 (5.46)
  4.85 (2.67)
 192

All Hedge Funds
 Lagged Market
  5.52 (3.37)
  8.71 (4.40)
  7.92 (3.96)
  7.76 (4.81)
  5.93 (4.43)
  0.41 (0.23)
 192


Illiquid Hedge Funds
 Raw
  9.09 (5.64)
  11.20 (7.71)
  10.95 (7.42)
  11.70 (7.63)
  10.78 (8.63)
  1.69 (1.47)
 192

Illiquid Hedge Funds
 Market Model
  4.67 (3.97)
  7.34 (6.09)
  9.31 (7.16)
  8.33 (5.94)
  8.90 (8.08)
  4.23 (4.14)
 192

Illiquid Hedge Funds
 4-Factor Set
  2.66 (2.11)
  5.44 (4.14)
  5.73 (4.16)
  4.94 (2.69)
  5.59 (4.76)
  2.93 (2.40)
 192

Illiquid Hedge Funds
 Broad Factor Set
  2.58 (2.07)
  7.27 (6.17)
  7.39 (5.41)
  5.27 (3.10)
  6.45 (5.72)
  3.87 (2.73)
 192

Illiquid Hedge Funds
 Lagged Market
  4.26 (3.67)
  5.81 (4.77)
  7.86 (6.01)
  6.50 (4.67)
  7.22 (7.06)
  2.97 (2.88)
 192


Medium Liq. Hedge Funds
 Raw
  11.12 (5.99)
  11.80 (5.40)
  13.51 (5.56)
  11.91 (4.77)
  11.97 (5.35)
  0.86 (0.49)
 192

Medium Liq. Hedge Funds
 Market Model
  7.11 (6.05)
  8.02 (5.28)
  8.58 (5.21)
  6.42 (3.46)
  7.42 (4.43)
  0.31 (0.18)
 192

Medium Liq. Hedge Funds
 4-Factor Set
  5.21 (4.27)
  5.89 (4.55)
  6.30 (4.63)
  4.58 (2.95)
  5.71 (4.24)
  0.50 (0.32)
 192

Medium Liq. Hedge Funds
 Broad Factor Set
  3.04 (2.55)
  4.79 (3.11)
  5.98 (4.54)
  3.28 (1.50)
  6.62 (5.04)
  3.58 (2.26)
 192

Medium Liq. Hedge Funds
 Lagged Market
  7.04 (6.12)
  7.37 (4.81)
  7.66 (4.57)
  4.87 (2.60)
  5.43 (3.33)
  -1.61 (-0.96)
 192


Liquid Hedge Funds
 Raw
  3.31 (1.20)
  6.75 (2.49)
  7.72 (2.47)
  6.92 (2.46)
  7.55 (2.70)
  4.24 (1.48)
 192

Liquid Hedge Funds
 Market Model
  0.84 (0.29)
  8.13 (2.79)
  7.79 (2.44)
  9.25 (3.15)
  8.42 (2.91)
  7.58 (2.59)
 192

Liquid Hedge Funds
 4-Factor Set
  -1.18 (-0.41)
  7.35 (2.58)
  6.33 (2.00)
  9.37 (3.06)
  6.74 (2.29)
  7.92 (2.70)
 192

Liquid Hedge Funds
 Broad Factor Set
  -3.44 (-1.23)
  3.42 (1.13)
  2.20 (0.62)
  4.42 (1.45)
  3.98 (1.31)
  7.42 (2.62)
 192

Liquid Hedge Funds
 Lagged Market
  2.60 (0.92)
  9.70 (3.26)
  9.50 (2.98)
  10.79 (3.48)
  9.76 (3.21)
  7.17 (2.28)
 192


Funds Used
 Factor Set

Average Return (% Annualized)


Count


Table 13a: Average returns of risk-adjusted liquidity portfolios, adjusted according to a
rolling-window method. Assets in the specified subset are grouped into 5 portfolios based
on autocorrelations estimated over the preceding 5 years. The risk adjustment is performed
by subtracting the sum of the product of a pre-specified set of factor realizations and their
estimated loadings or β̂’s, where the β̂ values are estimated with the preceding 5 calendar
years of data. The equal-weighted average of the residual returns of funds within each of the
5 quintiles is then averaged each month to yield the quintile portfolio’s risk-adjusted return
for that month. Finally, the average of these risk-adjusted portfolio returns is computed
across the 192 months between January 1991 to December 2006. Reported t-stats are based
on the Newey-West estimator with 3 lags. The four sets of factors used to estimate the
βi,k,t∗’s are: “Market Only”, which contains the concurrent return of the aggregate U.S.
stock market; the “Four-Factor Set”, which contains the return for the aggregate U.S. stocks
market plus size, value, and momentum factors; the “Broad Factor Set”, which contains 9 risk
factors (the Fama-French U.S. Market Index, the Lehman U.S. Aggregate Government Bond
Index, the Lehman Universal High-Yield Corporate Index, the Goldman Sachs Commodities
Index, the traded-weighted U.S. Dollar Index, the Fama-French High-Minus-Low (HML)
Book-to-Market Index, the Fama-French Small-Minus-Big (SMB) Capitalization Index, the
Fama-French Momentum Index, and the first-difference of the VIX Volatility Index); and
“Lagged Market”, which contains the concurrent and lagged return of the aggregate U.S.
stock market.
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Low
 2
 3
 4
 High
 Difference


Panel C: Mutual Funds


All Mutual Funds
 Raw
  9.22 (3.84)
  9.44 (3.89)
  8.65 (4.48)
  8.02 (4.39)
  8.95 (4.94)
  -0.27 (-0.12)
 192

All Mutual Funds
 Market Model
  1.37 (2.01)
  0.82 (1.16)
  1.09 (1.63)
  1.77 (2.48)
  4.01 (5.12)
  2.64 (2.99)
 192

All Mutual Funds
 4-Factor Set
  0.30 (0.47)
  0.38 (0.63)
  0.42 (0.65)
  0.94 (1.30)
  2.34 (3.72)
  2.04 (2.47)
 192

All Mutual Funds
 Broad Factor Set
  -0.68 (-1.43)
  -0.71 (-1.39)
  -0.59 (-1.21)
  -0.38 (-0.96)
  1.00 (2.56)
  1.67 (3.15)
 192

All Mutual Funds
 Lagged Market
  1.68 (2.49)
  0.74 (0.97)
  0.82 (1.09)
  1.32 (1.75)
  3.04 (3.86)
  1.35 (1.48)
 192


Asset Allocation Mutual Funds
 Raw
  8.87 (4.73)
  9.27 (4.54)
  8.90 (4.40)
  8.67 (4.25)
  8.73 (5.08)
  -0.14 (-0.15)
 192

Asset Allocation Mutual Funds
 Market Model
  1.67 (2.91)
  1.35 (2.41)
  1.23 (1.88)
  1.21 (1.73)
  2.61 (2.95)
  0.94 (1.45)
 192

Asset Allocation Mutual Funds
 4-Factor Set
  1.07 (2.03)
  0.86 (1.84)
  0.58 (1.17)
  0.38 (0.62)
  1.20 (1.78)
  0.14 (0.29)
 192

Asset Allocation Mutual Funds
 Broad Factor Set
  -0.55 (-1.53)
  -0.54 (-1.65)
  -0.62 (-1.79)
  -0.93 (-1.86)
  -0.24 (-0.49)
  0.30 (0.68)
 192

Asset Allocation Mutual Funds
 Lagged Market
  2.24 (3.93)
  1.46 (2.57)
  1.29 (1.94)
  0.94 (1.32)
  1.78 (1.91)
  -0.47 (-0.66)
 192


Equity Mutual Funds
 Raw
  11.48 (3.68)
  11.58 (3.45)
  11.69 (3.39)
  12.15 (3.31)
  13.28 (3.53)
  1.80 (0.96)
 192

Equity Mutual Funds
 Market Model
  0.17 (0.23)
  -0.08 (-0.11)
  -0.28 (-0.37)
  -0.13 (-0.13)
  1.40 (0.83)
  1.24 (0.68)
 192

Equity Mutual Funds
 4-Factor Set
  -1.20 (-1.51)
  -0.89 (-1.30)
  -0.74 (-1.07)
  -0.68 (-0.92)
  0.12 (0.13)
  1.32 (1.15)
 192

Equity Mutual Funds
 Broad Factor Set
  -1.15 (-1.71)
  -0.47 (-0.65)
  -0.31 (-0.45)
  -0.18 (-0.24)
  0.88 (0.91)
  2.04 (1.98)
 192

Equity Mutual Funds
 Lagged Market
  0.71 (0.94)
  -0.00 (-0.00)
  -0.61 (-0.82)
  -1.13 (-1.04)
  -0.76 (-0.43)
  -1.47 (-0.75)
 192


Fixed Income Mutual Funds
 Raw
  5.70 (5.77)
  5.88 (5.74)
  5.94 (6.06)
  6.12 (6.33)
  7.40 (7.61)
  1.70 (2.56)
 192

Fixed Income Mutual Funds
 Market Model
  4.05 (3.87)
  4.04 (3.74)
  4.05 (4.03)
  4.40 (4.58)
  5.49 (6.24)
  1.45 (2.25)
 192

Fixed Income Mutual Funds
 4-Factor Set
  3.04 (2.81)
  3.14 (2.86)
  3.24 (3.22)
  3.72 (3.84)
  4.58 (5.37)
  1.55 (2.48)
 192

Fixed Income Mutual Funds
 Broad Factor Set
  0.12 (0.24)
  0.16 (0.32)
  0.09 (0.24)
  0.24 (1.06)
  1.23 (4.08)
  1.11 (2.05)
 192

Fixed Income Mutual Funds
 Lagged Market
  4.18 (3.92)
  4.20 (3.83)
  4.28 (4.08)
  4.47 (4.49)
  4.73 (5.09)
  0.55 (0.87)
 192


Panel D: Stocks


Stocks (100 Value Weighted)
 Raw
  15.18 (4.36)
  14.91 (4.04)
  15.58 (3.90)
  16.97 (4.05)
  18.88 (3.91)
  3.70 (1.25)
 192

Stocks (100 Value Weighted)
 Market Model
  2.64 (1.47)
  2.19 (1.16)
  2.29 (1.18)
  3.87 (1.64)
  7.02 (2.19)
  4.37 (1.48)
 192

Stocks (100 Value Weighted)
 4-Factor Set
  -0.36 (-0.36)
  -0.96 (-0.97)
  -1.02 (-1.02)
  0.06 (0.05)
  1.78 (1.98)
  2.14 (1.94)
 192

Stocks (100 Value Weighted)
 Broad Factor Set
  -0.40 (-0.37)
  -0.68 (-0.69)
  -0.63 (-0.63)
  0.08 (0.07)
  2.00 (2.08)
  2.41 (2.09)
 192

Stocks (100 Value Weighted)
 Lagged Market
  2.90 (1.64)
  1.31 (0.68)
  0.32 (0.16)
  0.77 (0.31)
  1.89 (0.57)
  -1.01 (-0.34)
 192


Funds Used
 Factor Set

Average Return (% Annualized)


Count


Table 13b: (Continued).

quintile is biased toward the more illiquid funds such as Convertible Arbitrage and the

lowest-autocorrelation quintile is biased toward the more liquid funds such as Managed

Futures and Global Macro. In fact, each quintile in the “All (Category Neutral)” row

contains approximately the same number of funds, and the same distribution across the 11

categories of hedge funds. One potentially important benefit of this construction is the fact

that missing risk factors unrelated to illiquidity for a particular hedge-fund category are less

likely to confound the liquidity spread estimate because the missing factor will affect all

autocorrelation quintiles in approximately the same way (due to the assumption that the

missing factor is not related to illiquidity). This characteristic suggests that an illiquidity

premium of 3.93% may be the most robust estimate for the hedge-fund industry as a whole.

5.5 Dynamics of Illiquidity Premia: 1998–2006

Given the liquidity shocks that have affected traditional and alternative investments over

the past decade, a natural application of our autocorrelation-based illiquidity premium is

to see whether its time variation during that period reflects such shocks. We focus on the
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Panel A: Raw Returns


Lowest
 2
 3
 4
 Highest 
 Difference
 Count


Convertible Arbitrage
  7.34 (1.57)
  10.80 (4.49)
  10.49 (4.63)
  6.01 (2.65)
  9.81 (7.12)
  2.47 (0.56)
 144

Dedicated Short Bias
  -3.00 (-0.44)
  -8.04 (-1.08)
  -4.97 (-0.51)
  1.68 (0.25)
  4.38 (0.90)
  7.37 (1.22)
 120

Emerging Markets
  8.46 (1.47)
  13.15 (1.91)
  13.75 (2.13)
  16.39 (2.64)
  10.47 (1.72)
  2.01 (0.65)
 144

Long/Short Equity
  14.14 (5.75)
  14.69 (5.23)
  13.43 (4.51)
  14.82 (5.18)
  15.46 (5.78)
  1.32 (0.75)
 192

Equity Market Neutral
  9.48 (5.39)
  -2.06 (-0.83)
  6.99 (3.82)
  8.59 (4.08)
  8.10 (4.45)
  -1.38 (-0.67)
 120

Event Driven
  11.28 (6.73)
  12.14 (8.03)
  12.64 (7.11)
  11.77 (7.47)
  11.77 (8.33)
  0.49 (0.45)
 192

Fixed Income Arbitrage
  -0.81 (-0.41)
  8.55 (4.24)
  5.19 (2.56)
  6.23 (3.51)
  3.95 (1.17)
  4.76 (1.30)
 131

Fund of Funds
  7.53 (3.91)
  8.84 (5.05)
  9.96 (4.92)
  10.22 (4.12)
  9.87 (5.64)
  2.34 (1.02)
 192

Global Macro
  10.74 (3.57)
  9.54 (2.39)
  6.79 (1.71)
  13.22 (2.91)
  3.48 (1.32)
  -7.26 (-2.11)
 180

Managed Futures
  3.63 (1.23)
  6.08 (2.00)
  8.50 (2.72)
  6.94 (2.01)
  7.53 (2.38)
  3.91 (1.51)
 192

Multi-Strategy
  11.42 (3.00)
  9.80 (1.99)
  15.59 (3.31)
  11.82 (4.03)
  6.93 (1.85)
  -4.49 (-0.82)
 108


All (Category Neutral)
  7.93 (5.62)
  9.18 (6.02)
  9.72 (6.15)
  10.74 (6.15)
  9.52 (6.67)
  1.59 (1.30)
 192


Funds Used

Mean (% Annualized)


Table 14a: Average returns of raw (Panel A) and risk-adjusted (Panels B and C) liquidity
portfolios for each of 11 Lipper/TASS hedge-fund categories, risk adjusted using two meth-
ods, and using the following 9 risk factors: the Fama-French U.S. Market Index, the Lehman
U.S. Aggregate Government Bond Index, the Lehman Universal High-Yield Corporate Index,
the Goldman Sachs Commodities Index, the traded-weighted U.S. Dollar Index, the Fama-
French High-Minus-Low (HML) Book-to-Market Index, the Fama-French Small-Minus-Big
(SMB) Capitalization Index, the Fama-French Momentum Index, and the first-difference of
the VIX Volatility Index. Assets in the specified subset are grouped into 5 portfolios based
on autocorrelations estimated over the preceding 5 years, and quintile returns are computed
as equal-weighted averages of monthly returns of funds in the autocorrelation quintile. The
first risk-adjustment method (Panel B) involves regressing the entire time series of quintile
returns on all factors and taking the estimated intercept term as the risk-adjusted return.
The second risk-adjustment method (Panel C) is performed by subtracting the sum of the
product of a pre-specified set of factor realizations and their estimated loadings or β’s, where
the β values are estimated with the preceding 5 calendar years of data. The equal-weighted
average of the residuals of funds in each of the 5 autocorrelation-quintiles is computed each
month to yield the quintile portfolio’s risk-adjusted return for that month. Finally, the av-
erage of these risk-adjusted portfolio returns is computed across all months from January
1991 to December 2006 for which we have at least 5 funds (the minimum number needed
to construct 5 autocorrelation-ranked portfolios) in the given category. Reported t-stats
are based on the Newey-West estimator with 3 lags. The “All (Category Neutral)” is the
equal-weighted average of the above 11 time-series. It is “Category Neutral” in the sense
that each of the 5 quintile portfolios involved in calculating the time series used in creating
the values reported in this table contains the same number of funds from each category.
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Panel B: Alpha After Adjusting for Broad Factor Set


Low
 2
 3
 4
 High
 Difference


Convertible Arbitrage
  -0.23 (-0.07)
  6.45 (2.89)
  6.91 (4.19)
  4.53 (2.24)
  9.69 (6.70)
  9.91 (2.98)
 144

Dedicated Short Bias
  2.92 (0.49)
  2.36 (0.52)
  1.46 (0.17)
  12.24 (3.33)
  7.49 (2.47)
  4.57 (0.62)
 120

Emerging Markets
  -0.09 (-0.02)
  -2.05 (-0.44)
  0.54 (0.11)
  2.29 (0.48)
  -1.08 (-0.25)
  -0.99 (-0.28)
 144

Long/Short Equity
  6.74 (5.15)
  3.33 (2.73)
  2.62 (1.64)
  4.03 (2.33)
  4.19 (3.76)
  -2.55 (-1.82)
 192

Equity Market Neutral
  9.42 (5.25)
  -3.59 (-1.55)
  2.29 (1.22)
  5.79 (3.03)
  5.10 (3.14)
  -4.32 (-2.05)
 120

Event Driven
  5.76 (4.21)
  6.81 (5.28)
  7.99 (6.54)
  7.15 (4.90)
  7.61 (7.01)
  1.86 (1.90)
 192

Fixed Income Arbitrage
  -2.51 (-1.73)
  3.01 (1.38)
  3.87 (1.69)
  2.23 (0.99)
  4.57 (1.44)
  7.08 (2.08)
 131

Fund of Funds
  0.28 (0.13)
  2.39 (1.41)
  3.01 (1.70)
  3.92 (2.16)
  3.73 (2.97)
  3.45 (1.36)
 192

Global Macro
  4.43 (1.58)
  3.46 (0.86)
  -3.21 (-0.77)
  5.07 (1.04)
  -1.30 (-0.47)
  -5.73 (-1.51)
 180

Managed Futures
  -3.90 (-1.23)
  -1.24 (-0.43)
  2.66 (0.82)
  -1.56 (-0.51)
  1.00 (0.29)
  4.91 (1.73)
 192

Multi-Strategy
  3.43 (1.34)
  5.96 (1.20)
  9.77 (2.73)
  7.73 (4.70)
  3.64 (1.02)
  0.21 (0.05)
 108


All (Category Neutral)
  2.30 (2.16)
  2.99 (2.37)
  3.34 (2.34)
  4.44 (2.82)
  3.92 (3.38)
  1.62 (1.39)
 192


Panel C: Residual After Adjusting for Broad Factor Set


Low
 2
 3
 4
 High
 Difference


Convertible Arbitrage
  -1.93 (-0.52)
  5.57 (3.11)
  5.83 (2.95)
  3.88 (2.03)
  8.06 (5.51)
  9.99 (2.72)
 144

Dedicated Short Bias
  5.49 (1.17)
  4.18 (0.85)
  3.37 (0.57)
  5.53 (0.84)
  8.63 (2.84)
  3.15 (0.71)
 120

Emerging Markets
  1.43 (0.33)
  6.23 (1.18)
  11.90 (2.14)
  12.01 (2.24)
  8.03 (1.38)
  6.59 (1.66)
 144

Long/Short Equity
  4.49 (3.70)
  5.73 (4.40)
  4.24 (3.12)
  2.35 (1.16)
  7.95 (5.42)
  3.45 (2.11)
 192

Equity Market Neutral
  8.13 (4.95)
  -4.86 (-1.64)
  4.86 (1.90)
  8.32 (3.13)
  8.39 (3.34)
  0.26 (0.10)
 120

Event Driven
  4.68 (3.41)
  7.75 (5.85)
  5.45 (3.18)
  6.98 (5.23)
  5.99 (4.02)
  1.31 (1.03)
 192

Fixed Income Arbitrage
  -2.58 (-1.06)
  2.00 (0.90)
  5.59 (2.70)
  3.33 (1.75)
  4.08 (1.26)
  6.66 (1.60)
 131

Fund of Funds
  1.51 (0.66)
  4.03 (2.12)
  3.26 (1.85)
  3.79 (1.34)
  5.26 (4.37)
  3.75 (1.68)
 192

Global Macro
  5.90 (1.92)
  6.71 (1.75)
  -0.47 (-0.12)
  3.65 (0.74)
  -0.39 (-0.15)
  -6.28 (-1.70)
 180

Managed Futures
  -2.94 (-0.95)
  0.37 (0.10)
  4.32 (1.26)
  2.82 (0.73)
  4.59 (1.40)
  7.53 (2.78)
 192

Multi-Strategy
  1.85 (0.46)
  1.40 (0.34)
  7.83 (1.63)
  9.20 (4.72)
  7.39 (3.02)
  5.54 (1.24)
 108


All (Category Neutral)
  2.03 (1.41)
  4.26 (2.75)
  4.36 (2.92)
  4.53 (2.34)
  5.96 (4.82)
  3.93 (3.23)
 192


Count


Average Return (% Annualized)

Count


Funds Used


Funds Used


Alpha (Annualized in %)


Table 14b: (Continued).
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evolution of the illiquidity premium from 1998 to 2006 since 1998 is the first year for which

all 11 hedge fund categories have at least 5 funds with the minimum of 5 years of history, i.e.,

this is the first year for which we can construct 5 autocorrelation-ranked portfolios for each

of the 11 categories of hedge funds. However, even this truncated sample holds great interest

because it begins shortly before the fall of Long-Term Capital Management in August 1998,

and ends with several years of great stability, low volatility, and significant increases in

risk-taking during the 2004–2006 period.

We begin by creating an overall measure of the illiquidity premium by taking the equal-

weighted average of the 11 liquidity spreads corresponding to each of the 11 Lipper/TASS

hedge fund categories. This corresponds to the time series of returns used in computing the

row labeled “All (Category Neutral)” in Table 14. Figure 2 shows the cumulative sum of

this measure between January 1998 and December 2006. This figure shows that the first

year of the sample period—particularly the second half of 1998—was a challenging one for

funds holding illiquid assets. However, in the following four years, funds holding these assets

performed quite well. In fact, by the end of 2002, the cumulative return of the illiquidity

spread portfolio reached 30% (using arithmetic cumulation). The last four years of the

sample show a substantial drop in this premium.

Figure 3 shows the cumulative return of the liquidity spread portfolio for each of the 11

categories.21As reported in Table 14, Global Macro funds seem to have a negative liquidity

spread while categories such as Fixed Income and Convertible Arbitrage experienced two

of the highest cumulative returns during this period. Without exception, the slopes for all

11 time series in Figure 3 declined towards zero in the second half of the sample, providing

strong evidence that the pattern observed in the average of the series (Figure 2) is not driven

by a small subset of them.

Overall, the behavior of the aggregate illiquidity premium is remarkably consistent with

the common wisdom of the evolution of liquidity in the hedge fund industry from 1998 to

2006. We would expect funds holding the most illiquid assets to be hit hard during the

second half of 1998 as credit spreads widened dramatically and volatility increased due to

the LTCM crisis. This global flight to quality and heightened volatility likely forced a number

21Note the data reported in this figure is based on the return since January 1998, while the results in
Table 14 use all available data for each category, which goes back farther than 1998 in most cases.
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of fund managers out of the market, resulting in a higher illiquidity premium in the year

following 1998. However, the tremendous growth in assets under management in the hedge-

fund industry in the years after LTCM, coupled with the secular decline in volatility across

most major asset classes which allowed greater leverage to be deployed, would have increased

the demand for these illiquid assets. This, in turn, would have increased the liquidity of such

illiquid assets, thereby reducing their required rate of return over the latter part of our

sample period.

This explanation for the time variation in the estimated illiquidity premium from 1998 to

2006 is also consistent with the patterns documented by Chan et al. (2006, 2007), Khandani

and Lo (2007, 2008), and Lo (2008) during this period, which showed temporary disruption

in the hedge-fund industry immediately after LTCM’s demise, but then a broad and rapid

recovery, followed by a period of nearly uninterrupted growth from 2000 to 2006.

Of course, these inferences are based on estimated autocorrelation coefficients that are

subject to the usual sampling variation of any statistical estimator. Nevertheless, even a

simple split-sample test of stability suggests that illiquidity risk premia are not constant

over time, or over varying market conditions. For example, basic economic intuition would

suggest that illiquidity risk premia were considerably higher after the global flight-to-safety in

August 1998 than before, and credit spreads before and after LTCM’s demise are consistent

with this intuition. Such dynamics underscore the importance of incorporating measures

of illiquidity risk into the portfolio construction process as in Lo, Petrov, and Wierzbicki

(2003), and motivates the need for overlay strategies such as the “beta-blockers” of Healy

and Lo (2009) to hedge liquidity constraints.

6 Conclusions

In this paper, we provide empirical evidence that adds further support to the use of autocor-

relation as a measure of illiquidity in hedge funds, mutual funds, and U.S. equity portfolios.

While other measures of illiquidity exist, e.g., percentage bid/offer spreads, trading volume,

etc., autocorrelation is the only measure that applies to both publicly traded and private

securities, and requires only returns to compute.

Using the standard asset-pricing approach of constructing autocorrelation-sorted port-
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Figure 2: Cumulative monthly returns of the “Category-Neutral Liquidity Spread Portfolio”
from January 1998 to December 2006, which is the cumulative return of the equal-weighted
average of the 11 “liquidity spread” portfolios. Each liquidity spread portfolio is the difference
between the equal-weighed average residual return for all funds in the high-autocorrelation
minus the low-autocorrelation quintile, where the portfolios are constructed based on auto-
correlations computed over the prior 5-year period, and the residuals are computed relative
to the “Broad Factors Set” of 9 risk factors (the Fama-French U.S. Market Index, the Lehman
U.S. Aggregate Government Bond Index, the Lehman Universal High-Yield Corporate Index,
the Goldman Sachs Commodities Index, the traded-weighted U.S. Dollar Index, the Fama-
French High-Minus-Low (HML) Book-to-Market Index, the Fama-French Small-Minus-Big
(SMB) Capitalization Index, the Fama-French Momentum Index, and the first-difference of
the VIX Volatility Index), and estimated using the prior 5 calendar years of monthly returns.
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Figure 3: Cumulative monthly returns of the “liquidity spread” portfolios for 11 categories
of hedge funds based on monthly returns from January 1998 to December 2006. Each
liquidity spread portfolio is the difference between the equal-weighed average residual return
for all funds in the high-autocorrelation minus the low-autocorrelation quintile, where the
portfolios are constructed based on autocorrelations computed over the prior 5-year period,
and the residuals are computed relative to the “Broad Factors Set” of 9 risk factors (the
Fama-French U.S. Market Index, the Lehman U.S. Aggregate Government Bond Index, the
Lehman Universal High-Yield Corporate Index, the Goldman Sachs Commodities Index,
the traded-weighted U.S. Dollar Index, the Fama-French High-Minus-Low (HML) Book-
to-Market Index, the Fama-French Small-Minus-Big (SMB) Capitalization Index, the Fama-
French Momentum Index, and the first-difference of the VIX Volatility Index), and estimated
using the prior 5 calendar years of monthly returns. The hedge-fund categories are defined
as: Convertible Arbitrage (CA), Dedicated Short Bias (DSB), Emerging Markets (EM),
Long/Short Equity (EQ LS), Equity Market Neutral (EQ MN), Event Driven (ED), Fixed
Income Arbitrage (FI), Fund of Funds (FOF), Global Macro (GM), Managed Futures (MF),
and Multi-Strategy (MS).
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folios, we are able to measure the illiquidity risk premia for all three types of investment

vehicles, and for the 11 hedge-fund investment categories. While even raw returns point to

a link between autocorrelation and expected returns, the link becomes even stronger after

returns are adjusted for various common risk factors. The estimated liquidity spread among

hedge funds in our sample is 3.96% per year, and the comparable estimate among Fixed

Income mutual funds is 2.74%. We did not find much evidence for an illiquidity premium

among Equity and Asset Allocation mutual funds, or the 100 portfolios of U.S. common

stocks.

Among hedge-fund categories known to involve illiquid assets, e.g., Convertible Arbitrage

and Fixed Income Arbitrage, the estimated illiquidity premia are substantial—9.91% and

7.08%, respectively—but even Managed Futures, a category not usually associated with

illiquid assets, exhibited an illiquidity premium of 4.91%. Global Macro funds exhibited a

statistically insignificant but negative illiquidity premium in our sample.

Our autocorrelation-based illiquidity premia also suggest that the price of illiquidity risk

varies over time, presumably as a function of market conditions. Based on the time variation

in the estimated aggregate illiquidity premium from 1998 to 2006, we can empirically measure

the challenges to illiquid hedge funds in 1998, their sharp reversal to profitability in the

following four years, and the increasing competition and leverage that characterized the last

few years of our sample.

Together, these empirical results suggest that autocorrelation is a useful measure for

gauging illiquidity exposure in a broad spectrum of asset returns. Given the central role

that liquidity has played in virtually every major financial crisis, any quantitative measure

of illiquidity risk should be a welcome addition to the toolkit of investors, portfolio managers,

and regulators.
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A Appendix

Appendix A.1 contains the definitions of the Lipper/TASS hedge fund categories, obtained

directly from the Lipper/TASS documentation, and Appendix A.2 develops some formal

statistical tools for analyzing autocorrelation under IID and unit-root assumptions.

A.1 Lipper/TASS Primary Category Definitions

The following is a list of hedge-fund categories in the Lipper/TASS Database:22

1. Convertible Arbitrage. This strategy is identified by investment in the convertible

securities of a company. A typical investment is to be long the convertible bond

and short the common stock of the same company. Positions are designed to generate

profits from the fixed-income security as well as the short sale of stock, while protecting

principal from market moves.

2. Dedicated Short Bias. This strategy is to maintain net short as opposed to pure

short exposure. Short biased managers take short positions in mostly equities and

derivatives. The short bias of a managers portfolio must be constantly greater than

zero to be classified in this category.

3. Emerging Markets. This strategy involves equity or fixed-income investing in emerg-

ing markets around the world. Because many emerging markets do not allow short sell-

ing, nor offer viable futures or other derivative products with which to hedge, emerging

market investing often employs a long-only strategy.

4. Equity Market Neutral. This investment strategy is designed to exploit equity

market inefficiencies and usually involves being simultaneously long and short matched

equity portfolios of the same size within a country. Market neutral portfolios are de-

signed to be either beta or currency neutral, or both. Well designed portfolios typically

control for industry, sector, market capitalization, and other exposures. Leverage is

often applied to enhance returns.

5. Event Driven. This strategy is defined as “special situations” investing designed to

capture price movement generated by a significant pending corporate event such as

a merger, corporate restructuring, liquidation, bankruptcy or reorganization. There

are three popular sub-categories in event driven strategies: risk arbitrage, distressed

securities, and multi-strategy.

(a) Risk Arbitrage. Specialists invest simultaneously in long and short positions

in both companies involved in a merger or acquisition. Risk arbitrageurs are

typically long the stock of the company being acquired and short the stock of the

acquiring company. The principal risk is deal risk, should the deal fail to close.

22See http://www.hedgeworld.com/education/index.cgi?page=hedge fund styles.
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(b) Distressed. Hedge fund managers invest in the debt, equity or trade claims of

companies in financial distress and general bankruptcy. The securities of compa-

nies in need of legal action or restructuring to revive financial stability typically

trade at substantial discounts to par value and thereby attract investments when

managers perceive a turn-around will materialize. Managers may also take arbi-

trage positions within a company’s capital structure, typically by purchasing a

senior debt tier and short selling common stock, in the hopes of realizing returns

from shifts in the spread between the two tiers.

(c) Multi-Strategy. This subset refers to hedge funds that draw upon multiple

themes, including risk arbitrage, distressed securities, and occasionally others

such as investments in micro and small capitalization public companies that are

raising money in private capital markets. Hedge fund managers often shift assets

between strategies in response to market opportunities.

6. Fixed Income Arbitrage. The fixed-income arbitrageur aims to profit from price

anomalies between related interest rate securities. Most managers trade globally with

a goal of generating steady returns with low volatility. This category includes interest

rate swap arbitrage, the United States and non-U.S. government bond arbitrage, for-

ward yield curve arbitrage, and mortgage-backed securities arbitrage. The mortgage-

backed market is primarily U.S.-based, over-the-counter and particularly complex.

7. Global Macro. Global macro managers carry long and short positions in any of the

world’s major capital or derivative markets. These positions reflect their views on

overall market direction as influenced by major economic trends and or events. The

portfolios of these hedge funds can include stocks, bonds, currencies, and commodities

in the form of cash or derivatives instruments. Most hedge funds invest globally in

both developed and emerging markets.

8. Long/Short Equity. This directional strategy involves equity-oriented investing on

both the long and short sides of the market. The objective is not to be market neutral.

Managers have the ability to shift from value to growth, from small to medium to large

capitalization stocks, and from a net long position to a net short position. Managers

may use futures and options to hedge. The focus may be regional, such as long/short

U.S. or European equity, or sector specific, such as long and short technology or health-

care stocks. Long/Short Equity hedge funds tend to build and hold portfolios that are

substantially more concentrated than those of traditional stock hedge funds.

9. Managed Futures. This strategy invests in listed financial and commodity futures

markets and currency markets around the world. The managers are usually referred

to as Commodity Trading Advisors, or CTAs. Trading disciplines are generally sys-

tematic or discretionary. Systematic traders tend to use price and market specific
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information (often technical) to make trading decisions, while discretionary managers

use a judgmental approach.

10. Multi-Strategy. Multi-Strategy hedge funds are characterized by their ability to

dynamically allocate capital among strategies falling within several traditional hedge

fund disciplines. The use of many strategies, and the ability to reallocate capital

between strategies in response to market opportunities, means that such hedge funds

are not easily assigned to any traditional category. The Multi-Strategy category also

includes hedge funds employing unique strategies that do not fall under any of the

other descriptions.

11. Fund of Funds. A ‘Multi Manager’ fund will employ the services of two or more

trading advisors or hedge funds who will be allocated cash by the trading manager to

trade on behalf of the fund.

A.2 Statistical Inference for Autocorrelation Coefficients

In this section, we develop the formal sampling theory for the estimator of the first-order

autocorrelation of returns and apply this sampling theory to our datasets. Let Rt denote a

date-t asset return and asume that we have T time-series observations of this series. The

first-order autocorrelation coefficient is estimated by the following expression:

ρ̂1 =
(T − 1)−1

∑T−1

t=1 RtRt+1 −
[

(T − 1)−1
∑T−1

t=1 Rt

] [

(T − 1)−1
∑T

t=2 Rt

]

(T − 1)−1
∑T−1

t=1 R2
t −

[

(T − 1)−1
∑T−1

t=1 Rt

]2
. (A.1)

We consider the sampling distribution of ρ̂1 under two different null hypotheses.

Case 1: Constant Mean and Uncorrelated Returns

Consider the case where the data is generated by the following data generating process

(DGP):

H0 : Rt = µ + ǫt (A.2)

where µ is the expected return and ǫt is the unpredictable part of the return, so we have

E[ǫt|Ht] = 0, where Ht ≡ σ(ǫ1, · · · , ǫt) is the set of all available information at time t.23 This

null hypothesis corresponds to the weakest form of the random walk hypothesis, the uncor-

related increments version (see, for example, Campbell, Lo, and MacKinlay, 1997, Chapter

23More formally, σ(ǫ1, · · · , ǫt) is the σ-algebra generated by {ǫ1, · · · , ǫt}.
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2). Under this hypothesis, the first-order autocorrelation has the following asymptotic dis-

tribution:

Proposition 1 Under the null hypothesis of (A.2) where ǫt is a martingale difference se-

quence adopted to the filtration Ht ≡ σ(ǫ1, · · · , ǫt) and under some additional technical reg-

ularity conditions (see Hansen, 1982), the first-order autocorrelation coefficient has the fol-

lowing asymptotic distribution:

√
T ρ̂

a∼ N (0, θ2) , θ2 ≡ limT→∞
E [T−1

∑

(Rt − µ)2(Rt−1 − µ)2]

[limT→∞
E [T−1(Rt − µ)2]]2

. (A.3)

Furthermore, the following is a consistent estimator of θ2:

θ̂2 ≡ T−1
∑

(Rt − µ̂)2(Rt−1 − µ̂)2

[T−1
∑

(Rt − µ̂)2]2
, µ̂ ≡ T−1

T
∑

t=1

Rt . (A.4)

Proof: This proposition can be proved using the Generalized Method of Moments (GMM)

by setting up the usual moment conditions for the autocorrelation coefficient, from which

the asymptotic distribution of the standard GMM estimator follows directly from Hansen

(1982).

Case 2: Unit-Root Process

Consider the null hypothesis in which the DGP is given by:

H0 : Rt = µt + ǫt , µt = µt−1 + νt (A.5)

where both ǫt and νt are martingale difference sequences adapted to the filtration

σ(ν1, · · · , νt, ǫ1, · · · , ǫt). Under this null hypothesis, it is assumed that:

E[ǫt|Ht−1] = 0

E[νt|Ht−1] = 0

E[νtǫt|Ht−1] = 0 .

Our assumptions imply that shocks to expected returns and the unexpected part of the return

are unforecastable, and that these shocks are concurrently uncorrelated. These assumptions

are quite general and include many forms of leptokurtosis such as the AutoRegressive Con-

ditional Heteroskedasticity (ARCH) model and many of its generalizations. It can be shown

that the limiting distribution for the sample autocorrelation in this case is given by the

following proposition:
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Proposition 2 Under the null hypothesis that the data is generated by the process given

in (A.5) where both ǫt and νt are martingale difference sequence adapted to the filtration

σ(ν1, · · · , νt, ǫ1, · · · , ǫt), and under some additional technical requirements, we have the fol-

lowing limiting distribution for the sample autocorrelation as T increases without bound:

T (ρ̂ − 1) ⇒
1

2
(W (1)2 − 1) − W (1)

∫

1

0 W (u)du − σ2
ǫ

σ2
ν

∫

1

0
W (u)2du − (

∫

1

0
W (u)du)2

(A.6)

where W (u) is a standard Brownian motion over interval [0, 1] and ‘⇒’ denotes weak con-

vergence (see Billingsley, 1968).

Proof: The proof is similar to the derivation of the standard Dicky-Fuller test statistic based

on the Functional Central Limit Theory, hence we omit it to conserve space. Interested

readers should consult Phillips (1987) for further details.

Note that the limiting distribution (A.6) is identical to the standard test statistic for

a unit root except for the impact of ǫt—the final expression depends on the ratio σǫ/σν .

Any consistent estimator of this ratio can be used to conduct asymptotic inferences. In our

empirical application, we use the estimator outlined in the following corollary:

Corollary 1 Under the null hypothesis (A.5), the following holds:

−Corr(∆Rt, ∆Rt−1)

2Corr(∆Rt, ∆Rt−1) + 1

p→ σ2
ǫ

σ2
ν

where ∆Rt ≡ Rt − Rt−1 and ‘
p→’ denotes convergence in probability.

Proof: This result follows immediately from (A.5).

Empirical Results

Tables A.1 and A.2 summarize the results of autocorrelation tests applied to our sample

of data. As seen in Table A.1, the estimated first-order autocorrelation coefficients are

statistically significant among a large fraction of certain categories of hedge funds, e.g., 79%

of all Convertible Arbitrage funds, and 52% of Event Driven funds. However, only 4% of

Managed Futures and 8% of Dedicated Short Biased hedge funds have statistically significant

first-order autocorrelations. This does not imply that ranking funds in these two categories

by their autocorrelations is without merit. As seen in Table 2, funds in these two categories

have two of the highest levels of volatility among hedge fund categories, hence the statistical

insignificance of their autocorrelations may be more of a symptom of the noisiness of their

returns rather than a lack of differences in illiquidity among funds in these categories.

Among mutual funds, Asset Allocation funds have the lowest level of autocorrelation and

the estimates are significant among less than 1% of these funds. This is in contrast to Fixed
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Income mutual funds, for which the null hypothesis can be rejected in 15% of these funds.

Moreover, note that Money Market funds show a very high level of autocorrelation, and the

null hypothesis can be rejected for over 99% of these funds. As we argued in Section 4.2,

these funds contain a unit-root in their expected returns due to the fact that they are mostly

driven by short-term interest rates.

Note that the purpose of the unit-root test is to determine whether or not to include mu-

tual funds with no category information. These are typically older funds, since the category

information we use is only available after July 2003. However, the ratio of σ2
ǫ

σ2
ν

is undefined

under the null of ρ1 = 0, and our unit-root test is invalid for such funds. Therefore, we

will only ignore mutual funds with no category information for which the null hypothesis of

ρ1 = 0 is rejected but the null of a unit root is not rejected. There are 1,460 such funds

that we drop from our sample. Table A.2 shows the result of the unit-root tests based on

Proposition 2 and Corollary 1.
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Total (%)
  And Positive Rho_1 (%)
 And Negative Rho_1 (%)


Hedge Fund
  Convertible Arbitrage         
 101
 38.31
 5.68
 79.21
 79.21
 0.00

Hedge Fund
  Dedicated Short Bias          
 25
 9.25
 40.83
 8.00
 8.00
 0.00

Hedge Fund
  Emerging Markets              
 182
 17.38
 24.13
 36.26
 36.26
 0.00

Hedge Fund
  Equity Market Neutral         
 153
 11.42
 33.54
 28.76
 24.18
 4.58

Hedge Fund
  Event Driven                  
 254
 22.75
 16.08
 52.36
 51.57
 0.79

Hedge Fund
  Fixed Income Arbitrage        
 108
 19.15
 26.52
 25.93
 25.00
 0.93

Hedge Fund
  Fund of Funds                 
 631
 18.86
 21.14
 42.00
 41.52
 0.48

Hedge Fund
  Global Macro                  
 126
 7.68
 41.30
 8.73
 7.94
 0.79

Hedge Fund
  Long/Short Equity Hedge       
 906
 12.63
 34.97
 16.11
 15.45
 0.66

Hedge Fund
  Managed Futures               
 308
 0.43
 51.17
 3.57
 2.60
 0.97

Hedge Fund
  Multi-Strategy                
 133
 17.85
 20.94
 42.11
 41.35
 0.75


Mutual Fund
  Asset Allocation              
 1,133
 5.31
 58.91
 0.35
 0.35
 0.00

Mutual Fund
  Convertible                   
 74
 9.99
 36.51
 6.76
 6.76
 0.00

Mutual Fund
  Equity                        
 7,626
 7.66
 48.26
 5.49
 5.46
 0.04

Mutual Fund
  Fixed Income                  
 4,088
 8.17
 40.98
 15.22
 15.22
 0.00

Mutual Fund
  Info. N/A                     
 3,078
 21.07
 35.27
 26.77
 26.61
 0.16

Mutual Fund
  Money Market                  
 1,560
 94.18
 0.31
 99.42
 99.42
 0.00

Mutual Fund
  Unclear (Multiple Categories) 
 50
 10.83
 44.38
 12.00
 12.00
 0.00


Null of Rho_1=0 Rejected Using 5% Test
Average p-Value 

(%)


Average 

Rho_1 (%)


Count
Category
Fund Type


Table A.1: Statistical significance of first-order autocorrelation coefficients of monthly returns of hedge funds and mutual funds
from January 1996 to December 2006.
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Fund Type
   
 Total (%)

And Null of Unit Root Not 


Rejected Using 5% Test (%)


Mutual Fund
  Asset Allocation              
 1,133
 5.31
   
 0.35
 0.09

Mutual Fund
  Convertible                   
 74
 9.99
   
 6.76
 0.00

Mutual Fund
  Equity                        
 7,626
 7.66
   
 5.49
 1.15

Mutual Fund
  Fixed Income                  
 4,088
 8.17
   
 15.22
 1.30

Mutual Fund
  Info. N/A                     
 3,078
 21.07
   
 26.77
 12.83

Mutual Fund
  Money Market                  
 1,560
 94.18
   
 99.42
 93.59

Mutual Fund
  Unclear (Multiple Categories) 
 50
 10.83
   
 12.00
 0.00


Null of Rho_1=0 Rejected Using 5% Test

Average 


Rho_1 (%)

Count
Category


Table A.2: Unit-root tests for mutual funds in various categories using monthly returns from January 1996 to December 2006.
Among funds with no category information (the row labeled “Info. N/A”), funds for which the unit-root null hypothesis
cannot be rejected and the null hypothesis of ρ1 = 0 can be rejected are dropped from our sample. We also drop all funds
with a declared category of “Money Market”.
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