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The requirements of thiamine in adult ruminants are mainly met by ruminal bacterial

synthesis, and thiamine deficiencies will occur when dairy cows overfed with high

grain diet. However, there is limited knowledge with regard to the ruminal thiamine

synthesis bacteria, and whether thiamine deficiency is related to the altered bacterial

community by high grain diet is still unclear. To explore thiamine synthesis bacteria and

the response of ruminal microbiota to high grain feeding and thiamine supplementation,

six rumen-cannulated Holstein cows were randomly assigned into a replicated 3 × 3

Latin square design trial. Three treatments were control diet (CON, 20% dietary

starch, DM basis), high grain diet (HG, 33.2% dietary starch, DM basis) and high

grain diet supplemented with 180mg thiamine/kg DMI (HG+T). On day 21 of each

period, rumen content samples were collected at 3 h postfeeding. Ruminal thiamine

concentration was detected by high performance liquid chromatography. The microbiota

composition was determined using Illumina MiSeq sequencing of 16S rRNA gene.

Cows receiving thiamine supplementation had greater ruminal pH value, acetate and

thiamine content in the rumen. Principal coordinate analysis and similarity analysis

indicated that HG feeding and thiamine supplementation caused a strong shift in bacterial

composition and structure in the rumen. At the genus level, compared with CON

group, the relative abundances of 19 genera were significantly changed by HG feeding.

Thiamine supplementation increased the abundance of cellulolytic bacteria including

Bacteroides, Ruminococcus 1, Pyramidobacter, Succinivibrio, and Ruminobacter, and

their increases enhanced the fiber degradation and ruminal acetate production in HG+T

group. Christensenellaceae R7, Lachnospira, Succiniclasticum, and Ruminococcaceae

NK4A214 exhibited a negative response to thiamine supplementation. Moreover,

correlation analysis revealed that ruminal thiamine concentration was positively correlated

with Bacteroides, Ruminococcus 1, Ruminobacter, Pyramidobacter, and Fibrobacter.

Taken together, we concluded that Bacteroides, Ruminococcus 1, Ruminobacter,
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Pyramidobacter, and Fibrobacter in rumen content may be associated with thiamine

synthesis or thiamine is required for their growth and metabolism. In addition, thiamine

supplementation can potentially improve rumen function, as indicated by greater

numbers of cellulolytic bacteria within the rumen. These findings facilitate understanding

of bacterial thiamine synthesis within rumen and thiamine’s function in dairy cows.

Keywords: high-grain feeding, bacterial community, thiamine, dairy cows, high-throughput sequencing

INTRODUCTION

In current intensive dairy production, dairy cows are often
fed high grain diet or easily fermentable carbohydrates to
maximize energy intake and support high milk production.
However, overfeeding of high grain diet is associated with
subacute ruminal acidosis (SARA), affects ruminal fermentation
characteristics and the structure of bacterial community in
rumen content (Khafipour et al., 2009a; Hook et al., 2011).
Specifically, high grain feeding leads to a reduction in the
abundances of cellulolytic bacteria (Fernando et al., 2010),
an increase in the proportions of starch-fermenting and
lactic acid producing bacteria (Khafipour et al., 2009a), and
the enhanced lysis of gram-negative bacteria associated with
increasing ruminal free lipopolysaccharide (LPS) (Khafipour
et al., 2009b). Once LPS translocate from the gastrointestinal
tract into the peripheral blood circulation, the host immune
response will be triggered, causing metabolic alterations and
inflammation (Gressley, 2014), which in turn greatly impact
the production and health of dairy cows. Therefore, more
attentions have been paid to prevent the occurrence of SARA,
and the use of feed supplements such as yeast (AlZahal
et al., 2014), dicarboxylic acids (Vyas et al., 2015) and
sodium bicarbonate (Mao et al., 2016) have been suggested
to enhance rumen microbial community and subsequently
ruminal fermentation. Interestingly, our previous study found
that thiamine supplementation may be a new strategy for SARA
prevention, since thiamine supplementation could improve
rumen fermentation by increasing ruminal pH value and acetate
content, and decreasing ruminal lactate production in rumen
fluid (Pan et al., 2016). Moreover, thiamine supplementation
could also attenuate inflammation response by decreasing
ruminal LPS levels and suppressing the expression of pro-
inflammatory cytokines in rumen epithelium (Pan et al., 2017).
To explore the mechanism of thiamine on ruminal fermentation,
Wang et al. (2015) preliminarily studied the expression
changes of several bacteria associated with lactate metabolism
using real-time PCR technology. They found that thiamine
supplementation balanced ruminal bacterial community by
reducing the population of S. bovis and prompting the growth
of M. elsdenii. Nonetheless, the richness, diversity and overall
bacterial community’s response to thiamine supplementation in
dairy cows are still unclear.

On the other hand, the requirement of thiamine in adult
ruminants is mainly met by ruminal microbial synthesis (Miller
et al., 1986). However, thiamine deficiency will occur when sheep
or cattle have high grain induced subacute or acute ruminal
acidosis (Karapinar et al., 2010; Pan et al., 2016), and thiamine

deficiency is associated with the increasing thiamine degradation
by thiaminase (Brent, 1976) or the decreasing microbial thiamine
synthesis activity. Up to now, except Silverman and Werkman
(1939) reported that certain propionate producing bacteria could
synthesize thiamine or its intermediates, little information is
available about thiamine synthesis bacteria in the rumen. By
far, high-throughput sequencing has been used to identify
ureolytic bacterial community in the rumen (Jin et al., 2016)
and key phylotypes for several metabolic disorders in humans
and animals (Liang et al., 2014). Therefore, the aim of this study
was to explore the key taxa associated with thiamine synthesis
and reveal the microbiota response to thiamine supplementation
under high grain diet by high-throughput sequencing.

MATERIALS AND METHODS

Animals, Experimental Design and Dietary
Treatments
Animal care and procedures were in accordance with the Chinese
guidelines for animal welfare and approved by Animal Care and
Use Committee of the Chinese Academy of Agricultural Sciences.

Six Chinese Holstein dairy cows (627 ± 16.9 kg BW; 180 ±

6 DIM) in second-parity fitted with 10 cm ruminal cannulas
(Bar Diamond, Parma, ID) were allocated to a replicated 3
× 3 Latin square design. Treatments included a control diet
(CON; 20% starch, DM basis), a high grain diet (HG; 33.2%
starch, DM basis), and high grain diet supplemented with 180mg
thiamine/kg DMI (HG+T). The diets were formulated according
to NRC (2001) to meet or exceed the energy requirements of
Holstein dairy cows yielding 20 kg of milk/d with 3.5% milk fat
and 3.0% true protein. Details of ingredient analysis and chemical
composition of dietary ingredients were given in Table S1. Cows
were fed at 06:00 and 18:00 h, one-half of the allowed daily ration
at each feeding, and thiamine (thiamine hydrochloride, purity
≥99%;Wanrong Science and TechnologyDevelopment Co., Ltd.,
Wuhan, China) was administered via the rumen cannula twice
daily after diets were supplied. Three periods were included,
each experimental period consisted of 21 days, with a 14-day
washout between periods, during which cows were offered CON
diet. Throughout the whole experimental periods, the cows were
housed in individual stalls and were allowed to fresh water freely
during the trial.

Rumen Fluid Sampling and Parameters
Measurement
On day 21 of each period, approximately 500 ml of rumen
contents were sampled from cranial, caudal, dorsal, and ventral
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aspects of the rumen at 3 h after morning feeding. Collected
samples were strained through four layers of cheesecloth to
obtain rumen fluid. The rumen fluid was divided into two
aliquots. One aliquot (approximately 100 ml) was processed
to analyze the pH value, the concentration of volatile fatty
acids (VFA) and lactate as described by Pan et al. (2016).
Thiamine concentration in rumen fluid was detected by high
performance liquid chromatography according to Analytical
Methods Committee (2000). The other aliquot (approximately
100 ml) was stored at −80◦C immediately for microbial DNA
extraction and further analysis.

DNA Extraction
Ruminal fluid samples were thawed at room temperature and a
1-mL aliquot was centrifuged at 10,000 × g for 1 min at 4◦C
and the supernatant was discarded. The pellet was used for DNA
extraction using a QIAamp DNA Stool Mini Kit (Qiagen, Hilden,
Germany) with the addition of a bead-beating step. Briefly, the
pellet samples were homogenized with 0.5 g zirconium beads (0.5
mm in diameter) and 1.4 mL ASL buffer using a Mixer Mill
MM 400 (Retsch, Haan, Germany) with vibrational frequency of
1,800 rpm and grinding time of 60 s at room temperature. Then
the mixture was incubated at 70◦C for 5 min to increase DNA
yield. The supernatant was further processed using QIAamp kits
according to the manufacturer’s instructions. Extracted DNAwas
assessed by agarose gel (1%) electrophoresis and quantified using
a NanoDrop spectrophotometer ND-1000 (Thermo Scientific,
Waltham, MA, USA). DNA was stored at −80◦C until further
analysis.

Sequencing, Sequence Processing and
Analysis
The bacteria 16S rRNA gene was amplified using the barcoded
universal primers 338F (5′-barcorde-ACTCCTRCGGGAGGC
AGCAG-3′) and 806R (5′-GGACTACCVGGGTATCTAAT-3′)
spanning the V3–V4 hyper variable region (Ye et al., 2016),
where barcode is an eight-base sequence unique to each sample.
Polymerized chain reactions (PCR) were carried out in a triplicate
20 µL mixture containing 4 µL of 5× FastPfu Buffer, 2 µL of 2.5
mM dNTPs, 0.8 µL of each primer (5 µM), 0.4 µL of FastPfu
Polymerase and 10 ng of template DNA. The thermal cycling
conditions was 95◦C for 3 min, followed by 27 cycles at 95◦C
for 30 s, 55◦C for 30 s, and 72◦C for 45 s and a final extension
at 72◦C for 10 min. Amplicons were extracted from 2% agarose
gels and purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA) according to the
manufacturer’s instructions and quantified using QuantiFluorTM-
ST (Promega, USA). Amplicon libraries were generated using
TruSeqTM DNA Sample Prep Kit (TransGen Biotech, China)
following the manufacturer’s recommendations. The paired-
end sequenced (2 × 250 bp) was conducted on an Illumina
MiSeq platform according to standard protocols (Caporaso et al.,
2010).

Raw fastq files were demultiplexed, quality-filtered using
QIIME (version 1.17) with the following criteria: (i) The 300
bp reads were truncated at any site receiving an average quality
score <20 over a 50 bp sliding window, discarding the truncated

reads that were shorter than 50 bp. (ii) Exact barcode matching,
nucleotide mismatch in primer matching and reads containing
ambiguous characters were removed. (iii) Only sequences that
overlap longer than 10 bp were assembled according to their
overlap sequence. Reads which could not be assembled were
discarded. Operational Units (OTUs) were clustered with 97%
similarity cutoff using UPARSE (Edgar et al., 2011) and chimeric
sequences were identified and removed using UCHIME (Haas
et al, 2011). Taxonomy was aligned by RDP classifier and
compared with the SILVA (SILVA version 115) 16S rRNA
database (Pruesse et al., 2007) using confidence threshold of
70% (Amato et al., 2013). Community diversity was estimated
with the normalized reads using the based coverage estimator
(ACE), Chao1, and Shannon indices. The unweighted UniFrac
distance method (Lozupone et al., 2007) was used to perform
a principal coordinates analysis (PCoA), and an analysis of
similarity (ANOSIM) in QIIME with 999 permutations (R Core
Team, 2013) was conducted to assess significant differences
between samples.

Statistical Analysis
Data were checked for normal distribution and homogeneity
by Shapiro-Wilk’s and Levene’s tests in SAS 9.2 (SAS Institute
Inc., Cary, NC). Ruminal pH, VFA, thiamine content, bacterial
abundance, and diversity index were analyzed using PROC
MIXED of SAS 9.2 as shown in the following model: Yijklm = µ

+ Ti + Pj + Sk + Cl(Sk) + Om + Ti × Pj + Ti × Sk + eijklm,
where Y ijklm is the dependent variable, µ is the overall mean, Ti

the fixed effect of treatment (i = 1–3), Pj is the fixed effect of
period (j = 1–3), Sk is the random effect of Latin square (k = 1–
2), Cl(Sk) is the random effect of cow nested in square (l = 1–
6), Om is the fixed carryover effect from the previous period
(O = 0 if period = 1), Ti × Pj is the interaction of treatment
and period, Ti × Sk is the interaction between treatment and
Latin square replicate, and eijklm is the random residual error. In
these analyses, the carryover effects, and the interactions between
treatment and period or square weren’t detected for all variables,
and they were finally removed from the model. Significance
was declared at P < 0.05 and a tendency was considered at
0.05 < P < 0.10.

Pearson correlations between bacterial communities and
ruminal fermentation variables or thiamine content were
assessed using the PROCCORR procedure of SAS 9.2. Only those
bacterial taxa with an abundance ≥0.1% of the total community
in at least one ruminal sample were included in the analysis.
A correlation matrix was created and visualized in a heatmap
format by the HemI software (Deng et al., 2014). The abundance
of bacterial communities at the genus level and ruminal variables
were considered to be correlated with each other when the
correlation coefficients (r) were above 0.55 and P value below 0.05
(Wang et al., 2016).

Nucleotide Sequence Accession Number
All the raw sequences were submitted to the NCBI Sequence Read
Archive (SRA; http://www.ncbi.nlm.nih.gov/Traces/sra/), under
accession number SRP114812.
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RESULTS

Ruminal pH Value and Concentrations of
Thiamine, Volatile Fatty Acids, and Lactate
As shown in Table 1, high grain feeding decreased ruminal pH
value, and the concentrations of thiamine and acetate in rumen
fluid (P < 0.05), whereas the concentrations of propionate,
isobutyrate, and lactate were increased significantly (P < 0.05)
compared with CON cows. The changes in ruminal pH, lactate,
thiamine and propionate caused by HG-diet were inversed
by thiamine supplementation (P < 0.05). Butyrate, valerate,
isovalerate and total VFA weren’t affected by dietary treatments
(P > 0.05).

Diversity, Richness and Composition of
Bacterial Communities in Rumen Fluid
Bacterial sequencing generated a total of 929,581 raw reads.
Quality filtering at 97% similarity resulted in 697,247 high
quality sequences, which clustered in 1,800 OTUs with 30,384
reads per sample after normalization, with an average of 1,374
± 95 OTUs per sample. Within the bacterial population, 21
phyla were identified across all samples. Bacteroidetes, Firmicutes,
and Proteobacteria were the three dominant phyla, representing
53.41, 35.10, and 3.07% of the total sequences, respectively
(Figure 1). Spirochaetae, SR1, and Fibrobacteres represented
average percentages of 2.91, 2.25, and 1.02%, respectively, of
the total sequences. The proportion of some phyla (Tenericutes,
Saccharibacteria,Cyanobacteria, Lentisphaerae, Synergistetes, and
Elusimicrobia) was less than 1% of total microbial community,
and other phyla such as Actinobacteria, Fusobacteria, Chloroflexi
were not consistently present in all of the ruminal samples.

In terms of alpha bacterial diversity (Table 2), no differences
were observed across treatments for the OTU numbers or Good’s
coverage, indicating that the sequencing depth was comparable

TABLE 1 | Effects of high grain feeding and thiamine supplementation on rumen

fermentation parameters in dairy cows.

Item Experimental treatments1 SEM2 P-value

CON HG HG+T

Ruminal pH 6.35a 5.67c 6.06b 0.078 0.003

Thiamine (µg/L) 8.97a 2.89c 4.81b 0.23 <0.001

Lactate (mmol/L) 0.49c 1.81a 1.06b 0.079 <0.001

Acetate (mmol/L) 66.73a 59.89b 69.83a 2.17 0.027

Propionate (mmol/L) 22.63c 28.22a 24.81b 1.54 <0.001

Isobutyrate (mmol/L) 1.02b 1.55a 1.33a 0.083 0.006

Butyrate (mmol/L) 10.69 11.72 10.85 0.49 0.460

Isovalerate (mmol/L) 1.73 1.95 2.13 0.12 0.216

Valerate (mmol/L) 1.28 1.39 1.58 0.093 0.105

TVFA (mmol/L)3 104.08 104.72 110.53 2.5 0.142

a,b,cMeans within a row with different letters differ significantly (P < 0.05).
1CON, control diet; HG, high grain diet; HG+T, high grain diet supplemented with 180mg

thiamine/kg DMI.
2SEM, standard error of the mean.
3TVFA, total volatile fatty acid.

across treatments. High grain diet decreased the abundance-
based coverage estimator (ACE), Chao 1 richness and Shannon
diversity index (P < 0.05) compared with CON diet. Thiamine
supplementation had no significant effect on alpha bacterial
diversity in respect to HG diet (P > 0.05). Principal coordinates
analysis (PCoA) plots based on unweighted UniFrac distance
metrics were conducted to compare the three treatments. The
PCoA result exhibited that cows fed with HG diet were distinctly
separated from cows in the CON and HG+T groups (Figure 2).
The further ANOSIM analysis revealed a strong effect of high
grain feeding on the structure of the bacterial community (R =

0.35, P = 0.01); Significant difference in bacterial community
composition between HG and HG+T group was observed (R =

0.25, P = 0.02). Principal coordinate 1 and 2 accounted for 33.65
and 17.9% of the total variation, respectively.

Effect of HG Feeding and Thiamine
Supplementation on Relative Abundance
of Bacterial Communities
The effects of high grain feeding and thiamine supplementation
on main phyla were illustrated in Figure S1. High grain
feeding increased the abundance of Firmicutes and decreased

FIGURE 1 | Percentage composition of the top 10 predominant phyla in

rumen fluid.

TABLE 2 | Number of observed species, richness and diversity indices in ruminal

samples from each dietary treatment.

Item Experimental treatments1 SEM2 P-value

CON HG HG+T

OTU3 1,437 1,357 1,363 22 0.093

Good’s coverage 0.99 0.99 0.99 0.0002 0.219

Chao1 1,576a 1,484b 1,519ab 21.8 0.048

ACE4 1,595a 1,492b 1,565ab 22.5 0.047

Shannon 5.99a 5.76b 5.75b 0.081 0.037

Simpson 0.010 0.015 0.013 0.004 0.266

a,bMeans within a row with different letters differ significantly (P < 0.05).
1CON, control diet; HG, high grain diet; HG+T, high grain diet supplemented with 180mg

thiamine/kg DMI.
2SEM, standard error of the mean.
3OTU, operational taxonomic units.
4ACE, abundance-based coverage estimator.
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FIGURE 2 | Principal coordinate analysis (PCoA) of bacterial community structures of the ruminal microbiota in CON (green circles), HG (red triangle), and HG+T (blue

diamond) groups. PCoA plots were constructed using the unweighted UniFrac method. CON, control diet; HG, high grain diet; HG+T, high grain diet supplemented

with 180mg thiamine/kg DMI.

the abundance of Proteobacteria compared with other two
treatments (P < 0.05). The decrease in Proteobacteria phyla
under HG treatment was reversed by thiamine supplementation
(P < 0.05), and the abundance of Spirochaetae was increased
by thiamine supplementation significantly (P < 0.05). The
other predominate phyla including Bacteroidetes, SR1 and
Fibrobacteresweren’t affected by high grain feeding and thiamine
supplementation (P > 0.05).

At the genus level, a total of 218 taxa were examined.
The taxa with a relative abundance of ≥0.1% in at least one
sample were further analyzed and the influenced genera by
treatments were listed in Table 3. A total of 26 genera were
affected (P < 0.05) by treatments; 19 genera of these were
changed by HG feeding in respect to CON diet, and 15 genera
were affected by thiamine supplementation compared with HG
group. Specifically, compared with CON group, HG feeding
decreased (P < 0.05) the proportions of Bacteroides, unclassified
Prevotellaceae, unclassified Bacteroidetes, Erysipelotrichaceae
UCG-004, Fibrobacter, uncultured Lachnospiraceae, Eubacterium
ventriosum, Ruminococcus 1, Ruminiclostridium 5, Selenomonas
1, Acetobacter, Succinivibrionaceae UCG-002, unclassified
Succinivibrionaceae, Succinivibrio, Ruminobacter, and
Pyramidobacter. On the contrary, the relative abundance of
Succiniclasticum (8.89 vs. 12.45%), Ruminococcaceae NK4A214
(1.71 vs. 2.73%), and Lachnospira (0.06 vs. 0.13%) were
significantly increased in HG group (P < 0.05). The decrease
in genera of family Succinivibrionaceae and Bacteroidetes,
Ruminococcus 1 and Pyramidobacter caused by high grain
feeding were reversed by thiamine supplementation (P <

0.05), and the proportion of Treponema 2 was also significantly
increased in HG+T group (2.74 vs. 4.22%; P < 0.05). Conversely,
there was a significant decrease in relative abundance of

Succiniclasticum, Christensenellaceae R7, Ruminococcaceae
NK4A214, Saccharofermentans and Papillibacter (P < 0.05)
associated with thiamine supplementation when compared with
HG group.

Correlations between Bacterial
Communities and Ruminal Variables
As shown in Figure 3, the relative abundance of genera
Bacteroides, Ruminococcus 1, Ruminobacter, Pyramidobacter,
and Fibrobacter were positively correlated to ruminal pH and
thiamine concentration (r > 0.55, P < 0.05), but negatively
correlated to ruminal lactate content (r < −0.55, P < 0.05)
except for Ruminobacter and Fibrobacter. Conversely, the genus
Succiniclastium was negatively correlated with both ruminal
pH and thiamine content (r < −0.55, P < 0.05), and positively
correlated with lactate concentration (r > 0.55, P < 0.05).
The acetate concentration was positively related (P < 0.05)
with unclassified Prevotellaceae (r = 0.65), Oribacterium (r =

0.59), Succinivibrionaceae UCG-002 (r = 0.73), unclassified
Succinivibrionaceae (r = 0.68), Succinivibrio (r = 0.63),
and Ruminobacter (r = 0.55), but negatively related with
Succiniclasticum (r = −0.69). The relative abundance levels of
13 taxa were correlated (P < 0.05) with the ruminal propionate
concentration [five positive (Succiniclastium, Christensenellaceae
R7, Schwartzia, Treponema 2, Ruminococcaceae NK4A214) and
eight negative (Bacteroides, Eubacterium ventriosum group,
Ruminococcus 1, Ruminiclostridium 5, Succinivibrionaceae
UCG-002, Ruminobacter, Pyramidobacter, Fibrobacter)]. The
concentration of isobutyrate was negatively correlated (P
< 0.05) with Eubacterium ventriosum group (r = −0.60),
Ruminococcus 1 (r = −0.69), Acetobacter (r = −0.76),
unclassified Succinivibrionaceae (r = −0.59), and Ruminobacter
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TABLE 3 | Effect of high grain feeding and thiamine supplementation on relative abundances of bacterial genera in rumen fluid using 16S rRNA sequencing1 (%).

Phylum Family Genus/other Experimental treatments2 SEM3 P-value

CON HG HG+T

Bacteroidetes Bacteroidaceae Bacteroides 0.44a 0.19b 0.30a 0.043 0.034

Prevotellaceae Uncultured Prevotellaceae 0.10a 0.06b 0.10a 0.018 0.022

Unclassified Unclassified Bacteroidetes 0.53a 0.45b 0.64a 0.027 0.008

Firmicutes Christensenellaceae Christensenellaceae R7 1.35a 2.02a 0.95b 0.21 0.011

Erysipelotrichaceae Erysipelotrichaceae UCG-004 0.21a 0.15b 0.13b 0.015 0.016

Fibrobacteraceae Fibrobacter 1.05a 0.60b 0.87b 0.081 0.046

Lachnospiraceae Uncultured Lachnospiraceae 0.79a 0.38b 0.32b 0.14 0.017

Eubacterium ventriosum 0.13a 0.06b 0.08b 0.016 0.003

Oribacterium 0.14b 0.15b 0.29a 0.023 0.011

Lachnospira 0.06b 0.13a 0.16a 0.015 0.014

Ruminococcaceae Ruminococcaceae NK4A214 1.71b 2.73a 1.52b 0.16 0.003

Ruminococcus 1 0.93a 0.54b 0.76a 0.05 0.005

Ruminiclostridium 5 0.46a 0.21b 0.14b 0.048 0.004

Saccharofermentans 0.76a 0.65a 0.51b 0.06 0.035

Papillibacter 0.54a 0.46a 0.31b 0.038 0.018

Anaerotruncus 0.12a 0.10ab 0.07b 0.015 0.050

Veillonellaceae Succiniclasticum 8.89b 12.45a 9.61b 1.18 0.035

Schwartzia 0.14b 0.18b 0.35a 0.026 0.004

Selenomonas 1 0.65a 0.30b 0.49ab 0.075 0.077

Proteobacteria Acetobacteraceae Acetobacter 0.17a 0.01b 0.008b 0.023 0.001

Succinivibrionaceae Succinivibrionaceae UCG-002 1.62b 0.30c 3.13a 0.15 <0.001

Unclassified Succinivibrionaceae 0.24a 0.08b 0.21a 0.069 0.016

Succinivibrio 0.07a 0.02b 0.09a 0.009 0.003

Ruminobacter 0.09a 0.02b 0.06a 0.01 0.002

Spirochaetae Spirochaetaceae Treponema 2 2.77b 2.74b 4.22a 0.14 0.002

Synergistetes Synergistaceae Pyramidobacter 0.18a 0.04c 0.11b 0.013 <0.001

a,b,cMeans values within a row with different letters differ significantly (P < 0.05).
1Only bacterial genera (accounted for ≥0.1% in at least one of the samples) that affected by treatments were listed.
2CON, control diet; HG, high grain diet; HG+T, high grain diet supplemented with 180mg thiamine/kg DMI.
3SEM, standard error of the mean.

(r = −0.61). No significant correlations were found (|r| < 0.55,
P > 0.05) between the relative abundance of genera and butyrate,
isovalerate, or total VFA.

DISCUSSION

Effects of Thiamine Supplementation on
Ruminal Microbiota Composition under
High Grain Feeding
In this study, we found that thiamine supplementation in
HG diet could help improve rumen fermentation through
increasing ruminal pH and acetate content, and reducing the
accumulation of lactate in the rumen (Table 1). The improved
rumen environment is mainly attributed to the stabilized ruminal
microbial community (Pinloche et al., 2013). To understand the
underlying mechanism of thiamine on rumen fermentation, the

response of bacterial community to thiamine supplementation
under high grain diet were investigated using high-throughput
sequencing.

At phyla level, the high grain fed cows had higher abundance
of Firmicutes and lower Proteobacteria compared with CON
cows, since Proteobacteria are sensitive toward low pH and
Firmicutes can still degrade easily fermentable carbohydrates
under low pH (Wetzels et al., 2015). While the phyla changes
above were reversed by thiamine supplementation, indicating
thiamine could stabilize the bacterial community in the rumen.
Besides, we found that thiamine supplementation significantly
increased the relative abundance of Spirochaetae in respect to HG
group. The possible reason is that most bacteria in Spirochaetae
lack de novo thiamine biosynthesis pathway and need exogenous
thiamine for growth (Bian et al., 2011).

At the genus levels, the thiamine treatment group had a higher
proportion of the cellulolytic bacteria, including Bacteroides,
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FIGURE 3 | Correlation analyses between relative abundances of bacteria genera, and ruminal fermentation parameters and thiamine status. Only the genera with

abundance significantly associated with the ruminal VFA concentration, thiamine concentrations, and pH were presented. The blue represents a negative correlation

between the abundance of the species and the VFA concentration (r < −0.55, P < 0.05), the red color represents a positive correlation (r > 0.55, P < 0.05), and the

green and yellow shows that the correlation was not significant (−0.55 < r < 0.55, P > 0.05).

Ruminococcus 1 group, Succinivibrio and Pyramidobacter, which
may enhance the fiber degradation in the rumen. The possible
reason for the enrichment of Bacteroides and Ruminococcus 1
group is that thiamine is an essential factor for their growth. Macy
and Probst (1979) had certified that thiamine participated in the
formation of α-ketoglutarate from succinic acid in Bacteroides
ruminicola. Thiamine is essential for the growth of some
strains in Ruminococcus, such as Ruminococcus albus (Bryant
and Robinson, 1961) and Ruminococcus flavefasciens (Ungerfeld
et al., 2009). Succinivibrio could promote the digestion of
cellulose and hemicellulose (Sun et al., 2016), the increase of
Succinivibrio may be caused by the increasing ruminal pH
with thiamine supplementation, since Succinivibrio is positively
correlated to the ruminal pH (Wetzels et al., 2016). Besides,
Pyramidobacter species are vital cellulolytic bacteria and produce
acetate as the main fermentation product (Bainbridge et al.,
2016), the enhanced Pyramidobacter by thiamine could support
fiber degradation, which explained the increasing ruminal acetate
content in HG+T group. Moreover, Selenomonas 1 group in HG-
fed cows tended to be stimulated by thiamine supplementation
(P = 0.13). As a result, the increasing Selenomonas promoted
the degradation of lactate from high starch diet, and thus helped
to increase ruminal pH and prevented the occurrence of SARA
in cattle. Above all, thiamine supplementation stimulated the
growth of cellulolytic and lactate utilizing bacteria, thus increased

ruminal pH and acetate production and subsequently improved
rumen fermentation.

As the primary succinate utilizing bacteria, Succiniclasticum
accounted for 12.45% of total bacterial community in HG
group and increased significantly compared with CON group.
The increase of Succiniclasticum was associated with the more
production of succinate from starch degradation (Hook et al.,
2011). Interestingly, thiamine supplementation reduced the
proportions of Succiniclasticum. The possible reason was that
thiamine, as the essential cofactor of pyruvate decarboxylation,
stimulated the decarboxylation of pyruvate to produce acetate
(Rastogi, 2010), thus reduced the production of succinate and
subsequently decreased the proportion of Succiniclasticum in
rumen content. In addition, thiamine supplementation decreased
the abundance of Christensenellaceae R7 and Ruminococcaceae
NK4A214. However, little information about these two genera has
been reported in the literature, the reasons for the altered status
of genera by thiamine supplementation are unclear.

Bacterial Community Associated with
Thiamine Metabolism
As the coenzyme of pyruvate dehydrogenase and α-ketoglutarate
dehydrogenase, thiamine plays a critical role in carbohydrate
metabolism and is essential for normal cellular functions and
growth (Said et al., 1999). The requirement of thiamine in
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dairy cows may enhance with the increasing carbohydrate levels
in high grain diet. In the present study, the concentration of
ruminal thiamine in HG-fed cows was lower than its content
in CON cows (Table 1), which further proved that overfeeding
high grain diet alters thiamine status (Pan et al., 2016). In
order to explain the altered thiamine status during high grain
feeding and to reveal possible bacteria related to thiamine
metabolism, we conducted the correlation analysis between
ruminal thiamine concentrations and microbial composition.
The results showed that ruminal thiamine content was
positively correlated with the genera Bacteroides, Ruminococcus
1, Ruminobacter, Pyramidobacter, and Fibrobacter, suggesting
those genera may involve in thiamine synthesis, or thiamine
is required for their growth and metabolism. Magnusdottir
et al. (2015) found that Firmicutes can’t synthesis thiamine
monophosphate, and thiamine synthesis is most prevalent
in Bacteroidetes and Fusobacteria. Silverman and Werkman
(1939) reported that certain propionate—producing bacteria
make thiamine or its intermediates, and Louis et al. (2014)
pointed out that the main propionate production pathway is the
succinate pathway, which is used by Bacteroidetes to generate
propionate from carbohydrates. The literatures above proved that
Bacteroidetes is highly related to thiamine synthesis, and thiamine
biosynthesis gene has been identified in Bacteroidetes fragilis
638R (Veeranagouda et al., 2014). Fibrobacter succinogenes,
as a major species in genus Fibrobacter, possess genes that
encoded proteins involved in thiamine synthesis (Qi et al.,
2008). For Pyramidobacter, the species Pyramidobacter piscolens
strain W5455 can synthesize thiamine by salvage pathway
(BioCyc database; Caspi et al., 2015). Taken together, we
deduced that Bacteroidetes, Fibrobacter, and Pyramidobacter
play important roles in ruminal thiamine biosynthesis, and the
altered thiamine status by high grain diet maybe related to the
decreasing proportions of genera Bacteroidetes, Fibrobacter, and
Pyramidobacter in the rumen.

Conversion of succinate to propionate was identified in

genera Succiniclasticum (Van Gylswyk, 1995). During high

grain feeding, Succiniclasticum increased to stabilize the rumen

environment by degrading succinate to propionate (Hook et al.,

2011; Liu et al., 2015). In our study, the increasing proportions
of Succiniclasticum and decreasing thiamine concentrations
leaded to their negative correlations, however, little information
about thiamine effect on Succiniclasticum was reported in
literature, their negative relationship is difficult to elucidate.
The possible reason was that thiamine is the essential cofactor
during pyruvate decarboxylation (Rastogi, 2010), the increasing
thiamine content could promote the conversion of pyruvate to
acetyl CoA, thus reduced the amount of succinate from pyruvate

and subsequently the decreasing abundance of Succiniclasticum.
Overall, alterations in bacterial populations under high grain
feeding can interfere with thiamine synthesis in the rumen,
and thiamine supplementation in HG diet helps to stabilize the
structure of bacterial community in rumen fluid.

CONCLUSION

In summary, high grain feeding had a profound impact
on microbiota composition in rumen content. Thiamine
supplementation to high grain diet improved rumen
fermentation, which was partially attributed to the increasing
abundances of Bacteroides, Ruminococcus 1, Pyramidobacter,
Succinivibrio, and Ruminobacter, and the decreasing proportions
of Christensenellaceae R7, Lachnospira, Succiniclasticum,
and Ruminococcaceae NK4A214. Furthermore, ruminal
thiamine content was closely related to the genera Bacteroides,
Ruminococcus 1, Ruminobacter, and Pyramidobacter, these
genera may participate in thiamine synthesis or thiamine is
required for their growth and metabolism. Overall, our findings
update understanding of thiamine synthesis in rumen bacteria
and provide new strategies to improve dairy cows’ health under
high grain feeding pattern.
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