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ABSTRACT This paper introduces a novel electronic system for simplex low-bitrate infra-red (IR) commu-
nication applications. The transmitter is implemented completely by analog building blocks, formed with the
help of a recently fabricated chip that includes active elements allowing various modular interconnections.
For the design of this chip, the ON Semiconductor C035 0.35um I3T25 technology was chosen due to the
trade-off between cost, efficiency and obtainable parameters. The designed transmitter operates as a voltage-
to-duty cycle converter, using pulse width modulation that causes ON/OFF keying of the carrier signal for
infra-red (IR) diode. The duty cycle variable between 7% and 83% is modulated by the input voltage (in the
range of 0.8 V) of the transmitter. The use case of the proposed concept in the measurement of illuminance
within the range of 30 Ix and 550 Ix is also presented. The quality of the transmission was evaluated as the
error between the transmitted and received values of the duty cycle (kept mostly below 10 %). The maximal

power consumption of the transmitter reaches 180 mW.

INDEX TERMS Generator, illuminance sensing, IR transmitter, modular CMOS design, photoresistor.

I. INTRODUCTION

In the field of satellite [1], optical [2] and terrestrial com-
munication systems [2]-[4], achieving a reliable connection
over long distances and overcoming high signal attenuation
are among the main requirements in the planning of these
wireless communication links. Such systems can be complex
and expensive. Research in the field of remote signal sensing
focuses mainly on signal processing [5], automation and opti-
mization of the measurement [6] rather than on hardware and
circuit design [7]. High amount of transferred data and high
bitrates (Mbps, Gbps) are quite common for these systems.
Depending on the particular system (e.g. satellite, mobile,
optical), the power required for the transmitter can reach
very high values leading to substantial high power consump-
tion (from tens to hundreds of Watts or even more) [1]-[4].
However, in small areas and closed environments, simpler
solutions can be applied.
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In such use cases, a short distance communication link with
low bitrate (kbps) as well as low power consumption (less
than 1 W) is sufficient and it is usually a better solution than
the standard discrete one (usually requiring more than 1 W).

Short-range infra-red (IR) communication systems [8] can
utilize various modulation techniques [9]-[11]. Digital pulse
interval modulation (DPIM) is one of the most frequently
used modulations for optical communications [12]. However,
the IR technology does not serve only communication pur-
poses. Also biomedical applications are well known, non-
invasive glucose monitoring, for instance [13].

In this paper, the design of a simple circuitry optimized
for sensing and remote transmission of information about
the illuminance (with value represented in hundreds of lux
[14]) for indoor use cases is presented. Its usage in the
field of small-area agriculture and vegetation observation is
considered.

Of course, many plants require natural sunlight for their
healthy growth and, therefore, monitoring and/or control sys-
tems are required for indoor scenarios. However, different

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 18149


https://orcid.org/0000-0002-2430-1815
https://orcid.org/0000-0001-9487-5024
https://orcid.org/0000-0001-7084-6210
https://orcid.org/0000-0001-5286-9574
https://orcid.org/0000-0003-1261-0917
https://orcid.org/0000-0001-5895-1587
https://orcid.org/0000-0002-8835-2451

IEEE Access

R. Sotner et al.: llluminance Sensing in Agriculture Applications Based on Infra-Red Short-Range Compact Transmitter

+1.65 Vsupply | +5V supply
I"tested with recently manufactured IC containing |
required active devices (CMOS BT 0.35 um) |
L e ——————
&F multiplier : | — |
accurate § > buffer and | biasing, AC_"C' :
carrier signal current : demodulation | 5y (t)
generator source | and output |
Vcarrier(t) Vtran(t) Q“ | ; drive :
|
|

fc =32.765 kHz

5 ©
3
o C
ramp 59

(triangular) “i comparator

generator »
vir(t)

gy
vINfsens

IR diode | IPIN diode_ _ IR receiver,

discrete commercially
available devices

FIGURE 1. Block topology of the IR communication system and signal processing from sensors

(including transmitter and receiver).

plants require different amount of sunlight with different
intensity in order to grow optimally [15]. Therefore, it is
useful to measure and control this quantity, especially for high
quality cultivation of plants, for instance in aquariums or in
case of any kind of shading system in general. Information
about the intensity of light (in the form of illuminance derived
from the duty cycle in studied case) can be transmitted
to any place in near neighborhood. Some aquarium boxes
using own source of light may utilize this information also
for control purposes. The transmitter can be supplied from
the power line used to control the aquarium climate (heat-
ing/cooling/humidity). The receiver, based on an IR remote
control system, can be designed as a portable box supplied
by batteries.

This work targets mainly the design of the electronic circuit
suitable to operate as an IR communication system and our
goals are as follows:

1) to design a simple system for simplex low-bitrate IR
communication based on the pulse width modulation
(PWM) [11],

to process the sensed signals having amplitude up to
4500 mV correctly. Linear voltage processing is lim-
ited due to the very low power supply voltage of the
active elements (£1.65 V),

to design a compact and simple transmitter using
recently introduced CMOS integrated building blocks
[16] because of its low complexity and power consump-
tion and,

to realize measurements in real environment (plant
aquarium in our case) in order to verify functionality
of the proposed concept.

2)

3)

4)

The proposed transmitter (later introduced in detail) can be
also designed with discrete off-the shelf elements (requiring
at least six commercially available IC packages). A compar-
ison of the discrete and the designed solution is presented
in Table 1. The number of IC packages, power supply voltage
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TABLE 1. Comparison of the features of the discrete and proposed way
of construction of the IR transmitter.

]
g =]
= 5]
6 =
2 33
5 =
.4 =
o
Number of blocks 5 5
Number of active
elements (AEs) 6 8
required
Number of IC 6 * 2
packages
Supply voltage atleast+ 5V atleast+ 1.65V
Expected power units of Watts low (hundreds of mW)

consumption

Notes:
* Commercially available devices
** Two pieces of our IC device and one additional BJT are required

and power consumption are the main differences between our
solution and the discrete one.

The rest of this paper is organized as follows: Section II
introduces the proposed concept of the designed IR commu-
nication system and explains principles of all blocks in detail.
The complete topology of the transmitter is presented and
described in Section III. Experimental results of the verifica-
tion of the pulse width modulator (a part of the transmitter),
and simplex transmission (waveforms in the system and at
the receiver side), when trial DC input voltage is used as a
replacement of sensed signal, are presented in Section IV.
Section V introduces a practical application of the proposed
system in case of measurement and transmission of the value
of illuminance.

The proposed concept as well as comparison of its features
with similar solutions are presented in Section VI. The paper
is concluded in Section VII. Appendix supplements this work
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FIGURE 2. Carrier wave generator with accurate repeating frequency of
32.765 kHz.

by a brief explanation of the principles of relevant active
elements (AEs) required for the design of the system.

Il. PROPOSED TRANSMITTER

Topology of the system forming the IR communication chain
is shown in Fig. 1. The system consists of five key parts
serving the following purposes: a) accurate carrier signal gen-
erator — generation of the carrier voltage vcarrier With the stable
frequency of 32.765 kHz (f;), b) ramp (triangular) generator
— generation of the ramp (triangular) signal vy for PWM, c)
comparator —providing the result of coincidence of v and
slowly changing input voltage vIN sens from various sensor
sources (readouts), d) voltage multiplier — multiplication of
Vearrier and PWM signal vpwm(t). It provides ON/OFF keying
based on the width of the modulated PWM wave, to obtain the
signal vy for transmission, and e) voltage buffer and current
source — for proper IR diode biasing. Each functional block
of the proposed IR communication system will be presented
in detail in the following subsections.

The transmitter uses building blocks, which are based on
AEs fabricated recently in 0.35 um I3T25 ON Semiconduc-
tor technology. More details about these AEs can be found
in [16]. A current controlled current conveyor of second
generation (CCCII), two analog multipliers (MLTs) of two
differential input voltages providing output product in the
form of current (marked as CMOS MLT and BJT MLT)
and a voltage differential difference buffer (VDDB) were
used. A brief description of the principles of all these AEs is
available in Appendix . Outputs from real measurements of
individual parts and also from the whole system can be found
in Sections III and IV, respectively.

A. ACCURATE QUARTZ-BASED GENERATOR PROVIDING
CARRIER WAVE SIGNAL

In order to achieve a proper light transmission at the expected
wavelength of 940 nm, the TSAL6100 [17] IR diode with
the bias current alternating with the repeating frequency
of 32.765 kHz was used. Very stable and accurate carrier
frequency is required by the chosen type of the IR remote
receiver (TSOP1733 [18]) because its sensitivity is the high-
est at this particular frequency. The circuitry of the carrier
signal generator (see Fig. 2) employs a quartz (with fearrier =
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FIGURE 3. Adjustable ramp (triangular) wave generator based on CCCIl
and MLT AEs.

32.765 kHz) and a CCCII element in order to realize the
voltage-limiting amplifier having saturated output. The value
of the resistance visible at the Z+ terminal is theoretically
going to infinity (Rz4+ — o0). Therefore, the overall theo-
retical gain of the loop is Rz+/R; — oo. The bias current
of the CCCII (Ig; = 100 pnA) is set to reach a tradeoff
between request of low value of the internal resistance of
the X terminal Rx = 500 2 [16] and the expected power
consumption. The quartz is connected between the Z+ output
terminal and the Y voltage input together with the grounded
R; resistor in order to create an equivalent of RLC frequency
selective feedback. This positive feedback leads to square
wave oscillations. The stability of the frequency is preferred
over other features of this block (there is no need for an exact
shape of the generated waveform).

B. RAMP GENERATOR FOR PWM MODULATOR

A completely resistor-less generator of ramp (triangular) sig-
nal for PWM modulation uses a very simple connection of
CCCII and MLT active elements (see Fig. 3). CCCII was used
to create an integrator providing control of its time constant
by adjusting the Rx (/g current) and the Schmitt trigger by a
simple OTA element (widely used in many standard solutions
[19]). The threshold voltage level of this trigger is defined as:
W} , (1

gmRx

where VR and Vsq are the amplitudes of the triangular and
square waves, respectively. The change of the voltage across
the capacitor C can be expressed as:

Vrr = Vso [

I C max Tramp (2)
C 2

where Avc = 2V1R is the change of the voltage in the half-
period of the triangular wave, and Icmax 1S given by Ig, and

Ave =ve(t = T/2) —vc(t=0)=
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FIGURE 4. Comparator for PWM generation using MLT and VDDB AEs.

the current gain of the internal CMOS mirror [16] as: Icmax =
10- Igp. After substitution and rearrangements of previous
expressions, the ideal form of the repeating frequency of this
ramp generator can be expressed as:

gmRx
. 3
ngX - 1) ( )

f o ICmax ~ 10'132
MPTTAC - Vg T 4C - Vsg

C. COMPARATOR FOR PWM MODULATOR

The comparator of the PWM modulator (see Fig. 4) includes
BJT MLT, which has the transconductance set to a very low
but nonzero value in order to cancel the DC offset and the
asymmetry of the pair of voltage inputs X;, X,. Theoret-
ically, this controlled current source has an infinite output
resistance (R, — 00) without load. Thereby, the output
level automatically reaches saturation (almost £1.65 V) even
for small value of g, (operation of the MLT is identical as
in Fig. 3). When the output voltage is outside the range of
4500 mV, nonlinearity of the OTA (i.e. MLT) causes slight
slope degradation. Therefore, in studied case, the design
of linearly operating system assumes limits of & 500 mV.
In order to improve the quality of the shape of generated
square wave, an additional voltage buffer-doubler based on
VDDRB is added (see Fig. 4). It brings a faster reaction to the
input changes (there is an improved shape of the edge of rise
time and fall time due to the “gain” = 2). The change of the
output state (vpwm) occurs when VIN sens and vy are equal.
It is clear that VIN_sens provides the setting of the threshold.
The limit of the threshold voltage (VIN sens) Was found as
+1 V and it is given by the features of the MLT element [16].

D. MULTIPLICATION OF CARRIER WAVE AND PWM
SIGNAL

The core of this part, depicted in Fig. 5, is quite simple.
A single multiplier ensures multiplication of the carrier and
PWM signals as well as the DC level shifting in order to
obtain required polarity and also duty cycle control. The Vy;
is set to +1.65 V (Vpp), therefore, vy is generated only
when vpwm reaches negative polarity. Otherwise, the vian
voltage is close to zero. This setting must be applied for the
proper signal processing in the TSOP1733 receiver, where
GND (0 V) in TTL represents the active level. The receiver
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FIGURE 7. The TSOP1733 IR receiver module.

continuously provides +5 V output when there is no input
signal (in expected range of wavelengths).

E. BUFFER AND CURRENT SOURCE

This block ensures the conversion of the signal produced
by forthcoming blocks in order to source the IR diode (cur-
rent driving). The voltage buffer can be implemented by the
VDDB device (see Fig. 6). The current source operates as
a BJT switch (with PNP BC557A BIJT transistor [20]) con-
trolled from the buffer and supplied from the source providing
+1.65 V (Vpp). Resistors Ry and Ry, are set properly in order
to protect the BJT and the buffer outputs, and to limit the
maximal drain current.

F. IR RECEIVER

The well-known compact TSOP1733 IR receiver [18] is
optimized for the wavelength of 940 nm and integrates all
important blocks for the signal processing in a single package
(see Fig. 7).

VOLUME 8, 2020
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The output terminal provides TTL (45 V or 0 V) with
the zero level considered as active. The TSOP1733 belongs
to the family of miniaturized receivers of IR remote control
systems using PCM modulation [10]. It supports very slow
data communication (data rates up to 2.4 kbps) sufficient
for studied case. In this receiver, the photodiode with a
large and neutrally doped intrinsic region (PIN) serves as the
photosensor.

IIl. COMPLETE TOPOLOGY OF THE TRANSMITTER

The complete circuitry of the proposed IR transmitter is
shown in Fig. 8. The design specifications are as follows.
The carrier wave (fearrier) of 32.765 kHz is given by a quartz
(Q) oscillator, important for proper functionality of the IR
receiver. This passive element directly determines the fearrier
having a very stable value that is almost independent of
external influences (temperature, supply voltage fluctuations,
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etc.). An example of the generated carrier waveform is
depicted in Fig. 9.

The ramp wave generator uses a simple circuitry without
special demands on the accuracy of the repeating frequency.
Thereby, the standard approach using charging of a capacitor
(with C = 100 nF) is sufficient. In the Schmitt trigger
part of the circuitry (see Fig. 8), the transconductance of
the operational transconductance amplifier (OTA) has the
value of g = 1.3 mS obtained by Ve gm = 1 V. The
bias current I, serves for the adjustment of the repeating
frequency between 120 Hz and 1.76 kHz (obtained by Iz =
5 uw A — 50 pA). Note that the frequency of the modu-
lation signal (fpwn) must be several-times lower than the
Jearrier- Therefore, the design of the ramp generator operat-
ing in hundreds of Hz is intentional. When Vsq reaching
almost the saturation level is considered (v¢q = 1.65 V
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FIGURE 11. Experimentally tested generation of voltage vpyy while setting: a) Dpyy = 68%, b) Dpyyy = 50%, €) Dpyyy = 27%

and d) Dpyy = 7%.

and V1r/Vsq ~ 2/3) and framp = 1 kHz, then I, calculated
from (3) is 44 pA. Note that in the case of real measurement,
frequency framp = 1 kHz was obtained for slightly different
bias current (Igp = 40 ©A).

The design of the comparator without hysteresis for PWM
generation is an easy task. The change of the state at output
(the voltage gain reaches very high values - gn- Rp = gm-
o0 — o0 in ideal case) occurs when the difference of
input voltages is close to zero. The DC voltage of 60 mV
was set at the second differential pair of inputs (Y, Y»>) in
order to achieve a particular small value of g, as well as for
compensation of small asymmetry.

The multiplier block in the core of the transmitter operates
very simply. The DC offset of 41.65 V at the input Y, of
the multiplier shifts the whole result of subtraction to nega-
tive polarity only (signal between 0 and —1.65 V). Thereby,
the result of the multiplication of the signal at X; and the
difference between Y| 2 inputs, described as Viran = Vearrier -
(vpwm — 1.65), is represented as the current flowing from the
Z output of MLT. This current is transformed to voltage by
Rf = 4.7 k2. This value was selected for transformation of
the expected currents in hundreds of ©A to voltage drops in
hundreds of mV. The illustration of the operation of this block
is shown in Fig. 10.

The voltage buffer using the VDDB and the current source
using a BJT transistor form the last part (output drive) of
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the transmitter. Based on the nomogram in [17], for forward
diode current Ip = 10 mA, the forward voltage Vp reaches
approximately 1.2 V. In case of collector currents reaching
tens of mA, the saturation voltage of the used BJT BC557 is
Vegsae = 0.3 V as noted in [20]. The output drive branch,
including an IR diode, uses an asymmetrical power supply
of 0 and +1.65 V. Hence, the value of the resistor in the collec-
tor can be calculated as Ry, = (Vpp — Vp — Vegsa)/Ip = (1.65
- 1.2 - 0.3)/10- 1073 = 15 Q. In the state of transmitting,
the value of the static current /p ~ 12 mA was measured.

The CMOS voltage buffer (formed by the VDDB) is not
able to supply very low loads in the range of units to tens
of Ohms. Therefore, the resistor Ry = 10 k€2 in the base of
the transistor is used to limit the Igasg current (100 @A).
Chosen setting falls into the save operational range of the
voltage buffer. Moreover, the base-emitter saturation voltage
(VBesat = 0.7 V) [20] and the maximal voltage vgan =
1.65 V of the VDDB (positive polarity considered) are also
known. Hence, its calculation is very simple: Ry = (Vpp —
VBEsa)/Iase = (1.65 — 0.7)/100- 107 = 10 k2 (values
rounded to fabrication series).

IV. EXPERIMENTAL TESTS

Functionality of the proposed circuitry is verified in two
steps. First step focuses on the generation of the PWM (i.e.
on these modules: ramp wave generator and comparator).
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In the second step, attention is given to the analysis of the
whole communication chain (transmitter and receiver) when
either a simple signal or the real-scenario information is
transmitted.

A. PWM GENERATION

The DC voltage was connected to the input terminal ViNgsens
as the source signal. The variation of its value drives the
duty cycle of vpwm voltage (Dpwwm). The supply voltage
and dynamic input range of AEs (MTL and VDDB) limit
the maximal and minimal values of VIN gens (theoretically
+1.65/2 = +£0.8 V because of the “gain” obtained by the
VDDB element of the comparator) as well as available values
of Dpwwm. Figure 11 shows the change of Dpwy for several
VIN_sens Values (particular values of Dpwm were: 68, 50,
27 and 7%). The real value of the duty cycle Dpw\ varies
between 83% and 7% for VIN sens Values between 0.8 V.
The maximal range of Dpwm(1% — 97%, actually) can be
obtained for ViN_sens varied between —0.97 V and 4+0.90 V
(in the case of real measurement). The details about depen-
dence of Dpwm on VIN_sens are shown in the next section.

B. WHOLE CHAIN: TRANSMITTING AND RECEIVING

The complete communication chain (see Fig. 1) was tested by
lab measurements. The operating range of ViN sens between
—1 Vand +1 V was found (slightly higher than the expected
range of +£0.8 V). However, the TSOP1733 IR receiver has
limited reaction on the duty cycle variation (approximately
from 40% up to 80%) as it is indicated in Fig. 12. Therefore, a
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significant deviation of the transmitted (Dpwy) and received
value of duty cycle (Drec) occurs for VIN sens > 0.4 V. Depen-
dence of Dpwwm and Dyec on VIN sens 1S shown in Fig. 12(a).
The low values of the error of the duty cycle between the
transmitted and received values (see Fig. 12(b)) indicate a
very good mutual correspondence for values DpwM/rec >
40% (the error is not exceeding 11%). The time delay
caused by the signal processing at the receiver side is shown
in Fig. 13. The value of the delay fluctuates around 230 us,
which is insignificant for low-bitrate communication.

Signals transmitted and received in the time domain for
selected values of Vingens (—0.8 V, —0.4 V, 0V and +0.4 V)
are depicted in Fig. 14 to Fig. 17.

The results indicate that the frequency of the modulation
signal fpwm at the receiver side was precisely restored (frec
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FIGURE 15. Transmission of DC voltage in the form of duty cycle for
VIN_sens = —0.-4 V (measurement): a) vpyyy and vrec, b) vpyyy and vyp.

also reaches the value of 1 kHz). The distance between the
transmitter and the receiver was fixed to 20 cm in chosen
measurement setup, which is sufficient for the transmission
through a glass window of a plant aquarium. This distance
can be extended up to several meters when different setting of
the IR diode is chosen (increased supply voltage and current).

V. EXEMPLARY TEST OF THE WHOLE SYSTEM IN REAL
ENVIRONMENT

The previous section focused on the general verification of
the proposed concept, where VIN sens Was supplied from a
DC source in order to evaluate the performance of the system.
However, usefulness of such a complex circuit should also be
proven in practical use cases and in real environment. Trans-
mission of information about illuminance from an aquarium
for cultivation of exotic flowers, for instance plants [see Fig.
18 (a)], represents a perfect practical utilization of the pro-
posed devices (transmitter and receiver). Sensor based on the
photoresistor LDR5516 [21] was used. It was connected to
the system in order to provide the VIN_sens VOltage dependent
on the current value of the illuminance as shown in Fig. 18 (b).
Here, the supply voltage of £1.65 V was used. The lux-meter
PU150 served for the measurement of the illuminance. The
measurement was performed in the range from 30 Ix up to
550 Ix. The duty cycle Dpwwm was varied by these values
of illuminance in the range from 15% up to 90% while the
received Dy Was sensed in range from 27% up to 88% (see
Fig. 19(a)). The error between both curves (‘‘dependence’ of
transmitted and received duty cycles on illuminance), where
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FIGURE 16. Transmission of DC voltage in the form of duty cycle for
VIN_sens = 0.0 V (measurement): a) vpyyy and viec, b) vpyy and vy
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FIGURE 17. Transmission of DC voltage in the form of duty cycle for
VIN_sens = 0.4 V (measurement): a) vpyyym and vrec, b) vpyyy and viyap.

Dpww is the reference, is shown in Fig. 19(b). The results
indicate Derror below 10% for illuminance higher than 40 1x.
As it was already discussed, such an error is caused by the
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TABLE 2. Comparison of the features of several application examples (transmission of information about physical quantity) in the field of General IR

communication.
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[23] O(f:‘r’;ﬁgi ld"r‘i’se 0.1  Speed (RPM) DCvoltage ~ PWM  Yes  Mixed  High No  Commercial  High
FSK,
[24] Air conditioning <3 Temperature Data PWM, Yes Digital High No Commercial Low
PPM
. . . ASIC
[25] Medical <1  Respiratory — Time ON-OFF 0 Mixed High  Yes*  CMOSIC  Low
applications rate, heartbeat interval keying .
fabricated
Counting and car ON/OFF state dis?::;i of
[26] profile N/A of point in deactivated - Yes Digital High No Commercial High
visualization matrix .
points
Universal
This Intensity of light . ON-OFF purpose
0.2 Illuminance Duty cycle keying, No Analog Low No Low
paper measurement PWM CMOS IC
fabricated

Notes: ASIC - Application Specific Integrated Circuit; FSK — frequency shift keying; PPM — pulse position modulation; PWM — pulse width modulation;

RPM - revolutions per minute. *System based on ultra-wide-band techniques (UWB)
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FIGURE 18. Example of application of the proposed system: a)
transmission of measured data representing value of illuminance from
aquarium box, b) sensor of illuminance based on a photoresistor.

limitation of the IR receiver [18] for low values of the duty
cycle. The system can be extended with a regulation loop to
control the light intensity, see Fig. 18(a), as a control branch
from the receiver to the source of the light. It is not a part of
this design.
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100 . 1 000
illuminance [Ix]

b)
FIGURE 19. Measurement of illuminance using LDR5516 photoresistor-
based readout as a source of Vjy sens Voltage: a) dependence of duty
Dpwm and Drec on illuminance, b) the error between the transmitted and
received duty cycle.

VI. COMPARISON OF THE PROPOSED CONCEPT WITH
SIMILAR APPLICATIONS UTILIZING IR TRANSMISSION
Special AEs are widely utilized for construction of build-
ing blocks used in complex communication systems as

18157



IEEE Access

R. Sotner et al.: llluminance Sensing in Agriculture Applications Based on Infra-Red Short-Range Compact Transmitter

TABLE 3. Comparison with the most similar concepts suitable for the same purposes as IR transmitter proposed in this paper.
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Duplex modifications development
Complex board
;:;1)1; Tlluminance IR Simplex PWM HW Analog Yes Simple 0.2m 2(3) 03%\/\)/\/ CMOS Yes

Notes: N/A — information not available; BJT — bipolar junction transistor; CMOS — complementary metal oxide semiconductor transistor; VL — visible light,
IR — infra red; PAM — pulse amplitude modulation; PWM — pulse width modulation; DSP — digital signal processor; TDHM — time domain hybrid
modulation; OFDM — orthogonal frequency division multiplexing; FPGA — field programmable gate array; USRP - Universal Software Radio Peripheral

— HW: microcontroller + USB/serial converter MAX232 (FTDI)

— HW: is not clearly discussed, only the block concept is shown (> 8 blocks)
— Only the total transmit power is shown (up to 14 W)

— HW: very complex DSP/microprocessor (> 7 blocks)

b
d
' HW: more than 6 (in the case of SW blocks even more)

shown in [22], for instance. The examples of practical
applications (transmission of a physical quantity) of the IR
communication-based systems are compared with newly pro-
posed concept presented in this paper. However, application
fields, where these systems are used, are different. Therefore,
also different performances of these systems are required.
The IR communication can be also useful as a way of non-
galvanic feedback for power devices (motors working with
PWM [23]), remote control systems for temperature and
air conditioning purposes [24] or robust and highly reliable
transmission of complex data from sensors (e.g. vital signs
in medical applications) [25]. The IR concept serves benefi-
cially also for security and counting purposes (gate/alarm) as
well as for visualization of objects [26]. The general purpose
and features of the designed system and the relevant examples
in selected application fields are compared in Table 2. Note
that the IR communication can be used for indoor communi-
cation [27], [28] with various sophisticated modulations and
processing techniques (see [27]).

Five solutions were identified in literature which can (after
certain modifications) use IR or visible light spectrum for
remote/wireless communication for the same purpose as
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— HW: DSP + PWM modulator (integrator + comparator + buffer + laser diode driver); clock > 5 GHz is required for DSP when PWM generated digitally

proposed in this paper (measurement of illuminance and
short-range transmission of the information).

Their comparison is presented in Table 3. One of the
main differences between the designed concept and the other
designs is in the complexity. The other identified solutions
require a digital part, a clock, and/or several different lev-
els of voltage supply for the tasks similar to our use case.
Studied IR transmitter operates with a single supply volt-
age. The measurement of illuminance and data transmission
with systems presented in [29]-[33] also requires an analog
to digital converter (ADC) block. This requirement brings
additional discrete device or block in the form of DSP, FPGA
chip, or similar.

The designed solution does not use an ADC in the transmit-
ter front-end as well as digital-to-analog conversion (DAC)
in the receiver neither any special and complex modulation
technique. Moreover, compared to [29]-[33], additional soft-
ware is not necessary. Therefore, costs are as low as pos-
sible. There are interesting systems for IR communication
using PWM or similar advanced methods. However, their
HW [29], [33] or SW [31]-[33] complexity is higher than
in case of analog concept presented in this paper. Next, they
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FIGURE A. Schematic symbols of active elements (AEs) used in the designed transmitter: a) multiplier with current output
terminal (CMOS and BIT core), b) current controlled current conveyor of second generation (CCCII), c) voltage differencing
difference buffer (VDDB).

are optimized for other purposes (general data transmission)
than the designed IR communication system. The trade-off
between the performance and the effectivity is not very good
in these cases. Beside the solutions with large operating dis-
tances [30], [32], [33], the concepts most suitable for studied
purpose [29], [31] have significant drawbacks: a high number
of used IC packages [29], necessity of a digital part and SW
programming [29], [30] and a high number of functional SW
blocks (requirements on the HW performance of the digital
system) [31]-[33]. Consequently, the designed solution fits
very well the intended purposes (direct measurement and
transmission of illuminance and low power consumption) and
signal transmission over short distances.

VIi. CONCLUSION

In this paper, novel concept of IR remote transmission system
using PWM and ON/OFF keying was presented. The system
is designed to process either slowly changing signals or data
with low bitrate. The whole system is analog only. The major-
ity of active elements required for the proposed concept was
realized using AEs developed recently in I3T 0.35 um CMOS
process [16]. The input information (voltage) is processed
and transferred in the form of the duty cycle change, which
is the key feature of the used IR PCM remote receiver. The
designed transmitter (see Fig. 1) is capable of duty cycle
variation from 7% up to 83%. Off-the-shelf IR receiver is
declared to sense properly the duty cycle between 40% and
80% (see Fig. 9 in [18]), which is sufficient for the designed
application.

Nevertheless, performed laboratory experiments detected
the usable range between 27% and 82%. For the most sig-
nificant part of the considered operational range, the error
between the received and transmitted duty cycles reaches
maximally 11%. The sensing of illuminance represents
one practical application of the proposed concept. The
photoresistor-based readout served as the source of input data
for the transmitter. Measurement of illuminance was tested
for values from 30 Ix to 550 Ix.

The transmitter provided a waveform with the duty cycle
between 15% and 90% whereas; receiver evaluated the duty
cycle in the range from 27% to 88%. The error between
the transmitted and received values in the declared range
of operation (between 40% and 80% duty cycle of the IR
receiver) is less than 10%. The power consumption of the
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TSOP1733 IR receiver reaches 50 mW (5 V, 10 mA). The
power consumption of the whole transmitter (including the IR
diode) reaches approximately 150 mW (average), maximally
180 mW in the case of using the illuminance sensor. Labora-
tory tests confirmed expected features as well as applicability
of the proposed device.

Compact IR transmitter for agriculture and vegetation
applications was designed that can be also used for other low-
cost and low-speed use cases. Its functionality was verified by
several experimental measurements. The main contributions
of the designed concept are as follows:

1) When compared with more complex solutions requir-
ing digital parts [29]-[33], a very simple analog solu-
tion for transmission of analog quantity as well as
low-bitrate data transfer in the form of the duty cycle
variation driving IR LED was proposed and realized,

2) In comparison with discrete analog solutions (see
Table 1), proposed concept simplifies the construc-
tion of the IR transmitter. Thanks to CMOS integrated
building blocks developed recently [16], the number of
discrete IC packages is reduced,

3) Unlike the standard way of design with commercially
available active devices as well as digital-based solu-
tions (DSP, FPGA, microcontrollers), the presented
concept, in the case of serial fabrication of the transmit-
ter (single IC), reduces cost and also power consump-
tion, when operating.

4) The proposed IR communication system needs no addi-
tional analog-to-digital conversion —analog signal from
the photoresistor is processed directly.

The presented concept is operational and based on well-
known active parts. However, the design is novel in the usage
of specific building blocks, in selected topologies, and their
mutual interconnection. To the best of authors’ knowledge,
a similarly working analog system using easily integrable
analog blocks for illuminance sensing and wireless optic
transmission has not been reported so far.

APPENDIX

(Please see Fig. A) The proposed IR transmitter uses devel-
oped active elements available as AEs integrated on chip
(single package) in 0.35 um ON Semiconductor CMOS pro-
cess I3T25 (3.3 V) [16]. Each package includes a multiplier
(MLT) in CMOS and BIJT version abbreviated as CMOS
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MLT and BJT MLT (Fig. A(a)). Both devices have identical
transfer function: Iz = (Vx1 — Vx2)- (Vy1 — Vy2)- k. The
most important difference for the processed signals and con-
sidered frequency range, used in this work, is the value of
the transconductance constant (k = 1.3 mA/V2 for CMOS
version and k = 4.9 mA/V?2 for BIT type) [16].

The behavior of current controlled current conveyor of sec-
ond generation (CCCII) is defined by: Iy =0, Vx = Vy +
RxIx, where Ix is the current flowing through X terminal
and Izy4 = Izz = —-Izp = —Iz71 = Ix. Note that the unused
current outputs are grounded directly. The input resistance
Rx can be adjusted by the bias /g current in accordance
with the relation: Rx = 20- Iy 08 The value of Rx can be
adjusted between low hundreds and thousands of Ohms [16].
The voltage differencing difference buffer (VDDB) serves for
addition and subtraction of voltages: Vw = Vy| — Vyz 4+ Vy3
and offers a low impedance W output [16].

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

Y. Lee and J. P. Choi, ‘““Performance evaluation of high-frequency mobile
satellite communications,” IEEE Access, vol. 7, pp. 49077-49087, 2019,
doi: 10.1109/access.2019.2909885.

J. W. Leis, Wired, Wireless, and Optical Systems, Communication Systems
Principles Using MATLAB, 1st ed. Hoboken, NJ, USA: Wiley, 2019,
pp. 37-154.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, ““Visible light
communications towards 5G,” Radioengineering, vol. 24, no. 1, pp. 1-9,
Apr. 2015, doi: 10.13164/re.2015.0001.

H. Santos, C. Sturm, and J. Ponte, Radio Systems Engineering:
A Tutorial Approach, 1st ed. Cham, Switzerland: Springer, 2015,
p. 253.

D. Han, J. Lee, J. Im, S. Sim, S. Lee, and H. Han, “A novel frame-
work of detecting convective initiation combining automated sampling,
machine learning, and repeated model tuning from geostationary satellite
data,” Remote Sens., vol. 11, no. 12, p. 1454, Jun. 2019, doi: 10.3390/
rs11121454.

N. Xia, L. Cheng, and M. Li, “Mapping urban areas using a combination
of remote sensing and geolocation data,” Remote Sens., vol. 11, no. 12,
p. 1470, Jun. 2019, doi: 10.3390/rs11121470.

D. Vansteenwegen, K. Ruddick, A. Cattrijsse, Q. Vanhellemont, and
M. Beck, “The pan-and-tilt hyperspectral radiometer system (PANTHYR)
for autonomous satellite validation measurements-prototype design and
testing,” Remote Sens., vol. 11, no. 11, pp. 1-21, Jun. 2019, doi: 10.3390/
rs11111360.

J. M. Kahn and J. R. Barry, “Wireless infrared communication,”
Proc. IEEE, vol. 85, no. 2, pp. 265-298, Feb. 1997, doi: 10.1109/
5.554222.

Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi,
“Digital pulse interval modulation for optical communications,” IEEE
Commun. Mag., vol. 36, no. 12, pp. 95-99, Dec. 1998, doi: 10.1109/
35.735885.

W. N. Waggener, Pulse Code Modulation Systems Design. Norwood, MA,
USA: Artech House, 1998, p. 329.

Z. Ghassemlooy and A. R. Hayes, “Digital pulse interval modu-
lation for IR communication systems—A review,” Int. J. Commun.
Syst., vol. 13, nos. 7-8, pp. 519-536, Dec. 2000, doi: 10.1002/1099-
1131(200011/12)13:7/8<519::AID-DAC454>3.0.CO;2-5.

S. Guo, K.-H. Park, and M.-S. Alouini, “Ordered sequence detection
and barrier signal design for digital pulse interval modulation in opti-
cal wireless communications,” IEEE Trans. Commun., vol. 67, no. 4,
pp- 2880-2892, Apr. 2019, doi: 10.1109/tcomm.2018.2890249.

D. Dinh, V. A. Truong, A. N.-P. Tran, H. X. Le, and H. T.-T. Pham, “Non-
invasive glucose monitoring system utilizing near-infrared technology,” in
Proc. 7th Int. Conf. Develop. Biomed. Eng. Vietham (BME), Jun. 2018,
pp. 401405, doi: 10.1007/978-981-13-5859-3_71.

18160

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

S. Preto and C. C. Gomes, ‘“Lighting in the workplace: Recommended
illuminance (LUX) at workplace environs,” in Proc. Int. Conf. Appl. Hum.
Factors Ergonom. (AHFE), Adv. Design Inclusion, Jun. 2018, pp. 180-191,
doi: 10.1007/978-3-319-94622-1_18.

M. Doane and E. Harding, How to Raise a Plant: And Make it Love You
Back. London, U.K.: Laurence King Publishing, 2018, p. 112.

R. Sotner, J. Jerabek, L. Polak, R. Prokop, and V. Kledrowetz, “‘Integrated
building cells for a simple modular design of electronic circuits with
reduced external complexity: Performance, active element assembly, and
an application example,” Electronics, vol. 8, no. 5, p. 568, May 2019, doi:
10.3390/electronics8050568.

Vishay Semiconductors. High Power Infrared Emitting Diode, 940 nm,
GaAlAs, MOQW TSAL6100. Accessed: Nov. 25, 2019. [Online]. Available:
https://www.vishay.com/docs/81009/tsal6100.pdf

Vishay Telefunken. Photo Modules for PCM Remote Control
Systems TSOP1733. Accessed: Nov. 25, 2019. [Online]. Available:
http://www.farnell.com/datasheets/1804482.pdf

W. S. Chung, H. Kim, H.-W. Cha, and H.-J. Kim, ‘““Triangular/square-
wave generator with independently controllable frequency and amplitude,”
IEEE Trans. Instrum. Meas., vol. 54, no. 1, pp. 105-109, Feb. 2005,
doi: 10.1109/TIM.2004.840238.

ON Semiconductor. Amplifier Transistors PNP Silicon BC557.
Accessed: Nov. 25, 2019. [Online]. Available: https://www.onsemi.com/
pub/Collateral/BC556B-D.PDF

Token. CDS Photoresistors PGM/LDR5516. Accessed:
Nov. 25, 2019. [Online]. Available: https://www.tme.eu/Document/
0b7aec6d26675b47f9e54d893cd4521b/PGMS5506.pdf

A. K. AboulSeoud, M. H. Aly, and N. Azzam, “A CCII-amplifier for high-
gain and high bandwidth outdoor WOC applications,” in Proc. 5th Int.
Conf. Saudi Tech. Conf. (STCEX), Jun. 2009, pp. 1-8.

I. R. Agung, S. Huda, and I. W. A. Wijaya, “Speed control for DC
motor with pulse width modulation (PWM) method using infrared remote
control based on ATmegal6 microcontroller,” in Proc. Int. Conf. Smart
Green Technol. Electr. Inf. Syst. (ICSGTEIS), Nov. 2014, pp. 108-112,
doi: 10.1109/ICSGTEIS.2014.7038740.

Y. Ren and, “The remote infrared remote control system based
on LPCI114,” in Proc. AIP Conf., May 2018, vol. 1967, no. 1,
pp. 030044-1-030044-7, doi: 10.1063/1.5039072.

Z. Zhang, Y. Li, K. Mouthaan, and Y. Lian, “A miniature mode recon-
figurable inductorless IR-UWB transmitter—receiver for wireless short-
range communication and vital-sign sensing,” IEEE J. Emerg. Sel. Top-
ics Circuits Syst., vol. 8, no. 2, pp. 294-305, Jan. 2018, doi: 10.1109/
JETCAS.2018.2799930.

H. S. Katri and S. B. Somani, “Infrared-based system for vehicle counting
and classification,” in Proc. Int. Conf. Pervas. Comput. (ICPC), Jan. 2015,
pp. 1-5, doi: 10.1109/PERVASIVE.2015.7086998.

X. You, J. Chen, and C. Yu, “Efficient indoor data transmission
with full dimming control in hybrid visible light/infrared commu-
nication systems,” [EEE Access, vol. 6, pp. 77675-77684, 2018,
doi: 10.1109/access.2018.2883750.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based
indoor visible light communications: State of the art,” IEEE Commun.
Surveys Tuts., vol. 17, no. 3, pp. 1649-1678, 3rd Quart., 2015, doi:
10.1109/comst.2015.2417576.

M. Koyuncu, C. Bos, and W. A. Serdijn, “A PWM modulator for wireless
infrared communication,” in Proc. Int. Workshop Semiconductors, Cir-
cuits, Syst. Signal Process., Nov. 2000, pp. 1-4.

A. Shahriar, M. Chakraborty, S. Hossain, D. Halder, and N. B. Chowdhury,
“Wireless infrared communication between two computers by MATLAB,”
in Proc. Int. Forum Strategic Technol. (IFOST), Oct. 2014, pp. 60-64,
doi: 10.1109/IFOST.2014.6991072.

X. You, J. Chen, Y. Zhong, S. Chen, and C. Yu, “Efficient dimming control
with time domain hybrid modulation in indoor hybrid visible light/infrared
communication systems,” in Proc. Int. Conf. Photon. Switching Comput.
(PSC), Jul. 2019, pp. 1-3, doi: 10.23919/PS.2019.88176438.

T. Adiono, A. Pradana, R. V. W. Putra, W. A. Cahyadi, and Y. H. Chung,
“Physical layer design with analog front end for bidirectional DCO-OFDM
visible light communications,” Optik, vol. 138, pp. 103—118, Jun. 2017,
doi: 10.1016/j.ijle0.2017.03.046.

S. Vappangi and V. Mani, “Concurrent illumination and communication:
A survey on Visible Light Communication,” Physical Commun., vol. 33,
pp. 90-114, Apr. 2019, doi: 10.1016/j.phycom.2018.12.017.

VOLUME 8, 2020


http://dx.doi.org/10.1109/access.2019.2909885
http://dx.doi.org/10.13164/re.2015.0001
http://dx.doi.org/10.3390/rs11121454
http://dx.doi.org/10.3390/rs11121454
http://dx.doi.org/10.3390/rs11121470
http://dx.doi.org/10.3390/rs11111360
http://dx.doi.org/10.3390/rs11111360
http://dx.doi.org/10.1109/5.554222
http://dx.doi.org/10.1109/5.554222
http://dx.doi.org/10.1109/35.735885
http://dx.doi.org/10.1109/35.735885
http://dx.doi.org/10.1002/1099-1131(200011/12)13:7/8<519::AID-DAC454>3.0.CO;2-5
http://dx.doi.org/10.1002/1099-1131(200011/12)13:7/8<519::AID-DAC454>3.0.CO;2-5
http://dx.doi.org/10.1109/tcomm.2018.2890249
http://dx.doi.org/10.1007/978-981-13-5859-3_71
http://dx.doi.org/10.1007/978-3-319-94622-1_18
http://dx.doi.org/10.3390/electronics8050568
http://dx.doi.org/10.1109/TIM.2004.840238
http://dx.doi.org/10.1109/ICSGTEIS.2014.7038740
http://dx.doi.org/10.1063/1.5039072
http://dx.doi.org/10.1109/JETCAS.2018.2799930
http://dx.doi.org/10.1109/JETCAS.2018.2799930
http://dx.doi.org/10.1109/PERVASIVE.2015.7086998
http://dx.doi.org/10.1109/access.2018.2883750
http://dx.doi.org/10.1109/comst.2015.2417576
http://dx.doi.org/10.1109/IFOST.2014.6991072
http://dx.doi.org/10.23919/PS.2019.8817648
http://dx.doi.org/10.1016/j.ijleo.2017.03.046
http://dx.doi.org/10.1016/j.phycom.2018.12.017

R. Sotner et al.: llluminance Sensing in Agriculture Applications Based on Infra-Red Short-Range Compact Transmitter

IEEE Access

ROMAN SOTNER was born in Znojmo, Czech
Republic, in 1983. He received the M.Sc. and
Ph.D. degrees from the Brno University of Tech-
nology, Czech Republic, in 2008 and 2012, respec-
tively. He is currently an Associate Professor with
the Department of Radio Electronics, Faculty of
Electrical Engineering and Communication, Brno
University of Technology. His interests are ana-
log circuits (active filters, oscillators, audio, etc.),
circuits in the current mode, circuits with direct

electronic controlling possibilities, especially, and computer simulation.

E 1

I REY:

Ipe

JAN JERABEK was born in Bruntal, Czech Repub-
lic, in 1982. He received the B.Sc. and M.Sc.
degrees, and the Ph.D. degree in electrical engi-
neering from the Brno University of Technology,
Czech Republic, in 2005, 2007, and 2011, respec-
tively. He is currently an Associate Professor with
the Department of Telecommunications, Faculty
of Electrical Engineering and Communication,
Brno University of Technology. His researches
focus on analogue signal processing, including

circuit design, analyses, and measurements.

VOLUME 8, 2020

LADISLAV POLAK (Member, IEEE) was born
in §tl’1r0v0, Slovakia, in 1984. He received the
M.Sc. and Ph.D. degrees in electronics and com-
munication from the Brno University of Technol-
ogy (BUT), Czech Republic, in 2009 and 2013,
respectively. He is currently an Associate Pro-
fessor with the Department of Radio Electronic
(DREL), BUT. His research interests are wireless
communication systems, RF measurement, signal
processing, and computer-aided analysis.

JIRI PETRZELA was born in Brno, Czech Repub-
lic, in 1978. He received the M.Sc. and Ph.D.
degrees in the field of the theoretical electron-
ics in 2003 and 2007, respectively. He is cur-
rently working as an Associate Professor with
the Department of Radio Electronics, Faculty of
Electrical Engineering and Communications, Brno
University of Technology, Czech Republic. His
research interests include numerical methods in
electrical engineering, nonlinear dynamics, chaos

theory, analog lumped circuit design, and computer-aided analysis.

WINAI JAIKLA was born in Buriram, Thailand.
He received the B.S.ILEd. degree in telecommu-
nication engineering from the King Mongkut’s
Institute of Technology Ladkrabang (KMITL),
Thailand, in 2002, the M.Tech.Ed. degree in
electrical technology, and the Ph.D. degree in elec-
trical education from the King Mongkut’s Univer-
sity of Technology North Bangkok (KMUTNB)
in 2004 and 2010, respectively. His research inter-
ests include electronic communications, analog

signal processing, and analog integrated circuits.

diovascular systems.

SUNTI TUNTRAKOOL received the B.S. degree
in industrial education in telecommunication engi-
neering major from the King Mongkut’s Insti-
tute of Technology Ladkrabang, Ladkrabang,
Bangkok, Thailand, in 1993, and the M.S. degree
in electrical engineering from Vanderbilt Univer-
sity, Nashville, TN, USA, in 2004. His research
interests include digital signal processing, biomed-
ical signal processing, mouse renal sympathetic
nerve activity, and autonomic control of the car-

18161



