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Abstract. We present a new method for computing the change of light
possibly occurring between two pictures of the same scene. We approx-
imate the illuminant variation with the von Kries diagonal transform
and estimate it by minimizing a functional that measures the divergence
between the image color histograms. Our approach shows good perfor-
mances in terms of accuracy of the illuminant change estimation and of
robustness to pixel saturation and Gaussian noise. Moreover we illus-
trate how the method can be applied to solve the problem of illuminant
invariant image recognition.

1 Light and Color

Color descriptors are considered among the most important features in content-
based image retrieval and indexing [15]. Colors are in fact robust to noise, rescal-
ing, rotation and image resolution. The main drawback in the use of color for
object and image retrieval is the strict dependency of the color on the light in the
scene. Color variations can be produced in different ways, for instance by chang-
ing the number, the position or the spectrum of the light sources. Moreover,
the color of a picture often depends on the characteristics of the device used
to capture the scene. The development of a device- and illuminant- invariant
image representation is an old but still unsolved attractive problem in Computer
Vision [15]. In this paper, we propose a method for estimating the variation of
illuminant between the images of a scene taken under different light conditions.
More precisely, we restrict our attention to the photometric changes induced by
different kinds of lamps or by variations in the voltage of the lamps illuminating
a scene. We assume that the illumination varies uniformly over the whole image
and we assume the von Kries diagonal model, in which the responses of a camera
sensor under two different illuminants are related by a diagonal linear transfor-
mation. This model has been proved to be a good approximation for illuminant
changes [6], [7], especially in the case of narrow-band sensory systems [4], and it is
employed in many color enhancement techniques, e.g. [2], [5], [3], [16]. Our tech-
nique estimates the von Kries transform between an image and a re-illuminated
version of it by a least-squares method that minimizes a dissimilarity measure,
named divergence, between their color histograms. The accuracy of the estimate
obtained by our method has been measured on synthetic and real-world datasets,
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showing good performances even in the presence of saturated pixels, Gaussian
Noise and the variation of the color quantization. Moreover, we describe how
our method can be applied to the illuminant invariant image retrieval task and
we compare it with other image retrieval approaches.

Synopsis - Section 2 describes our approach, while its performance is discussed
in Section 3, and Section 4 shows us how it can be applied to the illuminant
invariant image recognition. Section 5 illustrates our future plans.

2 Diagonal Transform Computation

Let (R0, G0, B0) be the response of a camera to a given illuminant and let
(R, G, B) be the response of the same camera to an unknown illuminant. The von
Kries diagonal model approximates the change of illuminant mapping (R, G, B)
onto (R0, G0, B0) by a diagonal transformation K that rescales each channel
independently, i.e. (R, G, B) K�→ (α0R0, α1G0, α2B0), where α0, α1, α2 are non-
zero positive real numbers, that we refer as von Kries parameters.

In our method, the color of an image is described by the distributions of
the values of the three channels R, G, B. Each distribution is represented by
a histogram of N bins, where N is in the range in {1, . . . , 256}. Hence, the
color feature of an image I is represented by a triplet H := (H0, H1, H2) of
histograms. We refer to H as color histograms, whereas we name its components
channel histograms.

Let I0 and I1 be two images, where I1 is possibly a rescaled, rotated and
differently illuminated version of I0. Let H0 and H1 be the color histograms of
I0 and I1 respectively. Let Hi

0 and Hi
1 indicate the ith component of H0 and H1

respectively. Hereafter, we assume that each channel histogram Hi
j is normalized

so that
∑N

x=1 Hi
0(x) =

∑N
x=1 Hi

1(x).
The channel histograms of two images which differ by illumination are

stretched each to other by the diagonal model, hence for each i we have that
x∑

k=1

Hi
1(k) =

αix∑

k=1

Hi
0(k), (1)

where, as the data is discrete, the value αix is cast to an integer in the range
[1, 256].

Our estimate of αi consists of two phases: firstly, for each x in [1, 256] we
compute the point y in [1, 256] such that

x∑

k=1

Hi
0(k) =

y∑

k=1

Hi
1(k). (2)

Then we obtain the coefficient αi as the slope of the best line fitting the pairs
(x, y). The best line is defined by means of a least squares method. The com-
putation of the pairs (x, y) satisfying (2) is done using the following algorithm
consisting of two steps:
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Initialization: Let R0 and R1 indicate the left- and right- side of (2) respec-
tively. Firstly, we compute the minimum values of x and y such that R0 and R1

are greater than zero. Then we set M := min(R0, R1). Let L be a list of points
and let W be a list of weights, i.e. real numbers, with L and W initially empty.

Iterations: Iteratively,

1. we push the pair (x, y) in L and M in W ;
2. in order to satisfy equation (2), if M is equal to R0 (R1 resp.), i.e. R0 < R1

(R0 > R1 resp.), we increment x (y resp.) by one until M = R1 (M = R0

resp.). We update M and then R0 and R1 by

R0 := R0 − M ; R1 := R1 − M. (3)

Note that except for the initialization step, M could be null: in this case,
both x and y are incremented until M becomes strictly positive and then
R0 and R1 are updated as in (3);

3. we repeat steps 1 and 2 until x or y is 255.

We estimate the value of αi by minimizing with respect to α the following
functional, that we call divergence:

dα(Hi
0, H

i
1) :=

∑

k

Mkd((xk, yk),A)2 =
∑

k

Mk

α2 + 1
(αxk − yk)2. (4)

Here Mk and (xk, yk) indicate the kth items of the lists W and L respectively,
while d((xk , yk),A) is the Euclidean distance between the point (xk, yk) and the
line A: y = αx. The weights Mk are introduced to make the estimate robust to
color quantization and possible noise affecting the images.

We observe that: (i) dα(Hi
0, H

i
1) = 0 ⇔ Hi

0(αp) = Hi
1(p), for each p in

{1, . . . , N}; and (ii) dα(Hi
0, H

i
1) = d 1

α
(Hi

1, H
i
0).

From these properties follows that dα is a measure of dissimilarity (divergence)
between the channel histograms stretched each to other. In particular, if dα is
zero, then the two histograms are related by a stretching of the x axis.

Note that, since the values of R, G, B are in [1, 256], the values of α0R0,
α1G0, α2B0 possibly greater than 256 are truncated to 256 (saturated pixels).
Therefore, to make the estimate robust (as much as possible) with respect to
pixel saturation, the Nth bin of the histograms Hi

0 and Hi
1 are not considered

when determining the von Kries transform. This explains why in step 3. of the
iterative phase the algorithm stops when x or y are 255. However, performances
decrease by incrementing the number of saturated pixels (see Section 3).

Figure 1 shows an example, where a same scene has been acquired under two
illuminants (a) and (b), while (c) is obtained by remapping (b) onto (a) by our
estimated von Kries transform between (a) and (b). As can be seen, (a) and (c)
look very similar.

We note that, when no changes of size or in-plane orientation occur, the von
Kries map relating two images I and I ′ can be estimated by finding, for each
color channel, the best line fitting the pairs of sensory responses (pi, p

′
i) at the
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(a) (b) (c)

Fig. 1. (a) a picture and (b) a re-illuminated version of (a); (c) is obtained by remapping
(b) onto (a) by the von Kries transform estimated. (a) and (c) appear highly similar.

ith pixels of I and I ′ respectively. Our approach basically applies a least square
method in the space of the color histograms, and therefore makes the estimate
of the von Kries coefficients robust to image rescaling and/or rotating.

3 Accuracy of Our Estimate

The accuracy of our estimate of the von Kries diagonal transform has been
tested on different synthetic and real-world databases. For brevity, in this paper
we report the results obtained with three public databases (TESTS51, ALOI
and ECCV98). More details are available in [11].

Let I0 be an image of a scene under a reference illuminant, and let I be an
image of the same scene taken under an unknown illuminant. In the following
we refer to I0 as the reference image, while we refer to I as the test image. The
accuracy of the estimate of the von Kries transform has been evaluated as

A = 1 − L1(I, Kest(I0)), (5)

where L1(I, Kest(I0)) is the L1 distance computed on the RGB space between
I and the transform Kest(I0) of I0, and Kest indicates the von Kries transform
estimated. This distance has been normalized to range in [0,1]. Therefore, the
closer A is to 1, the better the estimate of the von Kries transform is. To evaluate
the goodness of our image correction,for each pair (I0, I), we compared the
accuracy measure (5) with the value A0 = 1 − L1(I, I0).

In these experiments we do not consider changes of image size or orientation.
The difference between the accuracy measure (5) of the best fit applied on the
channel images (mentioned at the end of Section 2) and those obtained by means
of our approach is negligible: about 3 · 10−4 in the worst case (ECCV98).

Our algorithm has linear complexity with respect to the number of image
pixels and to the color quantization N . Therefore, it is particularly efficient, also
in comparison to other methods, like for instance [3]. The time for the estimation
of the von Kries coefficients for a pair of images of size 150 × 200 is less than 40
ms on a standard Pentium4 CPU 2.8 GHz.

Tests on TESTS51 - The dataset TESTS51 has been built starting from the
public dataset of Ponce and others [14] (http://www-cvr.ai.uiuc.edu/).



Illuminant Change Estimation 45

This database consists of a set of images of 8 different objects and of a set of 51
test-pictures in which the objects appear under different conditions (occluded,
rescaled, rotated, differently illuminated, . . . ).

The 51 test-pictures have been taken as references, while the test images have
been obtained by rescaling the color channels of the reference images by 20
diagonal linear functions of the form Fβw(R, G, B) = βw(R, G, B), with βw =
0.2 + 0.2w, and w = 0, . . . , 19. For each test image I, we estimated the 20 von
Kries transforms Kest

w mapping the correspondent reference on I. Figure 2(left)
shows the mean value of the accuracy measure (5) versus the parameter βw, for
different color quantization. The mean value of A0 is 0.22, while the mean value
of A is 0.9999 for N = 256.

The precision of our estimates βest
w of βw, w = 0, . . . , 19, has been measured

using the error Ew = 1− βest
w

βw
. The closer Ew is to zero, the better is the accuracy

on the determination of the von Kries transform. A strictly negative (positive,
resp.) value of Ew indicates that the estimate is greater (smaller, resp.) than the
real parameter. Figure 2(right) shows the mean value Ew of Ew averaged over
the test images, by varying βw and the color quantization.

The best parameter estimates and the best accuracy have been obtained for
the finest color quantization.

Tests on ALOI - ALOI [9] (http://staff.science.uva.nl/~aloi/) is a col-
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Fig. 2. TESTS51: (Left) Mean value of the accuracy measure (5) by varying the color
quantization. (Right) Mean Error Ew by varying the parameter βw and the color
quantization.

lection of 110,250 images of 1,000 objects acquired under different conditions. In
ALOI, each frontal object view has been shot under 12 different light conditions,
produced by varying the color temperature of five lamps illuminating the scene.
More precisely, the lamp voltage was modified to be Vj = j × 0.047 Volts with j
∈ J = {110, 120, 130, 140, 150, 160, 170, 180, 190, 230, 250}. The object images
captured under the illuminant with voltage V110 have been taken as references,
while the other object images have been used for testing. For each reference O110,
we estimate the von Kries transform Kest

j (Oj) mapping O110 onto the test image
Oj taken under the illuminant with voltage Vj , and j ∈ J − {110}.
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Fig. 3. ALOI: (Left) Mean accuracy (5) versus the illuminants for different color quan-
tizations. (Right) Estimates of the von Kries parameters and their standard deviation
bars for N = 256.

Figure 3(left) shows the mean accuracy (5) for the different lamp voltages and
variations of color quantization. On average, A0 = 0.9913, while A = 0.9961 for
N = 256. We note that for j = 140, the accuracy is lower than for the other
lamp voltages. This is because the voltage V140 determines a large increment of
the light intensity and therefore produces a large number of saturated pixels.

In principle, the transform K mapping the object image O110 onto Oj should
have the same parameters of the transform K ′ mapping a different object im-
age O′

110 onto O′
j , because the illuminant change is the same. In practice, since

the von Kries model is only an approximation of the illuminant variation phe-
nomenon, the parameters of K and K ′ differ. Hence we measure the robustness
on the determination of the coefficients αi, i = 0, 1, 2, by analyzing the standard
deviation of their estimates. Figure 3(right) reports the averages and standard
deviations of the von Kries parameters estimated with color quantization of 256.
Deviations increase when the image brightness is increased, i.e. the number of
saturated pixels becomes larger.

Tests on ECCV98 - Here we consider a subset of the database [8] consist-
ing of the images of 11 objects captured under 5 different illuminants (halogen,
mb-5000, mb-5000+3202, syl-cwf, ph-ulm). We refer to this subset as ECCV98.
We took the object images captured under the illuminant halogen as references.
This data is available at http://www.cs.sfu.ca.

The mean accuracy for each illuminant and for different color quantizations
are reported in Table 1. On average, A0 is 0.9311, while A = 0.9734. Table 2
shows the mean values of the von Kries coefficients and their standard deviations,
as for ALOI.

4 Application to Image Recognition

Let us consider a set of known images (references) and let I be an unknown
image (query). The illuminant invariant image recognition consists of finding
the reference I0 that, although re-illuminated, is the most similar to the query.
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Table 1. ECCV98: Mean accuracy (5) by varying the illuminant and the color
quantization

Illuminant 256 128 64 32 16

mb-5000 0.9767 0.9766 0.9763 0.9755 0.9723

mb-5000+3202 0.9719 0.9716 0.9702 0.9638 0.9308

ph-ulm 0.9733 0.9733 0.9732 0.9731 0.9726

syl-cwf 0.9718 0.9717 0.9717 0.9716 0.9710

Table 2. ECCV98: Values of the von Kries parameters and their errors for N = 256
bins

Illuminant α0 ± Δα0 α1 ± Δα1 α2 ± Δα2

mb-5000 0.4601 ± 0.1206 0.8255±0.1949 1.6004 ± 0.3787

mb-5000+3202 0.1915 ± 0.0406 0.5287± 0.0835 2.0121 ± 0.3177

ph-ulm 0.7405 ± 0.1059 1.0792± 0.1675 1.1068 ± 0.1892

syl-cwf 0.8596 ± 0.1357 0.9581± 0.1291 1.6924 ± 0.2772

Our solution is outlined as follows: we compute the von Kries transforms
mapping each reference onto the query and we associate a dissimilarity score to
each of these transforms. The solution I0 is the image reference whose von Kries
transform T (I0) has the minimum score from I.

More precisely, let H be the color histogram of I. For each reference Ir of
D with color histogram Hr, (i) we estimate the parameters α0, α1 and α2 of
the von Kries transform K mapping Ir onto I; (ii) for each i we compute the
divergence dαi(Hi, Hi

r) defined in (4) and the dissimilarity score

δ =
∑

i

dαi(H
i, Hi

r). (6)

Thus, the solution of the image recognition problem is the image I0 of D such
that the score (6) is minimized.

Due to the dependency of the divergence (4) on the values αi (i = 0, 1,
2), δ does not satisfy the triangular inequality, and thus it is not a distance.
Nevertheless, it is a query-sensitive dissimilarity measure, in the sense that it
depends on the query [1]. The use of the score (6) instead of a Lp metric (p ≥ 1)
between the color histograms is justified by the major robustness of (6) to color
quantization.

We say that a query I is correctly recognized if the reference image Ir of D
minimizing (6) is a re-illuminated version of I. The performance of our approach
has been evaluated using a recognition rate, defined as the ratio between the
number of test images correctly recognized and the total number of test images.
In our experiments, we considered the reference and the test sets of TESTS51
and ALOI defined in Section 3, while we excluded the test set ECCV98 because
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it contains only a few images and hence it is inadequate for testing retrieval
performances. By comparing the reference and the test images by using the score
(6) without estimating the von Kries map or enhancing the color, we obtained
the following mean recognition rates: 0.20 for TESTS51, 0.77 for ALOI.

The recognition rates obtained by means of our approach on TESTS51 and
ALOI are shown in Figure 4.
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Fig. 4. Robustness of the recognition rate with respect to different color histogram
quantizations for the datasets TESTS51 (left) and ALOI (right)

In the case of ALOI, we compared our results with the recognition rates ob-
tained by two other approaches, employing the color normalization algorithms
Gray World and ACE [13] (Automatic Color Equalization) respectively. The
Gray World algorithm used in these tests performs the color enhancement by
rescaling each channel by their mean value. The technique ACE relies on the
Retinex theory [12], and combines the Gray World enhancement with a color
constancy algorithm that separates the spectral distribution of the scene illu-
minant from the image brightness. We chose these color balancing techniques
among the others because they are very popular.

In our experiments, each reference as well as each query has been normalized
by ACE and by Gray-World; then their color histograms have been compared by
means of the score in (6). Figure 5 (left) shows the recognition rates obtained.
The performances of our approach are very similar to those given by employing
the Gray World color balancing, whereas ACE gave the worst results both in
terms of recognition rate and computational run time. In fact the complexity of
ACE is O(n2), while that of our approach and Gray World is O(n), where n is
the number of image pixels.

Our approach strongly differs from the recognition methods in which the illu-
minant invariance is achieved by enhancing the colors of the reference and test
images [8]. In these methods, color enhancement is obtained by means of a color
constancy algorithm, that illuminates each input image as if it had seen under
a canonical known illuminant [2]. In the image/object recognition framework,
each reference in D and every query are firstly illuminated under the canonical
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illuminant by a color constancy algorithm, then their re-illuminated versions are
compared. If the references are captured using the canonical illuminant, the von
Kries coefficients are computed as the element-wise ratios between the canonical
illuminant and the estimate of the illuminant of the query.

The color enhancing of references and query are completely avoided in our
approach, as we directly compare the color histograms of the query to each
reference through the query-sensitive score (6). Therefore, our method is more
efficient than the recognition procedures based on color normalization, because
it does not require any color pre-processing of the references in the database and
of the query.

Finally, we tested our recognition performances when Gaussian noise was
added to the pictures. In particular, the test images of ALOI have been modified
by convolving each image by a Gaussian filter with standard deviation σ = 0.5,
1.0, 1.5, 2.0, 2.5, 3.0. Figure 5(right) shows the results achieved: the recognition
rate decreases with increasing levels of noise, in particular, for σ greater than
2.0 it is smaller than 0.75.

5 Conclusions and Future Directions

Our estimate of illuminant change performed impressively on the synthetic and
real data, and offers high accuracy in illuminant invariant image recognition.
Moreover, unlike the pixel-wise best fit mentioned in Section 2, our use of color
histograms allows us to estimate the illuminant changes occurring between two
images also when they have different size and orientation. Our future plans
include a comparison of our approach with other methods for the estimation of
the illuminant variation and its integration in the object recognizer MEMORI
[10] to make this system robust to changes of light.
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