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Abstract 

We describe spectral estimation principles that are useful for 
color balancing, color conversion, and sensor design.  The 
principles extend conventional estimation methods, which 
rely on linear models of the input data, by characterizing the 
distribution or structure of the linear model coefficients.  
When the linear model coefficients of the input data are 
highly structured, it is possible to improve the quality of a 
simple linear model by estimating coefficients that are 
invisible to the sensors.  We illustrate these principles using 
the synthetic example of estimating blackbody radiator 
spectral power distributions.  Then, we apply the principles 
to typical daylight illuminants that we measured over the 
course of twenty days in Stanford, California.  We show that 
the distribution of the daylight linear model coefficients that 
approximate the daylight spectral power distributions are 
highly structured.  We further show that from knowledge of 
the coefficient structure, nonlinear algorithms using N 
sensors estimate the data as well as linear algorithms using 
N+1 sensors. 

Introduction 

Linear models are an important first step in reducing the 
dimensionality of a data set.  These models define a limit on 
the range of possible inputs by specifying a subspace that 
contains the original data.1,2  Characterization of the data, 
however, need not end with specifying the linear model 
basis functions.  The distribution of the linear model 
coefficients may also provide useful knowledge about the 
input data.3-5  This knowledge can both increase the 
efficiency of the approximation and provide guidance when 
designing devices to measure the inputs. 
 
In this paper we describe spectral estimation principles that 
are useful for color balancing, color conversion, and sensor 
design.  These principles build upon the linear methods that 
have been used in color science and estimation for many 
years;1,6-8 the principles extend current methods by offering 
a way to incorporate knowledge about likely data into the 
spectral estimation process. 

 

 

Figure 1.  Blackbody radiators.  (a) Spectral power distributions 

of a sample of blackbody radiators with temperatures between 

4,000 K and 25,000 K.  The curves have been normalized to unit 

value at 560 nm.  (b) The percent error for the best linear model fit 

as a function of the linear model dimension. 



 

 

Motivation 

We begin with a synthetic calculation that illustrates a 
limitation of simple linear methods for spectral estimation.  
Suppose we wish to estimate the spectral power distribution 
of a blackbody radiator.  Figure 1a shows the spectral power 
distributions of a collection of blackbody radiators with 
temperatures between 4,000 K and 25,000 K normalized to 
a common intensity at 560 nm.  As the figure makes 
evident, a one-dimensional linear model cannot fit these 
curves.  Figure 1b shows the percent error of the best-fitting 
linear model using one to five dimensions.  At least three 
dimensions are needed to reduce the fitted error below 1% 
and four dimensions fit the data at roughly 0.01% error. 
 
By construction, we know that variation in a single 
parameter (temperature) gave rise to the entire collection of 
spectral power distributions; yet, the dimensionality of an 
adequate linear model is at least three. Although these 
spectral power distributions were generated from a single 
parameter process (the blackbody radiator formula,9) an 

accurate linear model fit requires several dimensions.  
Where in the linear model is the information about the low 
dimensionality of the original process? 
 
Figure 2a shows that the distribution of the linear model 
coefficients contains the key information about the original 
one-dimensional nonlinear process.   This panel shows the 
coefficients of a three-dimensional linear model of the 
blackbody radiators: the coefficients sweep out a smooth 
curve.  While the dimensionality of the linear model cannot 
be reduced, because the curve of coefficients is nonlinear, 
the low-dimensionality of the controlling parameter 
(temperature) is easily observed in the distribution of the 
model coefficients. 
 
Figure 2b shows the relationship between the coefficients in 
another graphical format.  The horizontal axis plots the first 
coefficient.  The curves show how the values of the second 
and third coefficients covary with the first.  Because the first 
coefficient specifies the others perfectly, it is apparent that a 
one-dimensional nonlinear model explains the data. 
 
Had we approached the data using the conventional linear 
model analyses, it is likely that we would conclude that 
these blackbody radiators span a three-dimensional space.  
We might have missed the fact that the coefficients fall 
along a curve.  Knowing this fact is important should we 
design sensors to estimate the temperature of a blackbody 
radiator.  Specifically, if the data span three linear 
dimensions, then three linear sensors are necessary to 
estimate the temperature.  Knowing instead that the 
coefficients are clustered on a curve, it is possible to 
estimate the temperature from the measurement of a single 
sensor: three sensors are two too many. 
 
We offer this synthetic example to motivate the 
measurements described below.  In these measurements, we 
analyze the distribution of coefficients of daylight 
illuminants.  The purpose of the investigation was to decide 
whether simply stating the linear model basis functions, 
such as those provided by the CIE daylight model, captures 
the essential information about the illuminants.  This would 
be the case if the measured coefficients for daylights are 
randomly distributed.  Or, is there a great deal of structure in 
the coefficient distribution of real daylights?  In that case, 
there is more to be learned by defining the distribution of 
these coefficients. 

Methods 

The methods we present can be applied to linear models of 
arbitrary dimension.  We introduce the methods, however, 
using a simple example: the spectral power distribution of 
daylight incident on a building wall in Stanford, California.  
We begin with this example for two reasons.  First, daylight 
illuminants play a very significant role in imaging;9 hence, 
understanding the distribution of coefficients is important 
for many applications including color conversion, color 

 

 

Figure 2.  Coefficients of a three-dimensional linear model of 

blackbody radiators.  (a) The curve of coefficients for the 

blackbody radiators.  (b) The values of the second and third linear 

model coefficients are a function of the first coefficient, showing 

that the data are well-described by a one-dimensional nonlinear 

model. 



 

 

balancing, and sensor design.  Second, it is well-known that 
the variation in incident illumination is well-described by a 
low-dimensional linear model;1,10,11 hence, the distribution 
of coefficients and computations can be illustrated using 
simple graphs. 

Data collection 
 
We used a PhotoResearch SpectraScan 650 spectro-
radiometer to collect the daylight spectral power 
distributions.  This instrument measures spectral radiance 

between 380 and 780 nm with 4 nm spectral bands.  The 
instrument was positioned next to a window and daylight 
illuminants reflected from an outside building wall were 
measured.  Over a period of twenty days, a computer 
controlled the spectroradiometer and acquired 
measurements once a minute from dawn to dusk.  During 
the acquisition period, weather conditions spanned hard 
rain, light rain, overcast, partly cloudy and clear skies.  All 
measurements were dated and time-stamped using the 
internal clock of the computer.  A total of 11,990 spectral 
power distributions were measured. 
 
At the end of the acquisition period, the spectroradiometer 
precision was measured.  We made repeated measurements 
of a stable light source set to a variety of source intensity 
levels.  We found that if the peak radiance of the light 
source in any spectral band was greater than or equal to a 
threshold level (3x10-3 W/m2/sr/4nm), the spectroradiometer 
was reliable to within 0.1% of the peak radiance.  Below 
that threshold, the spectroradiometer reliability began to 
deteriorate.  We excluded 1,234 spectral power distributions 
with a peak response less than the threshold value.  
 
For the remaining measurements, we calculated the 
illuminant spectral power distributions by dividing the 
measurements by the spectral surface reflectance function of 
the building wall.  The surface reflectance function was 
measured by comparing the light reflected from the building 
wall with the light reflected from a magnesium oxide block 
in the same position.  A total of 10,756 daylight spectral 
power distributions comprised our data set.  Figure 3a 
shows a few examples of collected daylight spectral power 
distributions normalized to unit value at 560 nm. 
 
We use the term “daylight” here to refer to the light incident 
on the wall, and not in its more precise meaning of direct 
solar radiation through the atmosphere.  In fact, some of the 
light incident at the wall is likely to have come from 
secondary reflections from other nearby objects (trees, other 
walls, the ground, etc.) 

Linear model 
 
A linear model of the daylight spectral power distributions 
expresses the spectral power distributions as a weighted sum 
of basis functions: 
 

 Ee = Be we (1) 

 
where Ee (Nx1) is a column vector containing a daylight 
illuminant sampled at N wavelengths, Be (NxP) is a matrix 
containing P basis functions as column vectors, and we 
(Px1) is a column vector containing the daylight illuminant 
model coefficients. 
 
To evaluate the quality of linear model fits, we use a percent 
error measure: 

 

 

Figure 3.  Daylight illuminants.  (a) Spectral power distributions 

of daylights from the collected data set.  The curves have been 

normalized to unit value at 560 nm for display purposes only. (b) 

The percent error of the best linear model fit as a function of 

linear model dimension. 
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where A is the original spectral power distribution, B is the 
linear model approximation of the spectral power 
distribution, and || x || denotes the vector length of x. 
 
To calculate linear model basis functions that are designed 
to minimize percent error, we used the following procedure.  
First, we normalized each daylight measurement by its 
vector length.  This normalization is similar to the procedure 
used to build the CIE daylight model. (In that case the 
daylights were normalized to a common value at 560 nm.)  
Then using the singular-value decomposition on a matrix 
containing the normalized spectral power distributions, we 
calculated the left singular matrix.  The columns of this 
matrix serve as the linear model basis functions, Be. 
 
The absolute intensity of daylight contains important 
information that is useful in estimation.12  For example, if 
the daylight intensity is high, the daylight is more likely to 
be direct sunlight than atmospheric scattering.  When the 
intensity is low, the reverse is probably true.  An estimation 
process should not discard this information.  To calculate 
the linear model coefficients of each illuminant, we, without 
losing intensity information, we multiplied the transpose of 
Be with the original unnormalized daylight spectral power 
distributions.  This linear model, unlike the usual CIE 
daylight model, contains absolute intensity information 
about the illuminants. 
 
Figure 3b shows the decreasing percent error as a function 
of linear model dimension.  For three basis functions the 
average error is 1.81%.  Hence, three linear dimensions 
approximate the full spectral power distributions of our 
daylight data reasonably well.   
 
The daylights we have collected are consistent with the CIE 
daylight model in two ways.  First, the linear model 
dimensionality needed to achieve each quality level is 
similar.  To predict both relative spectral power distribution 
and intensity information to within a 5% error, the CIE 
daylight model requires three dimensions.  Second, the CIE 
daylight model provides a reasonably good fit for our data.  
We did not use the model mainly because the basis 
functions used by the CIE are not orthogonal and this makes 
certain computations inefficient. 

Estimation algorithm 
 
We developed a nonlinear algorithm for estimating the 
unknown/undetectable linear model coefficients from 
known/detectable coefficients.  The specifics of the 
algorithm, which are beyond the scope of this paper, will be 
presented in a future paper; a general description of the 
algorithmic steps is offered here. 
 
 

The algorithm transforms the linear model basis functions 
so that the linear model coefficients can be divided into two 
groups:  (A) the model coefficients that are measured by the 
camera sensors, and (B) the model coefficients that are not 
measured by the sensors because they are orthogonal to the 
sensor responsivity.  The procedure for determining this 
transformation is described elsewhere.13  Based on this 
transformation, the sensor responses are used to measure the 
linear model coefficients in group (A).  The values of these 
measured coefficients are compared with coefficients in the 
original data set.  Samples in the original set that are similar 
to the measured coefficients are found.  Finally, group (B) 
coefficients of these similar samples are used to estimate the 
group (B) coefficients of the measured sample. 
 

 

 

Figure 4.  Coefficient distribution of a three-dimensional linear 

model of daylights.  Two different points-of-view are shown.  The 

distribution is a curved surface in a three-dimensional Euclidean 

space; it is not a space-filling distribution.  Hence, the first and 

second bases coefficients can be used to estimate the third basis 

coefficient. 



 

 

Results 

The goal of our measurements was to evaluate whether the 
acquired daylights fall within a small subregion of a higher 
dimensional linear model.  Figure 4 shows the distribution 
of daylight coefficients of a three-dimensional linear model.  
The distribution is shown from two different points-of-view.  
As can be seen in the different panels, the majority of the 
daylight coefficients follow a curved surface very closely.  
This can be seen most clearly in panel b.  The daylight 
coefficients do not fill the entire three-dimensional space; 
they are highly structured. 
 
Given that the coefficients fall close to a surface, the 
coefficient positions can be specified using only two (not 
three) values.  Moreover, it should be possible to estimate 
the spectral power distribution of these daylights using only 
two linear sensor measurements.  We have developed a 
simple nonlinear algorithm, briefly described in the methods 
section, to estimate the higher order coefficients (3, 4, …, 7) 
from the coefficients measured by two sensors.  The 
estimates of the third basis coefficients are shown in Figure 
5.  Notice that the surface has the same shape as the 
coefficient distribution in Figure 4a.  The average percent 
error of the resulting daylight spectral power distribution 
using the nonlinear estimation algorithm was 1.89%.  When 
using all three basis functions of the linear model, the 
percent error was 1.81%.  It is apparent that two coefficients 
and a nonlinear estimation algorithm perform as well as 
three sensors and a standard linear estimation algorithm. 
 

We have explored how well the nonlinear estimation 
algorithm performs with one through five sensors compared 
with a standard linear model using the same number of 
sensors.  The results are shown in Figure 6.  As a rough 
approximation, knowing the structure of daylight 
coefficients is equal to having one additional sensor.  Hence, 
one can obtain the same error with fewer sensors and less 
cost.  

Conclusion 

Linear models are a good initial step for efficiently 
representing large data sets.  Moreover, linear models work 
smoothly with classic linear mathematics so that these 
models are helpful for estimation algorithms.  Complete 
characterization of a data set, however, need not end with 
calculating the linear model basis functions.  Additional 
insight can be found in the distribution of the linear model 
coefficients.3  In this paper, we have shown that significant 
structure exists in the linear model coefficients of typical 
daylights, and that it is possible to estimate values of one or 
more coefficients from knowledge of the others.  We have 
shown that it is possible to use the coefficient structure to 
increase the accuracy of the spectral power distribution 
estimates, or allow system designs to obtain the same 
accuracy with fewer sensors and less cost. 

 

Figure 6.  Comparison of the percent error for two illuminant 

estimation algorithms.  The solid line shows the percent error for a 

simple linear estimation algorithm.  The dashed line shows the 

percent error for a nonlinear estimation algorithm in which 

invisible coefficients are estimated from measured coefficients. 

The nonlinear estimation algorithm achieves the same percent 

error using one less sensor than the linear algorithm. 

 

Figure 5.  Estimation surface of the third basis coefficients of 

daylights using the first two.  The surface is nonlinear and matches 

the shape of the coefficient distribution shown in Figure 4a.  Using 

the surface and a two-dimensional linear model, a similar quality 

fit can be obtained as using a three-dimensional linear model. 
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