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With the advancement in sensor technology, the use of multispectral imaging is gaining wide popularity for
computer vision applications. Multispectral imaging is used to achieve better discrimination between the radiance
spectra, as compared to the color images. However, it is still sensitive to illumination changes. This study evaluates
the potential evolution of illuminant estimation models from color to multispectral imaging. We first present a
state of the art on computational color constancy and then extend a set of algorithms to use them in multispectral
imaging. We investigate the influence of camera spectral sensitivities and the number of channels. Experiments are
performed on simulations over hyperspectral data. The outcomes indicate that extension of computational color
constancy algorithms from color to spectral gives promising results and may have the potential to lead towards
efficient and stable representation across illuminants. However, this is highly dependent on spectral sensitivities
and noise. We believe that the development of illuminant invariant multispectral imaging systems will be a key
enabler for further use of this technology. © 2017 Optical Society of America

OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (110.0110) Imaging systems; (110.2960) Image analysis;

(310.6188) Spectral properties.
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1. INTRODUCTION

Objects are perceived by their radiance in the visible region of
the electromagnetic spectrum, and for a given object, the
radiance depends on its material properties, its shape, and
its location in the scene. The intensity, position, and spectral
characteristics of the illuminant also play a major role in image
generation. The spectral sensitivity of filters is another impor-
tant parameter in image creation. In a simple imaging model
with three channels, the image values f � �R; G; B�T are
dependent on the light source e�λ�, surface reflectance r�λ�,
and camera sensitivity functions c�λ� � fr�λ�; g�λ�; b�λ�g, as

f �

Z

ω

e�λ�r�λ�c�λ�dλ: (1)

In the human visual system, the three cone types are sensi-
tive to certain wavelengths in photopic vision [1]. In the case of
a camera with three channels, the color filters play a similar role.
Multispectral imaging is being used to capture more spectral
details in a scene as compared to conventional color images.
Recently emerging technologies, such as the spectral filter arrays
[2–4], enable a broader range of usage domains for multispec-
tral imaging. The use of multispectral images in object recog-
nition can perform better than the conventional RGB color
images [5]. An example of a multispectral imaging system to
determine the quality attributes and ripeness stage in straw-
berries was proposed by Liu et al. [6]. In that work, the imaging

system is first radiometrically calibrated using both a diffuse
white and dark target. Similarly, most existing multispectral im-
aging systems are specifically designed and need to be recali-
brated when the imaging conditions are changed. Extending
the use of the multispectral imaging system from heavily con-
strained environments to real-world applications is still an open
challenge. One of the major obstacles is calibration of the mul-
tispectral camera according to the scene illuminant [7–11]. In
this work, we investigate the use of illuminant estimation algo-
rithms for multispectral imaging systems.

We propose to extend the illuminant estimation algorithms
from three channels to N channels. Recently, Thomas [12] in-
vestigated the physical validity of these illuminant estimation
algorithms by applying them on uncalibrated multispectral im-
ages (MSIs) with 3, 5, 12, and 20 bands. That work showed
that there is a huge variability due to scene contents, and sug-
gests that the number and potential configuration of bands has
an important influence on the results. In this work, we extend
those preliminary results to a more general and exhaustive in-
vestigation through an experimental framework where we sim-
ulate a multispectral imaging system using different numbers of
sensors and configurations. In Ref. [12], only equi-Gaussian
filters are used in simulations and evaluation is provided in the
form of angular error and the goodness-of-fit coefficient (GFC).
In this work, we use equi-Gaussian filters, the Dirac delta form
of filters, and overlapping equi-energy filters for the evaluation

Research Article Vol. 34, No. 7 / July 2017 / Journal of the Optical Society of America A 1085

1084-7529/17/071085-14 Journal © 2017 Optical Society of America

mailto:haris.a.khan@ntnu.no
mailto:haris.a.khan@ntnu.no
mailto:haris.a.khan@ntnu.no
mailto:haris.a.khan@ntnu.no
https://doi.org/10.1364/JOSAA.34.001085
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAA.34.001085&domain=pdf&date_stamp=2017-06-07


of the effect of the filter configuration on illuminant estima-
tion. We use the extension of specific illuminant estimation
algorithms, which contain simple assumptions, provide effi-
cient performance with natural scenes, and are robust to illu-
mination changes since they do not require any training. We
evaluate the results in the form of angular error. We also map
the illuminant in the sensor domain into the xy chromaticity
space and then evaluate the xy chromaticity error. In this way,
we are able to compare the performance of illuminant estima-
tion algorithms and configurations between varying numbers of
filters by reducing data into a common dimensionality. The
experimental framework presented here can be extended for
more sophisticated illuminant estimation algorithms as well,
in order to develop an optimal illuminant estimation system
for multispectral imaging.

This paper is organized as follows. In Section 2, we briefly
discuss computational color constancy and previous research on
illuminant estimation in color images. In Section 3, we discuss
previous work done on illuminant estimation in MSI and
define the methodology for extension of illuminant estimation
algorithms to higher dimensions. In Section 4, we present the
experimental setup, Section 5 contains our results and a discus-
sion, and Section 6 concludes the paper.

2. COMPUTATIONAL COLOR CONSTANCY

REVIEW

The captured color of objects generally changes when observed
under different light sources, since the creation of an image is
dependent not only on the spectral reflectance property of the
object’s surface and the camera’s sensor sensitivity, but also on
the incident illuminant on the object, as in Eq. (1). The human
visual system has the natural ability to perceive constant color
of surfaces despite the change in spectral composition of the
illuminant [13], and this ability to discard illumination effects
is called “color constancy” [14]. Color constancy is usually de-
fined in the context of natural scenes along with flat matte and
diffuse materials by a so-called “equivalent illumination model”
[15,16]. Creating such a model for color constancy in com-
puter vision is called computational color constancy (CCC).
Developing an illuminant invariant computer vision system
is an open area of research, and there are algorithms that are
able to perform well for particular conditions and assumptions,
but still a universally accepted CCC system does not exist.

CCC plays an important role in color-based computer vi-
sion applications including object recognition, tracking, and
image classification [17]. Object representation and recognition
from the standpoint of computer vision is discussed in detail in
Ref. [18]. For example, in the case of object recognition, the
color of the object can be used as a feature, and it should appear
constant across changes in illumination [19]. So the first step in
achieving a constant representation of colors is to adjust the
color changes due to the illuminant. CCC therefore deals with
the representation of a scene with the effect of the illuminant
being as small as possible. There are basically two approaches
for this. One is to compute illuminant invariant features
[20,21], and the second is to estimate the illuminant [22]
and later apply a correction. Our work focuses on illuminant
estimation in a scene.

The problem of developing an efficient and generic CCC
algorithm obviously depends strongly on the illuminant estima-
tion in a given scene, which indeed is not a straightforward task.
The core challenge for CCC is that the data acquired are a com-
bination of three unknown factors: surface reflectance proper-
ties, color of illuminant, and sensor sensitivities. Maloney and
Wandell [23] showed that color constancy is indeed impossible
without applying restrictions on spectral reflectance and
illuminations.

From the imaging model given in Eq. (1), the goal of a color
constancy system is to estimate the illuminant ê, and this
estimation is performed in the camera domain:

e �

 

Re

Ge

Be

!

�

Z

ω

e�λ�c�λ�dλ: (2)

In Eq. (2), e corresponds to the illuminant’s projection over
filters (IPF), which is a set of discrete values with the dimension
equal to the total number of filters (N). It should be noted that
IPF is the response of each filter for the illumination (ground
truth or estimated), and it is not equivalent to the spectral
power distribution of the illumination itself.

Since the sensor’s response f is a combination of three
unknown factors, the estimation of scene illuminant ê is an
ill-posed problem [24] and certain assumptions have to be made
in order to estimate the scene illuminant. Once the illuminant is
estimated within the sensor domain, correction is applied to the
acquired image in order to represent it as it would have been
taken under a known light source. This process is also expressed
as “discounting the chromaticity of the illuminant” byD’Zmura
and Lennie [25]. This transformation is performed as

Fc � Du;cFu; (3)

whereFu is the image taken in an unknown light source andFc is
the transformed image as if taken under a canonical illuminant,
while Du;c is the spectral adaptation transform matrix, which
maps colors from the captured image to their corresponding
colors under a known illumination. The independence of
color channels from each other is defined in the retinex model
[26–28]. This assumption is closely related to the Von Kries
coefficient rule [29,30]. Land’s white-patch algorithm [28] pro-
poses that there is at least one pixel in each color channel that
causes maximum reflection of the illuminant and when such
maximum responses are combined, they form the color of
the illuminant. This assumption is alleviated by considering
the color channels separately, resulting in the max-RGB
algorithm [27].

The gray-world algorithm was proposed by Buchsbaum [31]
and is based on the assumption that the average color of a scene
is achromatic. The result of the gray-world algorithm was im-
proved by Gershon et al. [32] by taking the average reflectance
of a database and assuming the average of the scene to be equal
to that average reflectance.

The shades of gray algorithm was introduced by Finlayson
and Trezzi [33]. This is a general form of max-RGB and gray-
world algorithms where it is shown that the gray-world algo-
rithm is the same as using the L1 Minkowski norm while
max-RGB is equivalent to using the L∞ norm. In their case,
the general equation for estimation of light source becomes
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�
R

F pdx
R

dx

�

1∕p

� ke; (4)

where k is a constant, and p is the order of the Minkowski
norm.

The gray-edge algorithm proposed by van de Weijer and
Gevers [34] assumes that the average of reflectance derivative
in a scene is achromatic. This algorithm is expressed as

�

�
R

�F σ �
pdx

R

dx

�

1∕p

� ke; (5)

where F σ is the smoothed image, after applying a Gaussian
filter.

Edge-based CCC is explored further for higher-order
derivatives in Ref. [35]. Celik and Tjahjadi [36] used wavelet
transform to down-sample the image before applying the gray-
edge algorithm for estimation of illuminant color, and for each
down-sampled image, separate estimation is performed on the
high-pass filter’s result. The decision for illuminant color is
based on minimum error between the estimation in consecutive
scales. CCC based on spatio-temporal statistics in a scene was
proposed by Chakrabarti et al. [37], where the spatial features
of object surfaces are also accounted for in the determination of
the illuminant. That work is improved in Ref. [38] by using
only the edge information for achieving computational effi-
ciency. There are some approaches that try to select the most
appropriate estimation using intrinsic properties from other
color constancy algorithms [39].

Gamut mapping is also used in CCC. It was introduced by
Forsyth [40]. He proposed that the color of an object is its
representation under a fixed canonical light, rather than as a
surface reflectance function. It is based on the assumption that
for a given illuminant, one observes only a limited number of
colors. Based on this assumption, any change in colors of the
image is caused by the variation in color of the light source.
The limited set of colors that can occur under a given illumi-
nant is called the canonical gamut and is determined through
observations of many surfaces under the known light source.
Gijsenij et al. [41] proposed gamut estimation for illuminant
by using higher-order statistics. Their results show that for a
lower number of surfaces, pixel-based gamut mapping performs
well, but with a large number of surfaces, the efficiency of edge-
based gamut mapping increases. Color-by-correlation [42] is a
discrete version of gamut mapping where the correlation matrix
is used instead of the canonical gamut for the considered illu-
minants, and is used with the image data to calculate the prob-
ability that the illumination in the test image is caused by which
of the known illuminants.

Huo et al. [43] proposed an automatic white balancing algo-
rithm by using gray points in an image for estimation of the il-
luminant temperature. In their method, an RGB image is
converted into YUV color space and then those pixels where
U � V � 0 or R � G � B � Y are pointed out as gray
points. A feedback system is used to estimate those points,
and then remaining pixels are corrected by adjusting the gain
of the R or B channel according to the illuminant color being
detected. Yoon et al. [44] proposed dichromatic line space where
a dichromatic slope is formed within dichromatic line space.
Illuminant chromaticity is estimated through intersection of

those lines. Ratnasingam and Collins [45] proposed two
features that are described to represent chromaticity and are in-
dependent of the intensity and correlated color temperature of
the illuminant in a scene. Sapiro [46] presented the probabilistic
Hough transform approach where a surface is selected according
to the defined distribution and is used to recover the illuminant
while using it along with the sensor response. Bayesian formu-
lation for solving CCC is used by Brainard and Freeman [47],
where each surface and light is represented by basis functions for
which the probability distribution is defined. Xiong and Funt
[48] used stereo images for extraction of 3D information as
an additional source for illuminant estimation. Use of six chan-
nels is proposed by Finlayson et al. [49] in the chromagenic al-
gorithm. The additional three channels are acquired by using a
chromagenic filter being placed in front of the sensor. The in-
formation from these channels is used to estimate the scene’s
illuminant from a set of known illuminants. Modification in
the chromagenic algorithm is proposed by Fredembach and
Finlayson in the bright-chromagenic algorithm [50], by using
only the brightest pixels in the two images.

Assuming that the subspace of reflectances of all surfaces is
linear and in a smaller dimension than the number of sensors,
the Maloney–Wandell algorithm [51] proposes that the sensor
responses for the surfaces under one illuminant fall within a
linear subspace of the same dimensionality. Estimation of sur-
face colors under two illuminants using retinex theory is pro-
posed by Barnard et al. [52] and Finlayson et al. [53]. Nieves
et al. [54] proposed a linear pseudo-inverse method for recovery
of the spectral power distribution of the illuminants using a
learning-based procedure. Their algorithm is based on the
detection of naturally occurring bright areas in natural images,
acquired through the color camera.

Machine learning is also applied for illuminant estimation.
In Ref. [55], a multilayer neural network is trained using
histograms of chromaticity of input images along with the cor-
responding chromaticity of the illuminant. A number of similar
approaches can be found in Refs. [56–58]. The support vector
machine is used in Ref. [59], which is based on the higher-order
structure of images. Recently, deep learning has also been uti-
lized in color constancy as in Refs. [60,61]. Bianco et al. [62]
used a convolutional neural network for illuminant estimation
in raw images. For generation of ground-truth illumination,
shades of gray, gray edge, and gamut mapping are applied on
the training data in their proposed method. Oh and Kim [63]
treat this as an illuminant classification problem by using deep
learning.

We consider multispectral images taken in an outdoor envi-
ronment that can be generated by any mixture of illuminants.
We are also interested in investigating the effect of the number
of filters and their configurations for illuminant estimation. We
propose to select a set of illuminant estimation algorithms that
can handle any type of illuminant without requiring prior train-
ing and provide straightforward extension to N dimensions.
We also require the estimated illuminant to be in the sensor
dimension and not in the xy chromaticity space so that it
can be used for spectral adaptation transform [Du;c in Eq. (3)].
Following our review, we chose to investigate the extension
of the gray-world, max-RGB, shades of gray, and gray-edge
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algorithms. Another reason for the selection of these algorithms
is the diversity of spectral imaging systems in terms of spectral
sensitivities and the number of channels in our experiments.
Initially we do not select the learning-based algorithms as
we are interested in a generic illuminant estimation framework
without the need for prior training. Although the use of clas-
sification methods shows improvement in performance of illu-
minant estimation, the major problem with such techniques is
the availability of training data and the limited set of illumina-
tions being considered. This is not a major problem in the case
of color images but may be troublesome in spectral images.
Another constraint is the diversity of spectral imaging systems
in terms of spectral sensitivities and the number of channels.
Therefore, we limit our investigations to “equivalent illumina-
tion models.”

3. ILLUMINANT ESTIMATION FROM

MULTISPECTRAL IMAGES

In this section, we will first discuss the previous work done for
illuminant estimation in multispectral images and then define
our proposed idea for the extension of existing illuminant es-
timation algorithms from color to multispectral images.

A. Related Work

In this section, we define the formation of a multispectral image
and then review the literature on illuminant estimation on these
images. Spectral imaging can be defined as an array of N chan-
nels representing several spectral components at each spatial lo-
cation. The use of spectral imaging gained worldwide attention
after the launch of Landsat in 1970, and since then it has been
widely used in remote sensing applications. With the develop-
ment in sensor technology, the use of spectral imaging in short-
range imaging is also expanded. A survey on hyperspectral and
multispectral imaging technologies is provided by Vagni [64].
In this work, we are considering only multispectral images ac-
quired through short-range imaging techniques, where N , the
number of spectral filters, is typically in the range of 5–20 [65].

According to the sensitivity of a typical silicon sensor behind
an optical system, having sensitivity range from 400 to
1100 nm, a multispectral system usually provides a combina-
tion of visible and/or near-infrared bands, where the imaging
model defined in Eq. (1) still holds:

f �

Z

ω

e�λ�r�λ�m�λ�dλ; (6)

where we now represent the camera sensitivities as
m�λ� � fm1�λ�; m2�λ�;…; mN �λ�g.

Mosny and Funt [66] investigated the role of additional in-
formation acquired through multispectral imaging in order to
improve the performance of already existing color constancy
algorithms for illuminant chromaticity estimation. They used
the chromagenic algorithm [49], the Maloney–Wandell algo-
rithm [51], the gray-world algorithm [31], and max-RGB [27].
Multispectral images were synthesized for their experiments by
using the spectral sensitivity of a Sony DXC-930 camera. For
additional band acquisition simulation, the sensitivity curves
were shifted by �16 nm. They used three, six, and nine
bands for image acquisition along with 1995 surfaces and

287 illuminants. For representation of results, the median an-
gular error in the sensor domain and the median angular error
for illuminants estimates converted to RGB space were used.
According to their evaluation, there is a slight improvement
with six channels, but overall there is no significant improve-
ment in illuminant chromaticity estimation by increasing the
number of bands. Such experiments are performed on real-
world data in Ref. [67], where the authors have used 28 scenes
being photographed with 10 different illuminations. For image
acquisition, cool and warm filters were used with the camera.
Their evaluation methods show the same results that additional
spectral bands do not contribute significantly towards illumi-
nant chromaticity estimation.

Shrestha and Hardeberg [10] proposed a spectrogenic im-
aging system where two images are acquired from a scene: one
normal RGB image and one filtered-RGB image. Illuminant
estimation of the scene using these two images is performed
using the chromagenic algorithm [49], and its modification
was proposed by Fredembach and Finlayson [50]. Eighty-seven
illuminants were used for training the system, and an illumi-
nant with minimum fitting error was selected as the potential
illuminant for the scene.

It is worth noting that the purpose of Mosny and Funt
[66,67] was to investigate whether there is any improvement
in illuminant estimation achieved by increasing the number
of filters, while in our work we want to investigate the extension
of illuminant estimation into the multispectral domain. The
system proposed by Shrestha and Hardeberg [10] is limited
in terms of bands and illuminants. We are interested in the
development of an illuminant estimation framework for multi-
spectral imaging with any number of bands and with any mix-
ture of illuminants so that it can be used for outdoor image
acquisition without requiring calibration.

B. Proposed Multispectral Illuminant Estimation

Algorithms

In this work, we propose four algorithms for investigation,
which are instantiations of a class of models referred to as
“equivalent illumination models,” and they assume a “flat-
matte-diffuse” condition. These algorithms are computational
attempts to implement the model of the human visual system
for color constancy using natural image statistics. We evaluate
the performance of those algorithms with multispectral data by
extending those techniques to N dimensions and get the esti-
mate of the illuminant in the sensor domain. We rename those
algorithms so that the confusion between color information
and spectral information is eliminated.

• Gray-world algorithm [31] → spectral gray-world
algorithm

• Max-RGB algorithm [27] → max-spectral algorithm
• Shades of gray algorithm [33] → spectral shades of gray

algorithm
• Gray-edge algorithm [34,35] → spectral gray-edge

algorithm

In the gray-world algorithm, it is assumed that the average
reflectance of a scene is gray or achromatic. We extend this def-
inition for the case of multispectral images by assuming that the
average reflectance in an N -dimensional image is constant:
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�
R

r�λ�dx
R

dx

�

� k: (7)

Using Eq. (4) with p � 1, the illuminant can be estimated
by computing the average pixel values for each channel:

R

f�λ�dx
R

dx
�

1
R

dx

Z Z

ω

e�λ�r�λ�m�λ�dλdx

� k

Z

ω

e�λ�m�λ�dλ � kê: (8)

The term ê is the estimate of the illuminant in the sensor
domain. The same technique is used for the spectral gray-edge
algorithm, where each channel is treated according to Eq. (5)
after smoothing through a Gaussian filter with σ � 2 and ex-
traction of edges through the derivative in both spatial axes. In
the case of the spectral shades of gray algorithm, Eq. (4) is used
with a value of p higher than 1, while for the max-spectral al-
gorithm, we treat each spectral band separately to get the pixels
with the maximum response and use them for estimating the
illuminant according to the originally presented hypothesis
where the authors used color images.

Our implementation strategy for extension of these algo-
rithms is slightly different than in Ref. [12] as we consider each
channel of a multispectral image separately. It is worth men-
tioning that both the shades of gray and gray-edge algorithms
use Minkowski norm p, and in Ref. [33], the authors declare
that with p � 6, the best results are obtained. In our experi-
ments, we keep the same value of p as proposed by the authors;
however, we perform an experiment to obtain the optimized
value for this parameter and discuss it in the results section.

4. EXPERIMENTAL SETUP

A. Data Preparation

We use hyperspectral images from the Foster Dataset 2004
[68], which are acquired in the wavelength range of 400–
720 nm. This dataset contains reflectance data from natural
scenes and is adequate for our purposes because of its natural
image statistics, which are fundamental to the proposed meth-
ods (Fig. 1). In order to prepare radiance data, we use D65 and
F11 illuminants. We also test the framework using a combina-
tion of D65 and F11 illuminations to simulate a scene having
mix D65-F11 illuminants (Fig. 2). D65 is used as a standard
daylight illuminant, while F11 resembles the spectral response
of a sodium-vapor lamp [69], which would typically represent
an example of outdoor lighting, e.g., road or ski tracks.
Illuminant F5 is also used in the experiments, and we found
similar results to those obtained with the F11 illuminant. In
this paper, we present the results obtained from the multispec-
tral data generated through the F11 illuminant.

We also consider noise in the multispectral imaging system.
Typically, the main sources of noise are photon shot noise, dark
current noise, read noise, and quantization noise [70]. We do
not consider photon shot noise and dark current noise since the
Foster Dataset 2004 is already corrected for these types of noise.
We do not consider quantization noise either since the data is
already quantized at 12 bits. We simulate the additive read
noise in our experiments as normally distributed Gaussian
noise with zero mean and 2% variance [71].

B. Sensor Configuration

The performance of the proposed algorithms would be affected
by the spectral sensitivities of the sensors that capture the ra-
diance [72]. In our experiments, we use a Gaussian model of
sensor sensitivities. Such a model has been extensively used in
the literature to simulate sensors or to approximate Fabry–
Perot filter transmittance [73]. For our experiments, three sen-
sor configurations, Sg , Sd , and S50, are investigated. Within the
visible range, we define Sg as equi-Gaussian [12]. The full
width at half maximum (FWHM) of the sensor sensitivities
decreases with an increase in the number of bands, and the
overlap between adjacent bands remains approximately the
same. By increasing the number of bands in this configuration,
we are gradually shifting from typical multispectral sensors
towards hyperspectral sensors. The Sd configuration is a

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Rendering of hyperspectral images from Foster Dataset
2004 into RGB with D65 illuminant. The hyperspectral images are
acquired within the wavelength range of 400–720 nm with 10 nm
sampling. Each hyperspectral image consists of 33 spectral bands.
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simulation of the Dirac delta function where only the band
corresponding to the mean of the Gaussian filter is selected
while the rest of the bands are discarded. It is of interest to test
whether such a configuration will provide any help in estimat-
ing the illuminants with spiky behavior (e.g., F illuminants).
Configuration S50 consists of equi-energy filters, having a fixed
FWHM and σ � 50 nm, which is different from Sg , where the
FWHM of filters is changed with a change in the number of
bands. Using this configuration, we evaluate the effect of over-
lapping of filters for illuminant estimation.

In addition to the above explained filter configurations, we
also consider different numbers of bands. Three bands are used
for simulating an instantiation of RGB cameras. Five and eight
bands are used for simulating a typical multispectral camera [7].
Twelve bands are used to get the best spectral reconstruction
[74], while 20 bands are deployed to approach the properties of
a hyperspectral sensor. Figure 3 shows the three different
configurations with eight spectral filters.

C. Evaluation

We consider images with different numbers of bands; therefore
the quantitative evaluation is not straightforward, especially
when comparing results obtained with different numbers of
bands. We consider different quality evaluation metrics, which
include evaluation on the basis of angular error, GFC [75], and
normalized mean square error (NRMSE). These three evalu-
ation metrics are used only when the dimension of filters is
the same, and therefore results obtained from different num-
bers of filters cannot be compared. The estimated illuminants
and ground-truth illuminant are normalized by dividing each
value from the maximum so that the range is within [0–1] and
relative errors are evaluated. The three indicators are very

similar in the way they evaluate the similarity between data. We
determined the correlation among the computed metrics and
found that the correlation between angular error and GFC is
−0.987, while the correlation between angular error and
NRMSE is 0.975 in our data. Therefore, we decide to discuss
and analyze the results in terms of angular error in this paper.

Calculation of the angular error (ΔA) between the original
illuminant e and the estimated illuminant ê is computed in
radians as in Eq. (9). This is commonly used in CCC literature:

ΔA � arccos
eT ê

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�eT e��êT ê�
p ; (9)

where e is the ground-truth illuminant directly acquired in the
sensor domain while ê is the estimated illuminant in the sensor
domain. When the estimated and measured illuminants are the
same, then it returns zero error.

The comparison of performance is done among five differ-
ent numbers of spectral filters (three, five, eight, 12, and 20),
three different filter configurations (equi-Gaussian, Dirac delta,
and equi-energy filters), and four different algorithms (spectral
gray world, max-spectral, spectral shades of gray, and spectral
gray edge). The estimated illuminant for all these configura-
tions is compared with the ground-truth illuminant in the
sensor domain.

To be able to compare results obtained from different
numbers of filters, we project the data into the chromaticity
space, where they could be compared at the expense of an error
in the projection definition. We call this evaluation metric “xy
chromaticity difference,” where we perform a camera linear col-
orimetric calibration based on mean square error fitting on the
reflectance of X-Rite ColorChecker, similar to the work of [76],
where the authors used that technique for color reproduction of

400 500 600 700
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Fig. 2. Illuminants used for creating radiance data from hyperspectral reflectance data are shown. Normalization is performed by diving each value
by the maximum of that illuminant so that all values are within the range of [0–1]. (a) D65 Illuminant. (b) F11 Illuminant. In (c), the mix D65-F11
illuminant consists of 50% D65 and 50% F11.

Fig. 3. Filter configurations. For a configuration denoted S
y
x , x is the number of filters and y represents the configuration where we have the

following: g, equi-Gaussian; d, Dirac delta; f, filter with constant FWHM. Here we show examples with eight filters. (a) S
g
8 Equi-Gaussian filters.

(b) Sd8 Dirac delta filters. (c) S508 Equi-energy filters.
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MSI. We get the CIEXYZ of both the estimated and the
ground-truth illuminants using this method. xy values are com-
puted from these values, and the chromatic distance between
them is observed in terms of Euclidean distance. This method
enables us to compare the results obtained from different num-
bers of filters with each other. To verify the validity of this tech-
nique, we compared the ground-truth illuminants in the sensor
domain with the chromaticity value of D65 and found that the
Euclidean distance between them varies between 0.000934 and
0.00523 in the xy chromaticity space, which is very small, and,
therefore, we can neglect the chromaticity error introduced
during mapping of the illuminant from the sensor domain
to the xy chromaticity space.

We present the results in the form of mean angular error, and
in order to compare the statistical significance of results, the
Wilcoxon signed rank test (WST) is applied. The use of
WST is recommended by Hordley and Finlayson [77] and is
used for evaluation of the illuminant estimation performance
[50,78,79]. We investigate the statistical significance among re-
sults at 95% confidence level and provide the WST scores in
terms of the sum of positive scores in the same way as provided
by Bianco et al. [78]. A higher score means that one particular
algorithm along with a sensor configuration is able to perform
well as compared to the others. A lower WST score means that
the performance is significantly lower in comparison with the
rest. To illustrate the visual difference among the ground-truth
illuminant and the estimated illuminant, we have included ex-
amples in the form of plots. In each figure, the IPF for e and ê can
be compared when the number of filters is the same.

5. RESULTS AND DISCUSSION

We have provided the results in Tables 1–6. Table 1 shows that
in the noiseless case with three filters, spectral gray edge S

g
3

performs the best, followed by S503 and then max-spectral S
g
3.

The Sd3 configuration performs the worst for all four algo-
rithms. Illuminant estimation from noisy data also shows the

same results. There is a slight improvement in mean error in
some cases when noise data is used, but this slight change is not
statistically significant and the overall results are robust with
noise. With five bands (Table 2), spectral gray edge S505 is
the best, followed by max-spectral S505 for D65 and mix
D65-F11 illuminants. F11 shows different behavior, as max-
spectral S

g
5 performs best and spectral edge S505 follows.

With noisy data, spectral gray edge S505 gives consistent perfor-
mance in terms of WST ranking, while the performance of
max-spectral S505 is significantly reduced in the case of the
F11 illuminant. Table 3 shows that with eight filters the trend
for best performance shifts from spectral edge to max-spectral as
S508 performs best for both illuminants. However, in the case of
F11, it is interesting to note that spectral shades of gray Sd8
performs the second best. This behavior is explained by the
spikes in the F11 illuminant, and the Sd configuration is able
to detect those spikes more efficiently. However, with noisy
data, shades of gray Sd8 is unable to perform anymore and spec-
tral gray edge Sd8 gets the second best ranking while the rest of
the trend remains almost the same. For 12 bands, max-spectral
S5012 achieves the best estimate, followed by spectral gray edge
S5012, as seen in Table 4. The performance of those algorithms
remains similar in the presence of noise. In Table 5, results
from using 20 filters show that max-spectral S5020 and spectral
gray edge S5020 perform almost the same in both conditions.

We also compare performance on individual multispectral
images to determine the effect of scene content on illuminant
estimation. Results of illuminant estimation for each individual
test image, being acquired through three, five, eight, 12, and 20
spectral filters and with the three different sensor configura-
tions, are provided in the supplementary data (Data File 1,
Data File 2, Data File 3, Data File 4, Data File 5, and
Data File 6). In the following, analysis is provided on the data
being generated with the D65 illuminant. With three channels,
images I1, I2, I4, I6, and I8 show good performance with spec-
tral gray edge S

g
3, while with images I3, I5, and I7, max-spectral

Table 1. Performance of Illuminant Estimation Algorithms and Filter Configurations for Three Bandsa

aBold values show the best performance, and italicized values show the second best performance, for a particular algorithm and filter configuration. Spectral gray

edge with S
g
3 configuration shows the best result.
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S
g
3 performs the best. To illustrate the difference in projection

of the ground-truth illuminant and the estimated illuminant,
some examples are shown in Figs. 4–8. In each figure, the x axis
represents each filter among the N filters and configuration,
while the y axis represents values of e and ê, corresponding
to the IFP. The points in the figures are joined through straight
lines so that the overall behavior can be observed easily. It is
worth noting that the results for different numbers of filters
are not comparable across Figs. 4–8, since the dimension of
filters is changed in each of them. Figure 4 shows the estimated
illuminants in the sensor domain for I3 and I4 when spectral
gray edge S

g
3 is used. For five filters, I3 and I7 perform best with

max-spectral S505 , while the other images show good results with
spectral gray edge S505 . I6 performs worst with max-spectral S505 ,

which is the reason that this algorithm and configuration gets
the second best rank while spectral gray edge S505 gets the high-
est score for five channels. Figure 5 shows the estimated illu-
minant in the sensor domain for I5 and I3. Figure 5 shows the
poor performance of illuminant estimation for I3 and I5. At
this stage, the trend of improvement in max-spectral can al-
ready be observed, which becomes clear with eight channels
as max-spectral S508 performs best for all images except I6,
which works well with spectral gray edge S508 . The performance
of max-spectral S508 for images I3 and I5 is shown in Fig. 6. The
same behavior is shown by individual images with 12 and 20
channels as well. Figures 7 and 8 show the performance of
max-spectral S50 for I6 and I7 when the number of channels
is 12 and 20, respectively. In other images, there is a close tie

Table 2. Performance of Illuminant Estimation Algorithms and Filter Configurations for Five Bandsa

aBold values show the best performance, and italicized values show the second best performance, for a particular algorithm and filter configuration. Spectral gray

edge with S505 configuration shows the best result for D65 and mix D65-F11 illuminants but is placed second in the case of the F11 illuminant, where max-spectral

S505 performs best with noise-free data.

Table 3. Performance of Illuminant Estimation Algorithms and Filter Configurations for Eight Bandsa

aBold values show the best performance, and italicized values show the second best performance, for a particular algorithm and filter configuration. Max-spectral

with S508 performs best.

1092 Vol. 34, No. 7 / July 2017 / Journal of the Optical Society of America A Research Article



between max-spectral S508 and spectral gray edge S508 , but im-
ages I3 and I6 do not perform well with spectral gray edge S508 ,
thus causing it to get the overall second rank. Angular errors for
all the algorithms, number of filters, filter configurations, and
illuminants being used are provided in the supplementary
material. We have also provided the error in terms of xy chro-
maticity for each of the individual images along with the other
parameters being tested, in the supplementary material.

Overall, the configuration S50 performs the best among
tested filter configurations. Max-spectral and spectral gray edge
attain good results, while spectral gray world shows the worst
results for all cases. Sd shows slightly better performance with
the F11 illuminant, but otherwise it also performs worst. It is
interesting to note that spectral gray edge performs better
with three bands, but by increasing the number of bands, the

max-spectral algorithm starts performing the best among the
tested algorithms. We investigate that trend by altering the
value of Minkowski norm p as in Eqs. (4) and (5). When
the value of the p parameter is increased, more weight is given
to bright pixels in an image, and this ultimately leads towards
the max-spectral algorithm.We performed tests with values of p
varying from 1 to 1000. The results show a very interesting
observation that as more weight is given to bright pixels in
a scene, the illuminant estimation gets better. This explains
why the max-spectral algorithm performs well especially with
an increase in the number of bands. Figure 9 shows the change
in angular error with variation in the value of p.

Tables 1–5 provide analysis of the performance of the pro-
posed algorithms along with a given sensor configuration, in
terms of ΔA. However, these results cannot be compared across

Table 4. Performance of Illuminant Estimation Algorithms and Filter Configurations for 12 Bandsa

aBold values show the best performance, and italicized values show the second best performance, for a particular algorithm and filter configuration. Max-spectral

with S5012 performs best.

Table 5. Performance of Illuminant Estimation Algorithms and Filter Configurations for 20 Bandsa

aBold values show the best performance, and italicized values show the second best performance, for a particular algorithm and filter configuration. Max-spectral

with S5020 configuration performs best for D65 and F11, while spectral gray edge S5020 performs best for mixed illuminants.
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Table 6. Ranking Based on xy Chromaticity Error in Terms of Euclidean Distance (ED)a

aBold values show the best performance, bold-italic values show the second best, and italicized values represent the third best performance, for a particular algorithm

and filter configuration. Spectral edge S508 gives the best performance for the D65 illuminant. With the F11 illuminant, max-spectral Sd20 performs the best and is

followed by max-spectral S
g
8. In the case of the mix D65-F11 illuminant, max-spectral Sd20 gives the best result and spectral edge S

50
8 comes after it. Overall, the max-

spectral algorithm gives consistent performance, and the illuminant is best estimated with eight filters.
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the different numbers of filters because ΔA can be compared
between two vectors only if they have the same dimension (in
our case, the ground-truth and estimated illuminants are in the
sensor dimension).

Mosny and Funt [66,67] performed their evaluation in rg
chromaticity space. In their method, RGB of the estimated

illuminant is obtained after identifying which illuminant from
a database of known illuminants it is most similar to, and using
that illuminant’s RGB as the conversion value. Based on this
evaluation, they concluded that there is minor improvement
in increasing the number of bands from three to six for
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Fig. 5. Illuminant’s projection over filters (IPF) of D65 with N �

5 channels and estimated illuminants with spectral gray edge S505 in
sensor domain for images I3 and I5 with ΔA of 0.2284 and
0.0457, respectively. I5 gives good results, while I3 performs worst.
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Fig. 4. Illuminant’s projection over filters (IPF) of D65 with N �

3 channels and estimated illuminants with spectral gray edge S
g
3 for

images I3 and I4 with ΔA of 0.228 and 0.0158, respectively. I4 gives
good results, while I3 performs worst.
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Fig. 6. Illuminant’s projection over filters (IPF) of D65 with N �

8 channels and estimated illuminants with max-spectral S508 in sensor
domain for images I3 and I5 with ΔA of 0.1142 and 0.0446, respec-
tively. I5 gives good results, while I3 performs worst.
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Fig. 7. Illuminant’s projection over filters (IPF) of D65 with N �

12 channels and estimated illuminants with max-spectral S5012 in sensor
domain for images I6 and I7 with ΔA of 0.0838 and 0.0117, respec-
tively. I7 gives good results.
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Fig. 8. Illuminant’s projection over filters (IPF) of D65 with N �

20 channels and estimated illuminants with max-spectral S5020 in sensor
domain for images I6 and I7 with ΔA of 0.0839 and 0.0117, respec-
tively. I7 gives good results.

Fig. 9. Change in angular error with variation in p. We did experi-
ments for p � 1–1000 but show results only up to 300 because there
is no change in error value as the value of p is increased beyond 100.
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illuminant estimation, but a further increase to nine bands does
not provide any improvement. For evaluating the effect of the
number of bands, we perform the evaluation based on chroma-
ticity error in Table 6 but with a different approach as defined
in Section 4.C. The comparison is performed among five
different numbers of spectral filters (three, five, eight, 12, 20),
three sensor configurations (equi-Gaussian, Dirac delta, and
equi-energy filters), and four algorithms (spectral gray world,
max-spectral, spectral shades of gray, and spectral gray-edge
algorithm). We have used Euclidean distance for evaluation
of the xy chromaticity error since we are assuming that our
evaluation is in terms of physical measurement. Using the
xy chromaticity space allows us to retain our assumption
and enables the comparison between the ground-truth illumi-
nant and the estimated illuminant.

Evaluation based on xy chromaticity error for D65 shows
that the best result is obtained from spectral gray edge S508 ,
and the second best results are from the spectral gray edge
Sd8 and Sd12. However, there is a significant statistical difference
between S50 and Sd for this illuminant, which becomes more
prominent in the case of noisy data.

With the F11 illuminant, max-spectral Sd20 performs the
best and is followed by max-spectral S

g
8. This behavior of is

explained from the spectral power distribution of F11, as shown
in Fig. 2(b). The spiky character of this illuminant can be best
acquired with the ideal Dirac delta type of filters. However, in
the presence of noise, the performance of max-spectral Sd20 is
significantly reduced. Max-spectral S

g
8 performs best in the case

of noisy data and is followed by max-spectral S
g
20.

In the case of the mix D65-F11 illuminant, max-spectral Sd20
performs the best while spectral gray edge S508 and max-spectral
S
g
5 perform second and third best, respectively. Since the behav-

ior of the mix D65-F11 illuminant is influenced by peaks of the
F11 illuminant, Sd20 performs best in this case. The same trend
continues in the case of noisy data where the statistically
significant difference among results is more prominent in light
of WST rankings.

It is interesting to note that by increasing the number of
channels beyond eight, there is a reduction in performance
of illuminant estimation algorithms. This suggests that spectral
resolution should also be maintained in a multispectral imaging
system. As noticed from Table 6, the S5020 configuration per-
forms the worst because of huge overlapping among filter sen-
sitivities. This leads to the conclusion that by increasing the
number of bands, more noise is introduced during image ac-
quisition, and, therefore, the performance of the illuminant es-
timation algorithm is degraded. To validate this, we performed
an additional illuminant estimation experiment using the na-
tive spectral resolution of the data, which is equivalent to a
Dirac delta configuration with 33 filters (Sd33). There is no im-
provement in results when compared with the already obtained
results from 20 channels, and it performs the worst when noise
is added to the system. This fact is also observed by Wang et al.
[74], where the spectral reconstruction results start degrading
after increasing the number of filters beyond 12.

Although the results and ranks are based only on eight images
of similar contents and may not lead to a strong conclusion,
our investigation suggests several general behaviors. First,

overlapping equi-energy filters may be most suitable for natural
or smooth illuminations. Although there may be loss of spectral
resolution in the case of using large overlapping sensors, since
natural illuminations behave smoothly throughout the visible
spectrum, overlapping equi-energy filters are able to perform
well. We observe the same trend after noise is added to the im-
ages before illuminant estimation. Second, the max-spectral and
spectral gray-edge algorithms provide better results than the
other tested algorithms in general. The result is rather dependent
on image content also, and in some of the images, a better es-
timate of the illuminant is achieved (data seems to follow the
illumination); in others the results are quite noisy. Third, we
found contradictory results as compared to Mosny and Funt
[66], and our results suggest that illuminant chromaticity can
be better retrieved when we increase the number of bands.
However, the impact on color rendering is yet to be investigated.
The optimum number of bands seems to be around eight.
Finally, we still cannot provide clear indications on how good
illuminant estimation is in terms of usability. In practice, the
indicator used only provides relative ranking and objective in-
dications on quality. Further analysis is required to understand
what accuracy should be achieved for acquiring an illuminant
invariant representation of multispectral images.

6. CONCLUSION AND FUTURE WORK

In this work, we proposed to extend illuminant estimation from
color to multispectral imaging. Based on an extensive review of
state of the art algorithms for CCC, we selected four algorithms
that belong to the class of equivalent illumination models, and
extended them from three channels to N channels. We named
those extended algorithms the spectral gray-world, max-spectral,
spectral shades of gray, and spectral gray-edge algorithms. Results
show that both spectral gray-edge and max-spectral algorithms
perform well in illuminant estimation. Comparison among
three different sensor sensitivities is also performed, and the
overlapping equi-energy filters are able to estimate the illumi-
nant more accurately as compared to equi-Gaussian or Dirac
delta functions for a limited number of channels. The same
results are obtained when noise is added to the image data,
which shows that the proposed extended algorithms for illumi-
nant estimation are robust to noise.

The illuminant estimation results obtained from simulated
multispectral sensors show promising aspects of application of
the proposed framework. Based on these results, future work
could be derived in three directions. First, development of
new algorithms or further extension of more sophisticated illu-
minant estimation algorithms from color to spectral may be
performed. Second, the validity of the proposed framework
may be evaluated for real data acquired with a multispectral
camera. The evaluation can also be performed in terms of color
difference and the spectral reconstruction error. Finally further
development in evaluation and usability of this framework may
be performed, for instance, by evaluating surface classification
under different illuminations.
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