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Abstract Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil

and to separate evaporation from transpiration. Due to the technical developments in the last two decades,

soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils

is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character

since an interplay of processes that take place in the vadose zone has to be considered. In this review, we

provide an overview of the hydrological processes that alter the soil water stable isotopic composition and

present studies utilizing pore water stable isotopes. The processes that are discussed include the water input

as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and

transport processes. Based on the review and supported by additional data and modeling results, we pose a

different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of

soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does

not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly

introduced rainwater during the percolation process. This way, water initially isotopically enriched in the

topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic

signals in the groundwater.

1. Introduction

Soils have long been acknowledged to play a crucial role in the hydrologic cycle, with their functional

properties controlling infiltration [Horton, 1933], percolation of water through the pore space [Lutz and

Leamer, 1940] and the accompanied leaching of solutes [Fairburn, 1929], storage capacity [Hursh and

Fletcher, 1942], soil evaporation [Penman, 1948; Stanhill, 1955], and transpiration [Penman, 1951]. Within

the soil, the partitioning of the rainfall into a vapor flux back into the atmosphere by evaporation or transpira-

tion on the one hand and recharge water on the other hand takes place [Brooks et al., 2015]. Consequently,

the vadose zone, as the unsaturated soil and sediments between soil surface and groundwater table

[Hopmans and van Genuchten, 2005], is a key factor for understanding and modeling hydrological processes

from the plot scale to the global scale.

Because of the role of the vadose zone as a mediator between other compartments in the hydrologic cycle, a

better understanding of the water and solute transport in the vadose zone is needed to challenge our per-

ception of the hydrological processes and their implementation in hydrological models at different scales.

For example, it has been shown that the representation of the vadose zone processes has a significant influ-

ence on the estimations of how long water takes to reach the catchment outlet or pass to the groundwater

(travel times) [e.g., Hrachowitz et al., 2013;McMillan et al., 2012]. Hence, the vadose zone plays not only a cen-

tral role in understanding the soil-vegetation-atmosphere exchange but also the integrated processes at the

catchment scale. We will therefore focus our review on studies that were conducted in the vadose zone and

deal with the atmospheric drivers, interactions with the vegetation, and subsurface flow paths. We provide an

overview of the fast growing highly interdisciplinary research that makes use of soil water stable isotopes as a

tracer. We first give a short introduction into water stable isotopes in soil hydrology to ensure an understand-

ing of the basic concepts to address a multidisciplinary readership (section 2). Afterward, we present the

important processes including atmospheric influences (section 3), impacts of the vegetation (section 4),

and processes mainly taking place within the soil (section 5). The purpose of this categorization is to ease

the readability, while the described processes obviously interact across the hydrologic compartments. We

further present and discuss a different view on the two water world hypothesis (section 6) and present

an outlook for future applications and development of water stable isotope methods to study soil hydrology
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(section 7). At the end, we provide a concluding summary (section 8). A glossary provides brief explanations

of selected technical terms.

2. Introduction to Water Stable Isotopes in Soil Hydrology

The method of choice to track water flow paths in the vadose zone is the variation of stable isotopes of water

(1H/2H and 16O/18O) in the subsurface. They are seen as ideal (natural) tracers, since they are part of the water

molecule itself [Kendall and McDonnell, 1998]. The concentrations of the heavy water stable isotopes are

given in the δ notation (isotope delta), which represents the relative difference in the ratio of heavy to light

isotopes (e.g., 2H/1H for deuterium and 18O/16O for oxygen-18) of a water sample to a standard water, the

Vienna Standard Mean Ocean Water (VSMOW) [Craig, 1961; Gonfiantini et al., 1995]. While the isotope delta

is a dimensionless quantity, the values are given in‰ due to the low variation in natural abundance of water

stable isotopes [Coplen, 2011]. Water stable isotopes have allowed new views on the hydrological response at

the catchment (reviewed byMcGuire and McDonnell [2007] and Vitvar et al. [2005]), hillslope [e.g.,McGuire and

McDonnell, 2010; Garvelmann et al., 2012;Mueller et al., 2014], and the soil profile scale [e.g.,Maloszewski et al.,

2006; Stumpp et al., 2009a; Sprenger et al., 2016a]. The latter two scales are of specific interest for our review,

bringing together 50 years of soil water isotope studies. There have been reviews published focusing on the

different methods to sample the soil water stable isotopes [Sprenger et al., 2015a], on the measurement and

modeling of soil water vapor [Soderberg et al., 2012], on isotope based groundwater recharge estimates

[Koeniger et al., 2016], on the application of isotope techniques to study soil salinization [Cui et al., 2011], or

on the partitioning of evapotranspiration using water stable isotopes among other methods [Kool et al.,

2014]. However, we present here an integrated view of the processes at the soil-vegetation-atmosphere

interface, which appears to be highly relevant for the environmental science community due to the fast

growing availability of water stable isotope data and its application in a multidisciplinary context.

The first studies that realized the potential of water isotopes in soils to detect subsurface processes focused

on the radioactive tritium (3H) concentration after the peak of the nuclear bomb test in the 1950s and 1960s

[Münnich, 1963] or in tracer experiments with tritiated (artificially 3H enriched) water [Zimmermann et al.,

1966; Blume et al., 1967; Kline and Jordan, 1968]. However, the potential of the natural seasonal variation of

the stable isotopes in the rainfall water was also acknowledged during that time [Brinkmann et al., 1963].

Since then, the isotopic composition of the soil waters has been used in various studies dealing with a wide

range of processes that occur in the critical zone between the groundwater and the atmosphere. These pro-

cesses and the accompanied alteration of the soil water stable isotopic composition are presented in the

Figure 1. While water fluxes between hydrological compartments like precipitation input, infiltration into

the soil, percolation through the soil, and root water uptake do not change the isotopic composition by frac-

tionation processes (indicated by “O” in Figure 1), phase changes (e.g., liquid to vapor) result in enrichment

and depletion of heavy isotopes (indicated by “+” and “�“ in Figure 1). The conceptual visualization in

Figure 1 provides an overview of the general hydrological processes that occur within the context of the

vadose zone, while the following sections will describe and discuss the effects in detail.

3. Atmospheric Influences

3.1. Input of Precipitation, Throughfall, Stemflow, and Snowmelt

The isotopic composition of the precipitation is crucial to understand the variation of the pore water isotope

signal over the soil depth and time. The isotopic composition of the global precipitation is described by the

following relationship between δ2H and δ18O [Rozanski et al., 1993]:

δ2H ¼ 8:2 δ18Oþ11:27 (1)

This regression line in a δ18O-δ2H (dual-isotope) plot, as shown in Figure 2, describes equilibrium fractionation

and is defined as the global meteoric water line (GMWL) [Craig, 1961]. This relationship between 18O and 2H

results from Rayleigh processes (equilibrium fractionation) governed by the temperature and pressure con-

ditions during the phase changes between liquid water and water vapor [Dansgaard, 1964]. In accordance

with the GMWL, one can also derive a local meteoric water line (LMWL, shown in Figure 2) describing the

stable isotopic composition in rainfall water on a regionally limited scale [Dansgaard, 1964]. This way,

LMWLs take into account the spatiotemporal variation of the water isotopic composition of precipitation.
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The spatial variability of the isotopic composition of the rainfall was found to be related to the temperature and

humidity during the vapor generation, cloud generation, and rainout, mixing of air masses, in-cloud processes

[Gat, 1996], and rain out and reevaporation during the advective transport leading to altitude effects [e.g.,

Ambach et al., 1968;Gonfiantini et al., 2001;Windhorst et al., 2013], latitude effects [Dutton et al., 2005], and con-

tinental effects [Ingraham and Taylor, 1991;Welker, 2000; Liu et al., 2010]. Guidelines on precipitation sampling

for isotopic analysis are providedby International Atomic Energy Agency [2014] andprecipitation isotopedata is

available from the Global Network of Isotopes in Precipitation published by the International Atomic Energy

Agency under http://www.iaea.org/water. The Online Isotopes in Precipitation Calculator (OIPC, available at

http://wateriso.utah.edu/waterisotopes/pages/information/oipc_info.html) provides global mean annual

and monthly 2H and 18O precipitation data based on algorithms given in Bowen et al. [2005].

For pore water stable isotope studies, the temporal variation of the isotopic composition of precipitation (as

shown in Figure 3) is crucial. In tropical regions, the isotopic composition correlates with the precipitation

amount (“amount effect”) [Araguás-Araguás et al., 2000]. Outside the tropics, the observed seasonality of

the rainfall isotopic signal is driven by seasonal variations (i) of the temperature at the origin of the water

vapor, (ii) of the evaporation intensity on the land surface (recycling), and (iii) of the temperature during

the precipitation [Araguás-Araguás et al., 2000]. In temperate regions, these effects lead to heavy isotopes

being depleted during winter and in isotopically enriched precipitation during summer. Figure 3a shows

the annual variation of the isotopic composition of precipitation for a study site in the Attert catchment in

Luxembourg (see Sprenger et al. [2016b] for details regarding the site). Figure 2 visualizes the monthly

weightedaveragesof the isotopic signal of the sameprecipitation composition in adual-isotopeplot. Arrows in

Figure 2 depict the influencing factors how rain water becomes more enriched or depleted in heavy isotopes.

The isotopic signal can vary within rain events, due to changes in rainfall intensities and rainout effects

[McDonnell et al., 1990], leading often to an increasing depletion in heavy isotopes over the time of an event

[Pionke and DeWalle, 1992]. At the end of an event, rainwater is often slightly enriched in heavy isotopes again,

leading to a “V-shaped” event pattern [Kendall and McDonnell, 1993; Pangle et al., 2013; Allen et al., 2014].

Figure 1. Conceptualization of the processes affecting the pore water stable isotope composition in the vadose zone
during summer and winter in a temperate climate. The plus sign indicates an isotopic fractionation process leading of
enrichment in heavy isotopes, the minus represents depletion in heavy isotopes, and the zero is a sign of nonfractionating
processes. The text indicates the labels of the closest up to two arrows. Detailed information about spatiotemporal
variations of each process are given in the sections 3 to 6.
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The isotope composition in precipitation can be further altered before infiltration into the soil due to inter-

ception in the vegetation canopy and litter often resulting in an isotopically enriched throughfall [Liu et al.,

2006; Muñoz-Villers and McDonnell, 2012]. This isotopic enrichment of throughfall is higher for smaller

rain events [DeWalle and Swistock, 1994; Allen et al., 2015]. However, for medium intensity rain events

(5–10mm), Zhang et al. [2010b] reported throughfall that was depleted in heavy isotopes, due to dilution

effects on the saturated water vapor interface in the wet canopy. This dilution toward lighter isotopes was

found to happen at high humidity when intense exchange with the atmosphere takes place [Zhang et al.,

2010b]. For high-intensity rainfalls, the difference between the isotopic composition of the open precipitation

and throughfall diminishes [DeWalle and Swistock, 1994; Zhang et al., 2010b]. Furthermore, the deviation

between the isotopic composition of open rainfall and throughfall was found to be higher under the center

of the crown than in the crown periphery for beech and spruce [Brodersen et al., 2000], while others did not

see such a significant relation between distance to trees and throughfall isotopic composition for Douglas fir

[Allen et al., 2015]. No effect of throughfall was observed during leaf-off conditions [Kendall and McDonnell,

1993]. However, the high spatial variability of the throughfall and its isotopic composition can potentially

be explained by mixing with the pre-event canopy storage [Allen et al., 2014]. Besides throughfall, also stem-

flow can show a signal of enrichment of heavy isotopes, which is primary due to mixing with pre-event water

and only partly due to evaporation [Ikawa et al., 2011; Allen et al., 2014]. In addition, can influence the soil

waters isotopic composition, since it is usually isotopic enriched compared to the precipitation at the

location (see review by Scholl et al. [2011]). For snowfall, the spatial variability of the throughfall driven

by the canopy density further affects the isotopic composition of the snowpack [Koeniger et al., 2008],

which can result in variable input into the soil during snowmelt. Also, fractionation processes within the

snowpack by exchange between the solid and liquid phase, resulting in enrichment in 2H in the melt water

compared to the original snow, can lead to an altered input signal of the snow melt water [Zhou et al.,

2008; Lee et al., 2010].

In conclusion, the driving processes governing the spatiotemporal patterns of the throughfall isotopic com-

position are not yet fully understood [Allen et al., 2015]. However, new opportunities to sample the short-term

variability of the rainfall isotopic signal using continuous measurements of the water stable isotopes with

laser spectrometer [Berman et al., 2009; Herbstritt et al., 2012; Pangle et al., 2014] may allow us to gain more

Figure 2. Dual-isotope plot for water samples of rainfall, soil pores (the same as in Figure 3; LMWL: δ2H= 6.79 × δ
18O+ 1.74), streamflow and groundwater in the

Weierbach catchment in Luxemburg. Processes affecting the different compartments are shown with indication of fractionating effects as in Figure 1. The stan-
dard error of the pore water analysis (0.31‰ for δ18O and 1.16‰ for δ2H) is shown in the error bars in the lower left.
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insights into these temporal and spatially dynamic processes. So far, the influence of the spatiotemporal

variation of the infiltrating water on the spatiotemporal variation of soil water stable isotopes has not yet

been tested and is therefore usually ignored.

3.2. Soil Evaporation

Precipitation water entering the soil may become partly evaporated, and the water remaining in the soil will

thus get enriched in heavy isotopes by evaporation fractionation. Since oxygen has a higher atomic weight

than hydrogen, the 1H2
18O (molecular weight = 20.015 gmol�1, Horita et al. [2008]) is less likely to change

from the liquid phase to the gaseous phase than the 1H2H16O (molecular weight = 19.017 gmol�1 [Horita

et al., 2008]) (for nonequilibrium conditions) [Craig et al., 1963]. Consequently, the relation between δ18O

and δ2H for water experiencing kinetic fractionation due to evaporation will deviate from the GMWL or

LMWL. The deviation of the relation between 2H and 18O of a water sample compared to the average isotopic

composition of the global precipitation was defined by Dansgaard [1964] as the deuterium excess (short

d-excess) based on transforming equation (1):

d-excess ¼ δ2H � 8 � δ
18O (2)

Figure 3. Monthly weighted isotopic signal (δ2H, δ18O, and lc-excess) of (a) precipitation between June 2013 and June
2014 in the Weierbach catchment in Luxembourg and (b) an exemplary profile of the isotopic signal in the pore water
at the beginning of June 2014 (end of the time series in Figure 3a) in this watershed. The axes of δ2H and δ

18O are relatively
scaled according to the LMWL (δ2H= 6.79 × δ

18O+ 1.74) and the lc-excess is calculated according to equation (3). Dotted
and dashed lines present hypothetical changes of the isotope profile due to preferential recharge and preferential flow,
respectively. Brown circles indicate soil samples of the rooting zone (same as in Figure 2). Standard error of the liquid water
analysis is 0.2‰ for δ18O and 1‰ for δ2H and for the pore water analysis they are 0.31‰ for δ18O and 1.16‰ for δ2H. For
detailed info on the rainfall stable isotope signal see section 3.1, on evaporation fractionation in soils see section 3.2, on
percolation and dispersion see section 5.2, on preferential flow see section 5.3, and on preferential recharge see section 5.4.
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As such, d-excess values of water influenced by evaporation will be< 10‰ and water remaining in the soil

pores will therefore plot below the GMWL on a dual-isotope plot.

Landwehr and Coplen [2006] proposed a more general concept, named line-conditioned excess (short

lc-excess) defined as:

lc-excess ¼ δ2H� a � δ18O� b (3)

where a and b represent the slope and intercept of the LMWL. Thus, water that is experiencing fractionation

by evaporation has a negative lc-excess and plots below the LMWL in a dual-isotope plot [Landwehr and

Coplen, 2014].

In Figure 3b, soil profiles are visualized that show the δ18O, δ2H, and the resulting lc-excess for a study site in

the Attert catchment, Luxembourg, on 2 June 2014 (see Sprenger et al. [2016b] for details about pore water

stable isotope sampling). The δ18O and δ2H axes are scaled according to the LMWL, and thus, the divergence

between δ18O (grey) and δ2H (black) indicates evaporation fractionation, as also shown in the lc-excess depth

profile (orange). The same pore water stable isotope data are also plotted in dual-isotope plot in Figure 2 to

visualize the general concepts related to soil evaporation as presented in this section.

Subsequent kinetic fractionation of water increases the deviation from the GMWL in a dual-isotope plot lead-

ing to an evaporation line with a slope< 8. The slope becomes smaller for a lower relative humidity [Dincer

et al., 1974; Gibson et al., 2008], lower soil water content [Allison et al., 1983; Barnes and Allison, 1988], or lower

evaporation rate [Allison et al., 1983] (Figure 2). As a consequence, the differences in d-excess of the soil water

in the top 0.1m to the subsoil was shown to be higher during summer and spring compared to fall and winter

[Barbeta et al., 2015] and higher for low altitudes compared to high altitudes [Cui et al., 2009]. The local eva-

poration lines of soil water show usually slopes between 2 and 6.5 with slopes>5 for midlatitudes and lower

slopes for arid climates [Gibson et al., 2008]. After a rain event, when evaporation initiates, isotopic enrich-

ment due to kinetic fractionation (more negative lc-excess value) takes place. The kinetic fractionation was

found to be highest for the litter layer directly after a rain event [Liu et al., 2015]. Evaporation profiles with

fractionated pore waters at the topsoil develop within a few days of dryness, as observed in an arid climate

[Gaj et al., 2016], cool temperate climate [Twining et al., 2006], and in a laboratory experiment [Rothfuss

et al., 2015].

The evaporation front, defined as the maximum depth of the pore water kinetic fractionation signal [Barnes

and Allison, 1988], moves downward into the soil over a dry period [Münnich et al., 1980; Gaj et al., 2016], and

its maximum penetration depth depends on the duration of the dry period, the water content in the soil, the

incoming solar radiation, and the porosity and tortuosity of the soil [Zimmermann et al., 1967a]. Due tomixing

with the atmospheric water vapor, the top of the soil can be isotopically depleted, while below, the soil water

is fractionated due to soil evaporation [Gangi et al., 2015]. Conditions in arid climates can lead to a steady

state of exponentially decreasing fractionation over depth [Dincer et al., 1974; Allison et al., 1983].

Figure 4 shows the δ18O and δ2H of soil water reported in 25 studies, of which 22 studies were considered in a

meta-analysis by Evaristo et al. [2015], who compared the isotopic signal of transpired water, soil water,

groundwater, and streamwater for different climates classified into temperate forests, temperate grasslands,

Mediterranean, arid, and tropics. In addition to these 22 studies, we added three recently published studies

[Song et al., 2014; Cui et al., 2015; Sprenger et al., 2016b]. The pore water stable isotope data of the 25 studies

show the pattern that evaporation fractionation is generally limited to the upper 0.3m of the soil. The

reviewed studies used either cryogenic vacuum extraction [West et al., 2006; Koeniger et al., 2011; Orlowski

et al., 2013], azeotropic distillation [Revesz and Woods, 1990], or direct equilibration [Wassenaar et al., 2008]

to determine the pore water isotopic composition. While these methods are known for sampling bothmobile

and less mobile soil water, it is not yet fully understood in which way the methods differ from each other with

regard to the sampled pore space (as reviewed by Sprenger et al. [2015a]). Several pore water isotope studies

showed that the kinetic fractionation is usually limited to the upper�0.2 to�0.3m in temperate regions [e.g.,

Komor and Emerson, 1994; Gazis and Feng, 2004; Zhang et al., 2011; Sutanto et al., 2012], increases to 0.5m in

Mediterranean climates [Simonin et al., 2014; Oshun et al., 2016], and can reach down to�3m in arid climates

[Allison and Hughes, 1983; Singleton et al., 2004]. Figure 5 supports these findings, where we present the

lc-excess over the depth. Since the studies did not give lc-excess values, we derived them from the published

soil water 2H and 18O data and the LMWL from the individual study sites according to equation (3). The
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compilation of the lc-excess data clearly shows that the evaporation fractionation can reach significant

depths in arid and Mediterranean climates. In temperate and tropical climates, the kinetic fractionation in

the topsoil is relatively little. High-frequency measurements in an evaporating soil column under laboratory

conditions confirmed that the pore water at �0.4 and �0.6m soil depth did not experience any evaporation

fractionation within more than 280 days of intense evaporation, while the pore water in the top �0.2m got

fractionated along an evaporation line of a slope between 3 and 5 [Rothfuss et al., 2015].

Ultimately, the investigation of the evaporation and the accompanied fractionation in the topsoil depends on

the method of choice for the pore water stable isotope sampling. Studies using zero tension, suction lysi-

meters, or wick samplers, which only investigate water in the large pore sizes, reported only little to no frac-

tionation in the top soil [e.g., Landon et al., 2000; Asano et al., 2002; Timbe et al., 2014; Muñoz-Villers and

McDonnell, 2012; Kim and Jung, 2014; Geris et al., 2015; Comas-Bru and McDermott, 2015], while other studies

using centrifugation [Kudo et al., 2013], cryogenic vacuum extraction [e.g., Brooks et al., 2010; Goldsmith et al.,

2012], or the direct equilibration [e.g., Garvelmann et al., 2012; Bertrand et al., 2012] found a fractionation in

the upper soil layer. However, recent publications showed that especially the latter two methods are not

necessarily comparable [Orlowski et al., 2016b]. Further, the carrier gas can influence the 2H to 18O ratio when

applying the direct equilibration method [Gralher et al., 2016], which can lead to overestimations of evapora-

tion fractionation. In situ measurements of the soil water isotopic composition [Volkmann and Weiler, 2014;

Rothfuss et al., 2013] will allow to study the evaporation fractionation in high temporal and spatial resolution,

as shown in a laboratory experiment by Rothfuss et al. [2015].

The simulation of the evaporation fractionation processes in the soil is included into conceptual approaches

based on the Craig-Gordon model [Craig and Gordon, 1965] and into soil physical models [e.g.,Mathieu and

Bariac, 1996; Braud et al., 2005], as recently reviewed by Soderberg et al. [2012]. The vadose zone evaporation

fractionation on the catchment scale is difficult to assess and it is seldom considered in catchment models

[e.g., Birkel et al., 2011; Soulsby et al., 2015]. However, a better understanding of the temporal dynamics of

the evaporation intensity and the partitioning into evaporation and discharge could be gained by taking

vadose zone isotopic fractionation into account. As shown by Good et al. [2015], estimating of the mass

balance of stable isotopes fluxes of evaporation and discharge on the catchment scale can challenge the per-

ception of subsurface processes (as further discussed in section 6).

Figure 4. Dual-isotope plot revealing that the evaporation fractionation, as an altered 2H-18O relation of the soil water
compared to the relation in the precipitation water (GMWL), is globally limited to the upper 30 cm of the soil for most
soil water isotope studies [Snyder, 2000;Williams and Ehleringer, 2000;Ohte et al., 2003; Kurz-Besson et al., 2006;Holland et al.,
2006; Eggemeyer et al., 2008; Sun et al., 2008; Brooks et al., 2010; Wang et al., 2010b; Rong et al., 2011; Zhou et al., 2011; Jia
et al., 2012; Goldsmith et al., 2012; Bertrand et al., 2012; Zhu et al., 2012; Zhou et al., 2013;Wei et al., 2013; Schwendenmann,
2016; Berry et al., 2014; Swaffer et al., 2014; Song et al., 2014; Cui et al., 2015; Sprenger et al., 2016b].
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It was shown that a vegetation cover generally diminishes kinetic fractionation processes in the soil water

[Zimmermann et al., 1967a; Burger and Seiler, 1992; Dubbert et al., 2013] and that the evaporation fractionation

of soil water increases with distance from the vegetation canopymargin [McCole and Stern, 2007]. Also, a high

humidity in forest stands can reduce the isotopic fractionation effect [Zhang et al., 2011]. Topography also

influences the evaporation fractionation with lower d-excess found on hillslopes compared to the valley bot-

toms during summer [Simonin et al., 2014]. The kinetic fractionation due to evaporation follows a seasonal

pattern [Ferretti et al., 2003] and correlates positively with potential evapotranspiration and negatively with

annual precipitation [Hsieh et al., 1998] due to the interplay between kinetic fractionation of soil water by soil

evaporation and input from nonfractionated precipitation.

4. Vegetation Influences

4.1. Transpiration/Root Water Uptake

Although root water uptake by plants does not fractionate pore waters, in general [Zimmermann et al.,

1967b; Allison et al., 1984; Bariac et al., 1990; Wershaw et al., 1966], some halophytes [Lin and Sternberg,

1993] and woody xerophytes [Ellsworth and Williams, 2007] change the 1H/2H ratio of soil water. The better

a plant is adapted to salt-rich environments, the higher is the isotopic difference between xylem and soil

water [Ellsworth and Williams, 2007; Lin and Sternberg, 1993], which may reach as much as 13‰ for δ2H

[Lin and Sternberg, 1993]. The evaporation of water through the stomata in leaves generally fractionates

the water in the leaves depending on the relative humidity of the air [Bariac et al., 1990]. Thus, the evapo-

transpiration (ET) can be partitioned via the differences between the isotopic signal in the atmospheric

water, the transpired pore/twig/xylem water and the soil evaporation water applying mixing models

[Zhang et al., 2010a; Wang et al., 2012a]. Such partitioning studies showed that transpiration makes up

almost all the water in a tropical forest [Moreira et al., 1997] and more than 65% of the ET in an alpine

oak shrubland ecosystem [Xu et al., 2008]. Other studies looked at diurnal cycles [Lai et al., 2006], the daily

variation [Wenninger et al., 2010], or at variations over the year [Robertson and Gazis, 2006]. It was shown

that the annual variation of the partitioning between transpiration (T) and evaporation (E) is mainly driven

by the vegetation leading to evaporation-evapotranspiration ratios (E/ET) between zero during growing

season and >90% in the dormant season [Ferretti et al., 2003]. Laser spectrometry using chamber-based

approaches allows continuous isotope measurements of, e.g., leaf transpiration [Wang et al., 2012b;

Dubbert et al., 2014a], enabling a partitioning between herbaceous transpiration and soil evaporation over

Figure 5. lc-excess as defined in equation (3) over the soil depth as reported in the literature. Points represent the original
data and the lines show a local regression for the individual studies (Python statsmodel.lowess). Data for the tropics by
Schwendenmann [2016] and Goldsmith et al. [2012]; for the Mediterranean byOhte et al. [2003], Kurz-Besson et al. [2006], and
Swaffer et al. [2014]; for arid regions by Snyder [2000], Zhou et al. [2011, 2013],Wei et al. [2013], and Cui et al. [2015]; for the
temperate forests by Brooks et al. [2010], Wang et al. [2010b], Rong et al. [2011], and Bertrand et al. [2012]; and for the
temperate grasslands by Holland et al. [2006], Eggemeyer et al. [2008], and Song et al. [2014].
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the growing season. Such studies revealed the importance of the understory transpiration and its interplay

with soil evaporation during wet and dry periods in semiarid ecosystems [Dubbert et al., 2014b]. In order to

achieve a higher temporal resolution of the E/ET ratio, Sutanto et al. [2012] tested a soil physical model

(HYDRUS-1D) on the laboratory scale and found that the model slightly overestimated the total ET com-

pared to an isotope mass balance approach, while the partitioning was acceptably represented with the

model. Generally, the E/ET ratio is lower for a denser woody cover [Wang et al., 2010a], more rain, and lower

air temperature [Hsieh et al., 1998]. Since the isotope mass balance analyses are based on the differences

between the fractionating signal due to evaporation and nonfractionating signal of transpiration, the best

potential of such partitioning studies are in midlatitudes, where evaporation leads to a pronounced fractio-

nation signal [Gibson et al., 2008].

Besides the partitioning of ET, pore water stable isotope analyses are also applied to study the root water

uptake depth or distribution by comparing the isotopic composition of the xylem water with the isotopic

composition of the rainfall, pore water, and groundwater. However, it is a precondition that the sampling

frequencies in space (e.g., soil depth) [White and Smith, 2015] and time are sufficient to cover the potential

source of root water uptake. Since different combinations of potential water sources for the vegetation

can reproduce the xylem water signal, the nonuniqueness needs to be taken into account by presenting dis-

tributions of feasible solutions of root water uptake pattern rather than single values, as done in the IsoSource

model [Phillips and Gregg, 2003]. Constraining the possible root water uptake in simple linear mixing models

with prior knowledge within a Bayesian framework allows considering multiple sources of uncertainty (e.g.,

MixSIR by Moore and Semmens [2008] and SIAR by Parnell et al. [2010]). However, including biophysical

conditions in a process-based mixing model (RAPID by Ogle et al. [2004]) showed lower prediction uncer-

tainty and a more realistic representation of the root water uptake pattern in a comparison to a simple linear

mixing model [Ogle et al., 2014].

Root water uptake patterns were studied using pore water stable isotopes under various climatic conditions

and vegetations, as, for example, for crops in a warm temperate monsoon climate [Wang et al., 2010b], for

grasses and shrubs in a humid savanna [Le Roux et al., 1995], for subalpine shrubland [Liu et al., 2011], and

for trees in the tropical [Meinzer et al., 1999] or temperate region [Bertrand et al., 2012; Meißner et al., 2012].

It has been shown in comparisons among the stable isotope composition of groundwater, soil water, and

xylem water that the plant water use is either limited to the soil water or includes also groundwater depend-

ing on the topographical position [Rossatto et al., 2012; Penna et al., 2013], tree size [Dawson, 1996], the vege-

tation rooting system [White et al., 1985; Ehleringer et al., 1991; Ehleringer and Dawson, 1992; Meinzer et al.,

1999; Rossatto et al., 2014], soil water content [Mensforth et al., 1994; Bertrand et al., 2012], or irrigation in

urban areas [Bijoor et al., 2012]. For example, Boutton et al. [1999] revealed with water stable isotopes that

a conversion from grassland to woodland in a subtropical savanna will lead to lower recharge fluxes to the

groundwater due to the continued access to subsoil water of tree roots during dry periods. The xylem water

of trees that use mainly soil water has a seasonal isotopic variation in accordance to the isotopic composition

of the precipitation during the growing season [Leng et al., 2013; Song et al., 2014; Treydte et al., 2014]. Several

studies showed with a dual-isotope approach that the xylem water covers similar regions in a dual-isotope

plot as the top soil [e.g., Goldsmith et al., 2012; Bertrand et al., 2012; Schwendenmann et al., 2015].

Nevertheless, during dry periods, the vegetation might even utilize gypsum crystallization water instead of

less bound soil water as shown by Palacio et al. [2014]. However, due to mixing with the water stored in

the xylem and lowered transport, the isotopic signal of the xylem water was reported to be attenuated com-

pared to the soil water stable isotopes during the dormant season [Brandes et al., 2007]. The xylem water of

trees using groundwater was found to vary little over time in its isotopic composition and was similar to the

groundwater isotopic signal [David et al., 2013]. Some water stable isotope studies found a correlation

between maximum root density (in the topsoil) and water uptake depth for grasses and shrubs [Le Roux

et al., 1995; Liu et al., 2011]. However, several studies showed by comparing the water stable isotopic compo-

sition of xylem waters with soil waters that the root water uptake is governed by the root distribution during

wet periods, while the soil water availability is themain driver during dry periods [Rose et al., 2003;McCole and

Stern, 2007; Asbjornsen et al., 2008; Song et al., 2014; Dai et al., 2015; Ellsworth and Sternberg, 2015]. Such a

modification of the uptake pattern during water scarcity was also shown for woody plants by injection experi-

ments with 2H enriched water [Kulmatiski and Beard, 2013; Volkmann et al., 2016a]. Injection of water enriched

in 18O in the topsoil and water enriched in 2H in the subsoil during the growing season accompanied by a
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sampling of the xylem water 2 days later was shown to allow a delineation of the water uptake pattern in

space under grassland communities [Bachmann et al., 2015]. Alternatively, the injection can be limited to

the cheaper available water enriched in 2H, if the deuterated water is injected at several sites at varying

depths, which enables also an investigation of active root water uptake depth [Kulmatiski et al., 2010; Beyer

et al., 2016]. The injection of isotopically enriched water and the calculation of the tracer recovery of a

repeated sampling can further provide information about the mass of soil water being evaporated over time

[Beyer et al., 2015]. How long it takes for the water to arrive at the leaves of the vegetation (travel time of the

transpiration) can as well be traced by injection of water enriched in heavy isotopes into the sapwood

[Meinzer et al., 2006] or into the soil [Kulmatiski et al., 2010; Volkmann et al., 2016a, 2016b].

4.2. Hydraulic Redistribution

The root water uptake can be sustained via hydraulic redistribution of water in the vadose zone during dry

periods, due to a passive transport of soil water along a hydraulic gradient through the rooting system

[Richards and Caldwell, 1987]. Dawson [1993] showed with the help of stable pore water isotopes that the

source depths and amount of hydraulic redistribution of a tree also increase the resistance of the understory

to drought stress. However, isotopic measurements alone are not sufficient to estimate volumes of hydraulic

redistribution [Emerman and Dawson, 1996]. Therefore, matric potential measurements are usually applied to

show that hydraulic redistribution canmove considerable amounts of water. For example, Mediterranean oak

species were found to redistribute between 17% and 81% of the daily transpired water [Kurz-Besson et al.,

2006]. A single sugar maple tree is able to redistribute 102 ± 54 L per day [Emerman and Dawson, 1996], while

species adapted to dry savannah conditions can redistribute 247 L per day [Bayala et al., 2008].

Generally, isotope source mixing models are a good way to quantify the share of hydraulic redistributed

water of the root water uptake [Hao et al., 2013]. Jackson et al. [1999] found under dense vegetation that

the soil water isotope signal at �0.5m depth was shifted toward the signal of deep soil. This shift was

explained by hydraulic lift, since such a shift in the isotopic signal was not observed under bare soil

[Jackson et al., 1999]. In contrast, Kurz-Besson et al. [2006] found relatively light waters (depleted in 18O and
2H compared to the precipitation input) in �0.4 to �1m soil depth and also related that to hydraulic redis-

tribution. They explained this finding by redistributed water leaving the roots to be kinetically fractionated,

because lighter water vapor would diffuse faster than heavier. Thus, the water closer to the roots that was

taken up again by the roots was enriched in heavy isotopes compared to the remaining soil water [Kurz-

Besson et al., 2006]. Hydraulic redistribution also takes place horizontally as shown in sprinkling experiments

with deuterated (enriched in 2H) water by Brooks et al. [2002, 2006] and Kulmatiski et al. [2010]. They found

the isotopically enriched sprinkling water several meters away from the watering source in soil samples,

the tree xylem [Brooks et al., 2002, 2006], and grass samples [Kulmatiski et al., 2010]. In conclusion, the pore

water stable isotopic composition can be influenced via redistribution by roots, but model analysis showed

that this influence is small on the isotopic composition of the recharge [Walter, 2010].

5. Processes in the Soil

5.1. Percolation and Groundwater Recharge

Percolation processes through the vadose zone can be traced using the seasonally variable isotopic compo-

sition of the rainwater (e.g., lysimeter study by Stumpp et al. [2012]) or by sprinkling experiments with

artificial isotopically enriched water (e.g., lysimeter study byMali et al. [2007]). If the seasonal variation is used,

different states of the soil hydrological system (wet/dry) over seasonal variable boundary conditions can be

observed. Similarly, sprinkling experiments can be repeated under different conditions and hydrological

states. This way, isotopically marked water and its fate in the soil can be traced in various experimental

setups.

The seasonal isotopic composition of the infiltrated rainwater is attenuated in the soil by dispersion, which is

the spreading of a tracer during the water flow and transport and depends on the pore size distribution and

therefore, the soil texture. When the water flow and transport is simulated with the advection-dispersion

model, the dispersivity parameter is required to describe the hydrodynamic dispersion. Vanderborght and

Vereecken [2007] reviewed studies that estimated the dispersivity in soils, and they found that fine textured

soils often have a higher dispersivity than coarse textures soils, an information that can also be derived using
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soil water stable isotopes [Adomako

et al., 2010; Sprenger et al., 2015b,

2016b; Huang et al., 2015]. Despite the

site specific complex interplay of envir-

onmental conditions, a dampening of

the precipitation signal in the soil profile

expressed as the relation between the

standard deviation (SD) of the pore

water stable isotopes observed over a

time period at a specific soil depth and

the SD of the precipitation signal is

found for several studies (Figure 6). The

seven reviewed studies shown in

Figure 6 cover different environments,

but the sampling number is too small

to derive patterns related to, e.g., cli-

mate or soil texture. The variability

decreases exponentially with depth—

independent from the applied pore

water isotope sampling strategies that

ranged from sampling of freely draining

soil water like the lysimeter outflow

(C. Stumpp, personal communication,

2015) or wick samplers [Timbe et al., 2014] to sampling relatively mobile water in suction lysimeter [Asano

et al., 2002; Muñoz-Villers and McDonnell, 2012] or by centrifugation [Kudo et al., 2013], or sampling the bulk

soil water including tightly bound water using direct water vapor equilibration [Bertrand et al., 2012] or cryo-

genic extraction [Wang et al., 2010b]. Thus, considering that the different applied pore water stable isotope

analysis methods sample different pore sizes and either flux or resident concentrations as discussed in a

method comparison by Sprenger et al. [2015a], the dampening of the precipitation signal indicates that mix-

ing of soil water occurs for both the mobile (freely draining) and less mobile (held against gravity) pore

waters. However, the intensity of mixing was found to be smaller for mobile pore waters sampled with wick

samplers (giving flux concentrations) compared to pore waters extracted by suction lysimeters (giving

neither flux nor resident concentration) or by azeotropic distillation (giving resident concentrations)

[Landon et al., 1999]. However, the interaction between soil water in small and big pores is not yet understood

(see section 6.1). While the pore water isotopic composition in the top 0.1m varies usually as much or even

more (due to evaporative enrichment see section 3.2) than the isotopic signal of the precipitation, the pore

water isotope dynamic is highly damped within the upper 0.5m (Figure 6). This intense dampening of the

rainfall signal in the upper 0.5m of the soil is related to canopy and litter interception, root water uptake,

and preferential uptake during the vegetation season in addition to dispersion [Stewart and McDonnell,

1991; Gehrels et al., 1998; Brodersen et al., 2000; Tang and Feng, 2001; Gazis and Feng, 2004; O'Driscoll et al.,

2005; Comas-Bru and McDermott, 2015]. A “critical depth,” defined as the depth at which annual variations

in the isotopic composition do not exceed the analytical precision, can be derived [Clark and Fritz, 1997].

The analytical precision for pore water stable isotope analysis is usually reported to be between 0.2 to

0.5‰ for δ18O and 0.7 to 2‰ for δ2H, as reviewed in Sprenger et al. [2015b]. Such a homogenization of the

isotopic signal in the subsurface depends on the vegetation pattern, rain intensities, and soil characteristics

with less dampening in sandy and/or freely draining soils [Wenner et al., 1991; Geris et al., 2015]. Besides the

one-dimensional attenuation of the precipitation signal in a soil profile, a two-dimensional component on the

hillslope scale leads to lower isotopic variations and longer residence times downslope toward a stream

[McDonnell et al., 1991; Asano et al., 2002; Kabeya et al., 2007; Rossatto et al., 2012; Garvelmann et al., 2012;

Mueller et al., 2014; Tetzlaff et al., 2014]. In conclusion, the seasonal variation of the isotopic signal in the pre-

cipitation input is often highly damped before the soil water reaches the saturated zone (Figures 3, 2, and 6).

Thus, the vadose zone holds an intermediate position between the high variation in precipitation and low

variation in the groundwater or stream base flow [McGuire et al., 2002; O'Driscoll et al., 2005; Song et al.,

2009]. Because of this important role of the vadose zone in rainfall-runoff generation, the pore water stable

Figure 6. Relation between the standard deviation of the isotopic signal
(SD) of the pore water at different depths and the respective precipita-
tion input. Circles represent reviewed studies, where pore water stable
isotope sampling was done by suction lysimeters [Asano et al., 2002;
Muñoz-Villers and McDonnell, 2012], wick samplers [Timbe et al., 2014],
centrifugation [Kudo et al., 2013], cryogenic extraction [Wang et al.,
2010b], direct water vapor equilibration [Bertrand et al., 2012], or at
lysimeter outflows (C. Stumpp, personal communication, 2015).
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isotope composition can serve to benchmark conceptual catchment models or improve the identifiability of

their calibrated parameters [Birkel et al., 2014; Sprenger et al., 2016b]. With regard to streamwater hydrograph

separation techniques, where the soil water often represents one end-member besides input water and

groundwater in a three component mixing model [Klaus and McDonnell, 2013], the spatial variability of the

isotopic composition of the pore water appears to cause uncertainties in event water estimates [Kendall

and Gu, 1992]. Herein, the isotopic variation in the groundwater is usually low [e.g., Fujimoto et al., 2014;

Orlowski et al., 2015] but reflects some kind of a mixture of summer (e.g., enriched in 18O and 2H) and winter

rainfall (e.g., depleted in 18O and 2H) in temperate regions [Burger and Seiler, 1992]. This mixture depends on

the seasonal variability of precipitation (Figures 2 and 3a) and evapotranspiration, resulting in a isotopic com-

position of deep soil pores in the vadose zone or saturated pores in the groundwater that is either similar to

the weighted average isotopic composition of the precipitation [Darling and Bath, 1988; Gehrels et al., 1998;

Thomas et al., 2013; Cheng et al., 2014; Oshun et al., 2016] or depleted in 18O and 2H compared to the preci-

pitation [Simpson et al., 1970; Sauzay, 1974; Wenner et al., 1991; Hsieh et al., 1998; O'Driscoll et al., 2005; Yeh

et al., 2011; Bertrand et al., 2012]. The isotopically depleted signal results from seasonal root water uptake

and evaporation losses during the growing season and elevated evaporation rates, when the (isotopically

enriched) summer precipitation is more likely to leave the soil via evapotranspiration. This preferential loss

of rainfall input back into the atmosphere would shift the pore water stable isotope composition toward

isotopically depleted values due to preferential recharge of winter rainfalls (indicated with the dotted line in

Figure 3b). Under arid conditions, where evaporation rates are high, the groundwater can be enriched in

heavy isotopes compared to the precipitation input (plotting below the LMWL) [e.g., Sami, 1992; Murad

and Krishnamurthy, 2008; Murad and Mirghni, 2012].

The already illustrated combination of relatively slow water movement in the soil matrix and fast preferential

flows leads to a bimodal recharge flux, where the groundwater hydraulic response is either slow resulting in a

damped isotope signal or rapid leading to an isotopic reaction in the groundwater [Mathieu and Bariac, 1996].

Such pronounced recharge seasonality is found globally in areas with high recharge in the winter of tempe-

rate and arid regions or during the wet season in the tropics [Jasechko et al., 2014]. The groundwater signal is

usually not altered in lc-excess, indicating that the recharge water is not affected by soil evaporation,

although the pore water in the topsoil shows fractionation (Figures 4 and 5). This issue will be discussed in

more detail in section 6.

5.2. Vadose Zone Travel Time Modeling

The travel time is defined as the time a water particle takes to pass through a hydrological system [McDonnell

et al., 2010]. As such, travel time estimations are applied on scales ranging from catchments [e.g., Rodhe et al.,

1996; McGuire and McDonnell, 2006] to hillslopes [McGuire et al., 2007] and soil profiles [e.g., Stewart and

McDonnell, 1991; Lindström and Rodhe, 1992]. One way to estimate how fast the water moves through the soil

profile is the peak displacement or shift method, as recently reviewed by Koeniger et al. [2016]. This method

Figure 7. Peak shift methods to estimate transit times: (a) The lag time between a peak in the isotopic signal of the input
time series (δinput) and the signal in the output (e.g., outflow of a lysimeter or soil water sampled with wick samplers or
suction cup lysimeter) (δoutput) is used. (b) A distinct signal in the input time series (δinput) is related to a peak in the isotopic
signal of the soil water δ (ts) sampled at time ts at depth zpeak. (c) A distinct isotopic signal is introduced at time t1 at soil
depth zpeak(t1) and found at depth zpeak(t2) at time t2.
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makes use of an isotopically distinguished input either by seasonal peaks in the isotopic signal of precipita-

tion or by injection of isotopically enriched water [Zimmermann et al., 1966; Blume et al., 1967]. Usually, the

peak shift method is limited to estimate the advective transport, since the dispersion is not considered.

However, mean travel times can be estimated taking the dispersivity into consideration [Leibundgut et al.,

2009, p. 132] as applied in a study by Stumpp et al. [2012] using 18O data in lysimeter outflows. Figure 7 shows

conceptually how the advective transit time can be derived. One can (i) use the delayed response to the input

signal in pore water stable isotope time series for a certain soil depth (e.g., sampled with suction lysimeter or

wick samplers) or in the outflow of lysimeter [Stumpp et al., 2012] (Figure 7a), (ii) or relate an isotopic peak at a

certain soil depth in a pore water isotope depth profile taken at a certain time to a corresponding input signal

[Saxena and Dressie, 1984; Bengtsson et al., 1987; Barnes and Allison, 1988; Adomako et al., 2010] (Figure 7b), or

(iii) use the displacement of an artificially injected isotopic labeled water is studied [Saxena and Dressie, 1984;

Beyer et al., 2015] (Figure 7c). The three different peak shift/displacement methods differ with respect to their

required data and experimental effort. While collecting time series of soil water isotopes, as required for

approach shown in Figure 7a, is time consuming and labor intensive, the method shown in Figure 7b

requires, beside information on the isotopic input signal, only the collection of one pore water isotope depth

profile. However, the method shown in Figure 7b is limited to environments, where the water flow and trans-

port is dominated by advection-dispersion to enable referring the peaks in the input signal to the peaks in the

isotope depth profile. Otherwise, the peak in the profile could be caused by preferential flow or hydraulic

redistribution (see sections 4.2 and 5.3, respectively). For the method in Figure 7c, no prior information on

the isotopic input is required, since the artificially introduced isotopic tracer will provide a distinct signal to

the natural background which can be traced in the soil over time or by a pore water isotope depth profile.

Besides the estimation of advective travel times, the peak shift/ displacement methods also provide informa-

tion of the recharge amounts, if the water content is known and assuming that the water passed the rooting

zone [Saxena and Dressie, 1984; Koeniger et al., 2016].

The above mentioned studies give a snapshot of the travel times, and the results of such estimates depend

on the sampling time [Koeniger et al., 2010], since the percolation rate is not constant. Instead, an average

percolation rate integrating information over various seasons can be derived using transit time models.

We compiled travel time studies in the vadose zone and list their characteristics in Table 1. The vadose zone

travel time studies are based on different soil water sampling methods, which has a direct influence on the

data used for model calibration, since different methods sample different pore sizes [Sprenger et al., 2015a]. In

almost all of the reviewed travel times studies, the soil water sampling was limited to the mobile water:

Studies using the outflow of lysimeter [e.g., Lindström and Rodhe, 1992; Mali and Urbanc, 2006; Maloszewski

et al., 2006; Stumpp et al., 2009a, 2009b] or water sampled by wick samplers [e.g., Timbe et al., 2014] and

zero-tension lysimeter [e.g., Asano et al., 2002] infer the travel times on freely draining waters. Less mobile

was included in the travel times estimations, if a suction is applied at the lysimeter [e.g., Leopoldo et al.,

1984; Stewart and McDonnell, 1991; Kabeya et al., 2007, 2011; McGuire and McDonnell, 2010; Muñoz-Villers

and McDonnell, 2012; Kim and Jung, 2014; Tetzlaff et al., 2014; Hu et al., 2015]. While sampling of freely drain-

ing water will give information of the flux concentrations, suction cup lysimeter influence the flow field,

which impedes a reference to flow concentration in that case. Recently, Sprenger et al. [2016b] used resident

concentrations of the pore water isotopic composition for travel time simulations.

Since the soil water sampling is time consuming, vadose zone transit time studies are often limited to a few

soil depths and number of profiles. Replicate sampling, to account for the heterogeneity of the soil, is usually

missing (Table 1). Only a handful studies base their answer to the research questions on replicated soil water

samples [Leopoldo et al., 1984; Asano et al., 2002; Timbe et al., 2014; Sprenger et al., 2016b]. Given that the soil

texture is crucial for water flow and transport in the subsurface, it is surprising that more than one third of the

reviewed studies do not provide any soil textural information in their manuscripts (Table 1). Our review

further highlights that the studies within the temperate climate represent about two thirds of all the vadose

zone transit time studies. In conclusion, the assessment of transit times is often limited to a few studied soils

and the heterogeneity within soil types and between different climates is not sufficiently captured yet.

The MTT estimated from lysimeter, wick samplers, or suction cup lysimeter isotope data are mostly based on

lumped convolution models that assume steady state conditions, which may not hold in nature [Botter et al.,

2010; Sprenger et al., 2016b].Maloszewski et al. [2006] showed in a study on unvegetated lysimeters filled with

Reviews of Geophysics 10.1002/2015RG000515

SPRENGER ET AL. REVIEW OF WATER STABLE ISOTOPES 686



T
a
b
le

1
.
O
ve
rv
ie
w
o
f
th
e
St
u
d
ie
s
Es
ti
m
at
in
g
th
e
Tr
an

si
t
Ti
m
es

in
th
e
V
ad

o
se

Z
o
n
ea

St
u
d
y

R
N

R
Q

M
o
d
el

M
et
h
o
d

Fr
eq

u
en

cy
D
ep

th
s
(c
m
)

M
TT

(w
ee
ks
)

Te
xt
u
re

So
il
Ty
p
e

C
lim

at
e

St
u
d
y
Lo

ca
ti
o
n

Ti
m
b
e
et

a
l.

[2
01

4]
3

6
La
n
d
u
se

(f
o
re
st
ve
rs
u
s

p
as
tu
re
)
an

d
co
m
p
ar
is
o
n

b
et
w
ee
n
m
o
d
el
s

LM
;E
M
;E
P
M
;

LP
M
;G

M
;T
P
LR

W
ic
k
sa
m
p
le
rs

W
ee
kl
y

10
,2
5,
40

2.
3–

6.
3
fo
r

p
as
tu
re
;3
.7
–
9.
2

fo
r
fo
re
st

N
A

H
is
to
so
ls

as
so
ci
at
ed

w
it
h

st
ag

n
as
o
ls
,

ca
m
b
is
o
ls
,a
n
d

re
g
o
so
ls

Tr
o
p
ic
s

Sa
n
Fr
an

ci
sc
o
,

Ec
u
ad

o
r

A
sa
n
o
et

a
l.

[2
00

2]
2

4
D
ep

th
an

d
u
p
ls
o
p
e

co
n
tr
ib
u
ti
n
g

ar
ea

EM
an

d
EP

M
Z
er
o
-t
en

si
o
n

ly
si
m
et
er

2–
3
w
ee
ks

in
te
rv
al

10
,4
0

0–
1.
6
fo
r
10

cm
;

1.
4–

3.
8
fo
r
40

cm
N
A

C
am

b
is
o
ls
an

d
re
g
o
so
ls

Te
m
p
er
at
e

Fu
d
o
ji,
Ja
p
an

;
R
ac
h
id
an

i,
Ja
p
an

M
cG

u
ir
e
a
n
d

M
cD

o
n
n
el
l

[2
01

0]

0
3

Sl
o
p
e
p
o
si
ti
o
n
s

D
M

Su
ct
io
n

ly
si
m
et
er

D
ai
ly
to

w
ee
kl
y

30
,7
0,
90

1.
4–

2.
9
fo
r

30
cm

;2
.7
–
3.
4

fo
r
70

cm
;2
.9
–

3.
6
fo
r
90

cm

C
la
y
lo
am

Ty
p
ic

D
ys
tr
o
cr
ye
p
ts

M
ed

it
er
ra
n
ea
n

H
.J
.A

n
d
re
w
s

Ex
p
er
im

en
ta
l

Fo
re
st
,U

SA

M
u
ñ
o
z-
V
ill
er
s
a
n
d

M
cD

o
n
n
el
l

[2
01

2]

0
3

D
ep

th
an

d
u
p
ls
o
p
e

co
n
tr
ib
u
ti
n
g

ar
ea

EM
an

d
D
M

Su
ct
io
n

ly
si
m
et
er

P
ar
tl
y
d
ai
ly
to

ev
er
y
25

d
ay
s

an
d
p
ar
tl
y

w
ee
kl
y

30
,6
0,
90

,
12

0
3–

6
at

30
cm

;9
–

23
at

60
cm

;1
3–

42
at

90
cm

;2
0–

26
at

12
0
cm

Lo
am

to
si
lt

cl
ay

lo
am

U
m
b
ri
c

A
n
d
o
so
ls

Tr
o
p
ic
s

C
o
fr
e
d
e

P
er
o
te
,

M
ex
ic
o

St
ew

a
rt
a
n
d

M
cD

o
n
n
el
l

[1
99

1]

0
6

D
ep

th
an

d
u
p
ls
o
p
e

co
n
tr
ib
u
ti
n
g

ar
ea

EM
an

d
D
M

Su
ct
io
n

ly
si
m
et
er

W
ee
kl
y

20
,4
0,
80

2
at

20
cm

;6
at

40
cm

;9
at

80
cm

N
A

Y
el
lo
w
b
ro
w
n

ea
rt
h
,G

le
y,

P
o
d
zo
ls
,a
n
d

G
re
y
P
o
d
zo
ls

H
u
m
id

te
m
p
er
at
e

M
ai
m
ai
M
8,

N
ew

Z
ea
la
n
d

K
im

a
n
d

Ju
n
g
[2
01

4]
0

6
D
ep

th
an

d
u
p
ls
o
p
e

co
n
tr
ib
u
ti
n
g

ar
ea

EM
an

d
D
M

Su
ct
io
n

ly
si
m
et
er

Fo
rt
n
ig
h
tl
y

10
,3
0

4–
8
at

10
cm

;
5.
7–

6.
4
at

30
cm

;
7.
4
at

60
cm

Sa
n
d
y
lo
am

an
d
lo
am

y
sa
n
d

Le
p
to
so
l

Te
m
p
er
at
e

Su
lm

ac
h
u
n
,

So
u
th

K
o
re
a

K
a
b
ey
a
et

a
l.

[2
00

7]
0

3
D
ep

th
EP

M
an

d
D
M

Su
ct
io
n

ly
si
m
et
er

M
o
n
th
ly

10
,2
0,
30

,
50

,1
00

4–
19

at
10

cm
;

4–
11

at
20

cm
;

3–
16

at
30

cm
;

6–
17

at
50

cm
;

10
–
20

at
10

0
cm

N
A

N
A

Te
m
p
er
at
e

K
ir
yu

,J
ap

an

K
a
b
ey
a
et

a
l.

[2
01

1]
0

4
D
ep

th
an

d
u
p
ls
o
p
e

co
n
tr
ib
u
ti
n
g

ar
ea

D
M

Su
ct
io
n

ly
si
m
et
er

M
o
n
th
ly
to

fo
rt
n
ig
h
tl
y

10
,2
0,
30

,5
0,

75
,1
00

,2
00

,
25

0

10
–
17

at
10

cm
;

14
–
20

at
50

cm
;

21
–
61

at
10

0
cm

,
43

–
72

at
20

0
cm

N
A

C
am

b
is
o
l

Te
m
p
er
at
e

Ts
u
ku

b
a,

Ja
p
an

K
u
d
o
et

a
l.

[2
01

3]
0

2
Fo

re
st
ve
rs
u
s

g
ra
ss
la
n
d

D
M

C
en

tr
ifu

g
at
io
n

M
o
n
th
ly

0–
10

,1
0–

20
,

20
–
30

,3
0–

40
2–

9
at

10
cm

;
15

–
28

at
20

cm
;

10
–
15

at
30

cm
;

12
–
14

at
40

cm

N
A

N
A

Te
m
p
er
at
e

M
o
u
n
t
A
so
,

Ja
p
an

H
u
et

a
l.
[2
01

5]
0

4
D
ep

th
an

d
u
p
ls
o
p
e

co
n
tr
ib
u
ti
n
g

ar
ea

EM
an

d
D
M

Su
ct
io
n

ly
si
m
et
er

W
ee
kl
y

20
,4
0,
60

,
80

,1
00

3–
10

at
20

cm
;

9–
57

at
60

cm
;

12
–
60

at
10

0
cm

C
la
y
to

cl
ay

lo
am

N
A

Su
b
tr
o
p
ic
al

H
u
an

jia
n
g
,

C
h
in
a

Le
e
et

a
l.
[2
00

7]
0

1
D
ep

th
EM

an
d
EP

M
Su

ct
io
n

ly
si
m
et
er

Fo
rt
n
ig
h
tl
y

30
,6
0,
80

10
at

30
cm

;2
9

at
60

cm
;2
8
at

80
cm

Si
lt
y
cl
ay

to
cl
ay

lo
am

N
A

Te
m
p
er
at
e

Je
ju

Is
la
n
d
,

So
u
th

K
o
re
a

Te
tz
la
ff
et

a
l.

[2
01

4]
0

3
So

il
ty
p
e

G
M

Su
ct
io
n

ly
si
m
et
er

W
ee
kl
y

10
,3
0,
50

25
8
at

30
cm

in
ri
p
ar
ia
n
p
ea
ts
o
il;

87
at

30
cm

in
p
ea
ty

g
le
y;
22

at
30

cm
in

p
o
d
zo
l

N
A

P
o
d
zo
ls
an

d
p
ea
ty

g
le
ys

Te
m
p
er
at
e

B
ru
n
tl
an

d
B
u
rn
,U

K

0
5

Ly
si
m
et
er

15
0

30
–
39

at
20

0
cm

Si
lt
lo
am

D
ys
tr
ic
C
am

b
is
o
l

Te
m
p
er
at
e

Reviews of Geophysics 10.1002/2015RG000515

SPRENGER ET AL. REVIEW OF WATER STABLE ISOTOPES 687



T
a
b
le

1
.
(c
o
n
ti
n
u
ed

)

St
u
d
y

R
N

R
Q

M
o
d
el

M
et
h
o
d

Fr
eq

u
en

cy
D
ep

th
s
(c
m
)

M
TT

(w
ee
ks
)

Te
xt
u
re

So
il
Ty
p
e

C
lim

at
e

St
u
d
y
Lo

ca
ti
o
n

St
u
m
p
p
et

a
l.

[2
01

2]
La
n
d
u
se

(C
ro
p

an
d
fe
rt
ili
ze
r)

P
ea
k
sh
ift
,

D
M
,T
N
M

Ev
en

tb
as
is
an

d
w
ee
kl
y

G
u
m
p
en

st
ei
n
,

A
u
st
ri
a

St
u
m
p
p
et

a
l.

[2
00

9c
]

0
1

V
ar
ia
b
ili
ty

in
ti
m
e

m
o
d
ifi
ed

D
M

Ly
si
m
et
er

W
ee
kl
y

20
0

26
–
59

at
20

0
cm

;
va
ri
ab

le
o
ve
r

ti
m
e

Sa
n
d

C
am

b
is
o
l

Te
m
p
er
at
e

N
eu

h
er
b
er
g
,

G
er
m
an

y

St
u
m
p
p
et

a
l.

[2
00

9a
]

0
2

C
ro
p
an

d
co
m
p
ar
is
o
n

b
et
w
ee
n
m
o
d
el
s

D
M

an
d

TN
M

Ly
si
m
et
er

W
ee
kl
y

15
0

31
an

d
28

fo
r

M
ai
ze

an
d

In
te
rc
ro
p
b
as
ed

o
n
H
1D

an
d
32

an
d
31

b
as
ed

o
n

D
M
,r
es
p
ec
ti
ve
ly

Lo
am

y
sa
n
d

D
ys
tr
ic

C
am

b
is
o
l

Te
m
p
er
at
e

W
ag

n
a,
A
u
st
ri
a

Le
o
p
o
ld
o
et

a
l.

[1
98

4]
2

4
So

il
te
xt
u
re

R
M

Su
ct
io
n

ly
si
m
et
er

W
ee
kl
y

15
,2
5,
50

,
80

,1
20

0.
9
an

d
0.
7
at

15
cm

d
ep

th
an

d
1.
6
an

d
1.
2
at

25
cm

d
ep

th
fo
r

cl
ay

an
d
sa
n
d
y-

cl
ay

so
il,

re
sp
ec
ti
ve
ly

C
la
y
an

d
sa
n
d
y-
cl
ay

N
A

Tr
o
p
ic
s

M
o
d
el
B
as
in
,

B
ra
zi
l

Li
n
d
st
rö
m

a
n
d

R
o
d
h
e
[1
99

2]
0

3
Te
st
in
g
m
ix
in
g

as
su
m
p
ti
o
n
s

M
ix
in
g
-P
is
to
n

fl
o
w
m
o
d
el

Ly
si
m
et
er

Tw
ic
e
a
m
o
n
th

15
,4
0,
80

4
at

15
cm

;9
at

40
cm

;1
7
at

80
cm

N
A

N
A

H
u
m
id

co
n
ti
n
en

ta
l

St
u
b
b
et
o
rp
,

Sw
ed

en

M
cG

u
ir
e
et

a
l.

[2
00

2]
0

2
So

il
te
xt
u
re

EP
M

an
d

D
M

Su
ct
io
n

ly
si
m
et
er

Fo
rt
n
ig
h
tl
y

10
0

7
o
r
lo
am

y-
sk
el
et
al
an

d
9.
5

fo
r
si
lt
lo
am

Lo
am

y-
sk
el
et
al

an
d
si
lt
lo
am

s
U
ti
so
ls
/

in
ce
p
ti
so
ls
an

d
Ty
p
ic
H
ap

lu
d
u
lt

H
u
m
id

co
n
ti
n
en

ta
l

Le
ad

in
g
R
id
g
e

an
d

M
ah

an
ta
n
g
o
,

U
SA

D
eW

a
lle

et
a
l.

[1
99

7]
0

1
C
o
m
p
ar
is
o
n
to

ra
in
fa
ll
an

d
st
re
am

fl
o
w
d
at
a

EM
Su

ct
io
n

ly
si
m
et
er

Fo
rt
n
ig
h
tl
y

30
10

.4
at

30
cm

st
o
n
y,
sa
n
d
y

lo
am

s
N
A

Te
m
p
er
at
e

B
en

n
er

R
u
n
,U

S

M
a
li
a
n
d
U
rb
a
n
c

[2
00

6]
0

1
D
ep

th
EP

M
an

d
D
M

Z
er
o
-t
en

si
o
n

ly
si
m
et
er

M
o
n
th
ly

82
,1
08

,1
52

,
20

4,
24

1,
29

5,
34

0,
39

3,
43

9

11
at

82
cm

;1
5–

19
at

15
2
to

24
1
cm

;3
0–

39
at

29
5
to

43
9
cm

C
o
ar
se

g
ra
ve
l

N
A

Te
m
p
er
at
e

Se
ln
is
ka

D
o
b
ra
va
,

Sl
o
ve
n
ia

M
a
lo
sz
ew

sk
i

et
a
l.
[2
00

6]
0

5
So

il
te
xt
u
re

D
M

an
d

TN
M

Ly
si
m
et
er

W
ee
kl
y

20
0

8–
31

at
20

0
cm

,
d
ep

en
d
in
g
o
n

g
ra
in

si
ze
s

Q
u
ar
tz

sa
n
d
s,

q
u
ar
tz

g
ra
ve
l,

te
rt
ia
ry

sa
n
d
s

N
A

Te
m
p
er
at
e

N
eu

h
er
b
er
g
,

G
er
m
an

y

Sp
re
n
g
er

et
a
l.

[2
01

6b
]

7
to 16

35
So

il
ty
p
e

TN
M

D
ir
ec
t

eq
u
ili
b
ra
ti
o
n

Tw
ic
e

10
,3
0,
50

,1
00

,
15

0,
20

0
1.
8–

6.
4
at

10
cm

;
10

–
21

at
50

cm
;

31
–
17

8
at

20
0
cm

Sa
n
d
y,
si
lt
y

lo
am

,c
la
y

A
re
n
o
so
ls
,

ca
m
b
is
o
ls
,

st
ag

n
o
so
ls

Te
m
p
er
at
e

A
tt
er
t,

Lu
xe
m
b
o
u
rg

a
Th

e
n
u
m
b
er

o
f
re
p
lic
at
es

(R
),
th
e
to
ta
ln

u
m
b
er

o
f
so
il
p
ro
fi
le
s
(N
),
th
e
re
se
ar
ch

q
u
es
ti
o
n
(R
Q
),
ap

p
lie
d
tr
an

si
t
ti
m
e
m
o
d
el
(L
M
=
lin

ea
r
m
o
d
el
;E
M
=
ex
p
o
n
en

ti
al
fl
o
w
m
o
d
el
;E
P
M
=
ex
p
o
n
en

ti
al

p
is
to
n
fl
o
w
m
o
d
el
;D

M
=
d
is
p
er
si
o
n
m
o
d
el
;L
P
M
=
Li
n
ea
r-
p
is
to
n
fl
o
w
m
o
d
el
;G

M
=
g
am

m
a
m
o
d
el
;T
P
LR

=
tw

o
p
ar
al
le
ll
in
ea
r
re
se
rv
o
ir
s;
TN

M
=
tr
an

si
en

t
n
u
m
er
ic
al
m
o
d
el
;R
M
=
re
g
re
ss
io
n
m
o
d
el
;)

p
o
re

w
at
er

sa
m
p
lin

g
an

d
an

al
ys
is
m
et
h
o
d
,s
am

p
lin

g
fr
eq

u
en

cy
,s
tu
d
ie
d
d
ep

th
s,
re
su
lt
ed

ra
n
g
e
o
fm

ea
n
tr
an

si
t
ti
m
es

(M
TT
),
so
il
te
xt
u
re

an
d
so
il
ty
p
es

o
ft
h
e
st
u
d
ie
d
so
ils
,c
lim

at
e,
an

d
n
am

e
o
ft
h
e

st
u
d
y
si
te
s.

Reviews of Geophysics 10.1002/2015RG000515

SPRENGER ET AL. REVIEW OF WATER STABLE ISOTOPES 688



coarse material that the dispersionmodel was able to describe the isotopic transport under variable flow con-

ditions as well as a numerical model based on the Richards equation and the advection-dispersion equation.

Stumpp et al. [2009c] modified the input function of the lumped dispersion model by taking the evapotran-

spiration losses (weighable vegetated lysimeter) into account.

It was shown that the MTT estimations in the soil depend on the applied travel timemodel [Timbe et al., 2014]

and also the sampling frequency has an influence on the estimates of MTT [Timbe et al., 2015]. An alternative

dynamic model approach is a combination of mixing and piston flow assumptions, which were shown to be

able to simulate the temporal variable travel times through a lysimeter [Lindström and Rodhe, 1992] or the

stable isotope dynamics of mobile water in 0.6m soil depth [Comas-Bru and McDermott, 2015]. Given the

hydroecological feedbacks presented in the previous sections, which influence the water flow and solute

transport, lumped convolution approaches that do not consider transient water flow and evapotranspiration

losses within the soil profile seem to oversimplify the processes. In contrast, numerical simulations showed

promising opportunities to account for time variable travel times at the hillslope scale [Rinaldo et al., 2011;

Ali et al., 2014], while parameterization of such models is problematic [e.g., Beven, 2006]. Windhorst et al.

[2014] found that a physical hillslope model can simulate—despite a bias of about �17‰ for δ2H—the

temporal dynamics of the pore water isotopic signal. They argue that it is unlikely that the bias is caused

by evaporation fractionation of the soil water, which was not accounted for. Instead, isotopically enriched

fog drip, also not considered in the model, might alter the input signal [Windhorst et al., 2014]. Windhorst

et al. [2014] used solely isotope data for calibrating the hydraulic conductivity and porosity and limited the

simulation to the advective transport. Sprenger et al. [2015b] included for soil profiles in addition to pore

water isotope data also soil moisture data to estimate water flow and transport parameters (dispersivity).

Such a combination of hydrometric data (i.e., soil moisture time series) with pore water stable isotope data

was shown to provide valuable information for calibrating soil physical models to derive time variable travel

time estimations [Sprenger et al., 2016a, 2016b]. This way, resident concentrations of the water stable isotopic

composition, which can be either sampled destructive or in situ [Rothfuss et al., 2013; Volkmann and Weiler,

2014; Gaj et al., 2016], are applicable for time variable travel time calculations.

Such knowledge about the vadose zone travel times can serve to benchmark or calibrate catchment models

as shown by Birkel et al. [2014]. Especially, the long tails of travel time distributions on the catchment scale

could potentially be better understood by comparably long travel times in the unsaturated zone [Seiler

et al., 2002; Sprenger et al., 2016b].

5.3. Preferential Flow

Preferential flow, as bypass flow or lateral subsurface flow from the upslope, can be identified by a high varia-

bility of the isotopic signal in a certain soil depth over space [Zhang et al., 2011; Eisele, 2013; Thomas et al.,

2013; Peralta-Tapia et al., 2015] or time [Brodersen et al., 2000; Song et al., 2009]. Also, an absence of the sea-

sonal variation of the precipitation signal in pore water stable isotope profiles can indicate preferential flow

[Gehrels et al., 1998; Orlowski et al., 2015], while a pronounced cyclic variation of the isotopic composition

reflects vertical displacement of old water by new water [Eichler, 1966; Sprenger et al., 2016a]. However, a dis-

tinct isotopic signal in the soil indicates vertical or lateral preferential flow path ways (conceptually visualized

in Figure 2b). For example, pronounced peaks of a depleted δ
18O signal in isotope depth profiles were found

during snowmelt at�1.2 to�1.3m soil depth by Kelln et al. [2007] and at�2 to�2.5m by Peralta-Tapia et al.

[2015]. Many pore water isotope studies found a combination of slow flow in the soil matrix and a rapid flow

inmacropores [Mathieu and Bariac, 1996; Seiler et al., 2002; Cheng et al., 2014]. Which of the coexisting process

dominates depends, besides the soil structure and texture, on the size of the precipitation event and the soil

moisture [Gazis and Feng, 2004]. The isotopic composition of water in preferential flow paths was shown to be

similar to the event water for soil with a well-developed system of biopores [Leaney et al., 1993]. However,

more often macropore flow shows a different isotopic signal than the precipitation input [DeWalle et al.,

1988; McDonnell, 1990;Wenner et al., 1991; Anderson et al., 1997; Kelln et al., 2007], indicating that an interac-

tion (mixing) between the water in the soil matrix and macropore flow takes place. This interaction can be

induced by backing up of water in macropores and infiltrating into the matrix from where it seeps into lateral

pipes [McDonnell, 1990] or whenmoisture thresholds in the soil matrix are exceeded and displacement of old

water initiates macropore flow [Anderson et al., 1997; Klaus et al., 2013]. Pore water stable isotope sampling

prior and after sprinkling experiments with isotopically enriched water showed preferential flow patterns

Reviews of Geophysics 10.1002/2015RG000515

SPRENGER ET AL. REVIEW OF WATER STABLE ISOTOPES 689



for loess soils [Eisele, 2013] and tertiary sands [Seiler et al., 2002]. Since no preferential flow was observed in

sprinkling experiments with deuterated water at a site with fluvial deposits on sand and coarse gravel

[Koeniger et al., 2010], the pore size distribution governs the infiltration pattern. If the input signal in sprinkling

experiments is not distinct from the background isotopic composition of the soil water, preferential flow can-

not be recognized [Klaus et al., 2013]. A mismatch between observed isotope depth profiles and simulated

profiles using numerical soil models based on the Richards equation can also help to examine preferential

flow processes, when the simulations cannot reflect the observations [Stumpp and Hendry, 2012; Mueller

et al., 2014]. The relevance of preferential flow can be quantified accounting for preferential and matrix flow

separately. Stumpp et al. [2007] proposed a conceptual model, where the slow flow through the matrix was

represented with a dispersion model and the fast flow in macropores was simulated by a piston flow model.

This approach showed that the fast component in the outflow amounted to 7–30% in bare soil lysimeters

filled with fluvioglacial gravel [Stumpp et al., 2007] and 7–10% for vegetated lysimeters filled with an undis-

turbed sandy soil (Humic Cambisol) [Stumpp and Maloszewski, 2010]. A similar dual-continuum approach for a

hillslope could reproduce both the gradual changes of the observed δ18O values in the soil matrix sampled by

suction lysimeter and the quick changes of δ18O in the hillslope drainage [Vogel et al., 2010]. While irrigation

experiments with isotopically enriched waters generally allow for direct recognition of bypass flow in the field

for short time scales; also, the natural variation and anomalies of the isotopic composition of the soil water

over time and/or in space may provide valuable insights into preferential flow pathways.

6. Recent Challenge in Pore Water Stable Isotope Hydrology

6.1. Two Water World Hypothesis

Differences between the isotopic signal in groundwater and stream water on the one side and soil and vege-

tation on the other side (“ecohydrological separation”) has recently motivated studies to propose the two

water world hypothesis, defined as “vegetation and streams returning different pools of water to the hydro-

sphere” [McDonnell, 2014], which can affect the global partitioning of hydrologic fluxes [Good et al., 2015]. In

fact, Brooks et al. [2010] and Goldsmith et al. [2012] found xylem water to be of similar fractionated isotopic

composition as soil water of the topsoil analyzed with cryogenic extraction. At the same time, the ground-

water and stream water consisted of unfractionated water similar to the soil water sampled via suction cup

lysimeters (60 kPa) [Brooks et al., 2010; Goldsmith et al., 2012]. As shown in a meta-analysis by Evaristo et al.

[2015], this pattern of an evaporation fractionation signal in the xylem and soil water and no evaporation frac-

tionation in stream water and groundwater is present in various studies conducted in different climates

around the world. However, Evaristo et al. [2015] did not consider that the deviation of soil samples from

the GMWL diminishes with increasing depth as shown in Figure 4 using data from the same studies as pre-

sented in Evaristo et al. [2015]. Therefore, we believe it is not paradoxical that the mobile water (draining

water, e.g., sampled with lysiemter, suction cup lysimeter, or wick samplers), the stream water, or water

recharging to the groundwater lays on the LMWL in a dual-isotope plot, while the immobile water (held

against the gravity, e.g., sampled with cryogenic extraction or direct equilibration) shows an evaporative

fractionation signal.

Why groundwater or streamwater does not show an evaporation fractionation signal has been studied for

decades. Possible explanations include that the evaporation fractionation signal in the topsoil is equalized

by the preferential recharge of in heavy isotopes depleted water during the vegetation dormancy [e.g.,

Brinkmann et al., 1963] or that the groundwater recharge is limited to high-intensity rainfall events or snow

melt bypassing the topsoil through preferential flow paths without altering its isotopic composition by

evaporation [e.g., Komor and Emerson, 1994; Mathieu and Bariac, 1996; Schlaepfer et al., 2014]. The other

way around, Gat and Airey [2006] suggested that an evaporation fractionation signal could only be intro-

duced into the groundwater when the antecedent soil water of negative lc-excess is flushed with newly intro-

duced rainwater. However, such an isotopic enrichment of the groundwater compared to the precipitation

water was not observed in a global groundwater data set [Evaristo et al., 2015].

6.2. Subsequent Fading of Fractionation Effects

Based on the literature review and considering the fact that the evaporation fractionation signal diminishes

within the first 0.5m soil for temperate climates, we propose that subsequent mixing of the evaporated soil

water with nonfractionated precipitation water could explain the differences in the isotopic signal of water
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inthe top soil and in the xylem of plants on the one hand and groundwater and streamwater on the other

hand. Figure 8 visualizes the concept of a subsequent mixing of pore waters resulting in a fading of the eva-

poration fractionation signal. The pore water in the topsoil becomes isotopic fractionated during a dry period

(Figure 8a). The infiltrating water of a precipitation event mixes with the pre-event water (Figure 8b), and the

increased pressure head initiates percolation of the mixed water (Figure 8c). Due to this successively mixing

of the “old” pore waters with newly introduced rain water over time and with increasing soil depth

(Figures 8d–8f), the isotopic signal of the pore water converges toward the LMWL (Figure 8g). Generally,

the topsoil with its enriched isotopic composition is very small in volume (very low soil moisture content)

compared to the total water volume in the vadose zone [Darling and Bath, 1988] and with increasing depth,

the infiltrating water mixes with higher volume of water already present in the pores [Wenner et al., 1991].

This water will not be affected by evaporation fractionation anymore as soon as it percolates below the

maximum evaporation penetration depth. However, the maximum evaporation penetration depth will

depend on the soil texture and the climatic conditions as discussed earlier, since it is deeper in arid and

Mediterranean climates than in temperate climates (Figure 5). Thus, the recharge water will eventually due

to subsequent mixing have an isotopic signal that does not show considerable fractionation effects anymore

or at least the effects are smaller than the measurement error for isotope analysis.

We underline the conceptual framework with numerical simulations of a soil hydrological model. The simula-

tions were performed for a sandy soil under a temperate climate for the time period of 3.5 years (January

2011 to June 2014) on a daily basis. To reduce the effect of the initial conditions, the 3.5 years of available

atmospheric forcing were put in front of the simulation run. Water flow and isotope transport in the model

Figure 8. Conceptualization of the hydrological processes influencing the matric potential (ψ), volumetric water content
(VWC), and isotopic composition (lc-excess) in the upper 0.5m of the soil during a (a and d) dry period, a (b and e) rain
event, and (c and f) the time in between. Graphs Figures 8a to 8f are in chronological order, and the prior state of ψ, VWC,
and lc-excess is shown in semitransparent colors, respectively. (g) The dual-isotope plot shows the isotopic composition of
fractionated soil water (orange circle), fictitious rainwater (blue diamonds), and the resulting subsequent mixture soil water
(green circles).
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were simulated on a daily basis with the Richards equation and according to the advection-dispersion equa-

tion. For a detailed description on the model, we refer to Mueller et al. [2014]. The soil hydraulic parameters

were derived from Wessolek et al. [2009]. The model further considered evapotranspiration, estimated with

the Hargreaves equation [Hargreaves and Samani, 1982]. Evapotranspiration was partitioned into evaporation

and transpiration as a function of the leaf area index. Transpiration decreased linearly over the rooting zone

(upper 70 cm) and depended on the water content and porosity according to the implementation in

TOPMODEL by Menzel [1997]. While transpiration did not alter the isotopic composition, soil evaporation

led to isotopic fractionation. The equilibrium fractionation was derived in accordance to Majoube [1971] as

a function of the soil temperature and the kinetic fractionation taking the humidity into account estimated

according to Gonfiantini [1986].

The simulation results show that the signal of isotopically enriched water due to soil evaporation in the upper

soil is not passed on to greater depth. We show the temporal dynamic of the evaporation fractionation signal

Figure 9. Simulated temporal dynamics of lc-excess for a forested plot with a sandy soil for the year 2013. (a) Fluxes into the
atmosphere by soil evaporation, interception evaporation, and transpiration (lines) and the accompanied lc-excess (points).
(b) lc-excess of the soil water across a 3m soil profile. (c) Recharge flux and its lc-excess. (d–f) Range of the simulated
lc-excess for each compartment for the simulation period January 2011 to June 2014. (g–i) Range of the lc-excess in the
literature. Xylem data from a temperate forest [Bertrand et al., 2012], soil data from soil water isotope studies in temperate
forests [Jia et al., 2012; Rong et al., 2011; Wang et al., 2010b; Berry et al., 2014; Brooks et al., 2010; Sun et al., 2008; Bertrand
et al., 2012; Sprenger et al., 2016b], and groundwater data from the global meta-analysis by Evaristo et al. [2015]. Note that
the y axis for Figure 9e and 9h represent the soil depth and thus the same as for Figure 9b.

Reviews of Geophysics 10.1002/2015RG000515

SPRENGER ET AL. REVIEW OF WATER STABLE ISOTOPES 692



(lc-excess) in the different compartments for the simulation for a sandy soil in Figures 9a–9f. The pore water

being isotopic fractionated during dry periods becomes diluted with newly introduced (unfractionated) rain-

water, and the fractionation signal expressed as lc-excess fades with proceeding percolation depth (Figure 9

b). As outlined above, the volume of water affected by evaporation fractionation in the upper 30 cm is rela-

tively low compared to the water volume below 30 cm soil depth. For our simulations, the topsoil contains

only between 10 and 30% of the water volume between�30 and�200 cm (data not shown). The water that

is taken up by the vegetation—usually sampled as xylem water—will show the fractionation signal during

dry periods but varies also according to the isotopic composition of the rainfall input (Figures 9a and 9d).

As outlined above, unfractionated precipitation volumes are relatively high compared to the potentially frac-

tionated pre-event water. For our simulations, 73% of the total precipitation volume infiltrates into a soil that

stores less than the event water in the upper 30 cm of soil. The simulated recharge water in 3m depth shows

very little variation of the lc-excess due to the mixing processes of fractionated pore water with unfractio-

nated rainfall input (Figures 9c and 9f). Nevertheless, in our simulations, the root water uptake and the

recharge water do not necessarily originate from two different pools of subsurface water.

The presented simulations are within the range of the lc-excess as reported for xylem water in a temperate

climate [Bertrand et al., 2012] (Figure 9g) and globally reported for groundwater [Evaristo et al., 2015]

(Figure 9g). The variation of the simulated soil water lc-excess is within the range of the isotopic composition

of soil water published in studies in temperate forests (Figure 9h). The simulations cover the lower range of

the lc-excess values observed in the literature. However, the evaporation and the accompanied isotopic frac-

tionation were simulated in a parsimonious manner to keep the required input data and the number of para-

meters low and the model was not calibrated to specific sites.

Our simulations and the conceptual model can explain the general concept of the suggested subsequent

fractionation fading effect that might explain why the top soil and xylem water show an evaporative fractio-

nated isotopic composition, while the stream water and groundwater show no evaporation signal.

Furthermore, the subsequent mixing effect and the involved dilution of the evaporation fractionation signal

are supported by high-frequency measurements in a soil column by Rothfuss et al. [2015], who showed that

intensively fractionated water of the top soil immediately shifts its isotopic composition toward the GMWL

after irrigation. Such high-frequency measurements are yet missing under field conditions but will give

new insights into the mixing patterns within the topsoil, while the deeper soil with its low dynamic of the iso-

topic composition is already relatively well studied.

Good et al. [2015] found in their global isotope mass balance analysis that the soil evaporation (and its parti-

tioning in evaporation from bound and mobile soil waters) has direct influence on the isotopic signal in the

continental runoff: The higher the fraction of evaporation from bound waters, the more isotopically depleted

will be the continental runoff. This evaporation partitioning into bound andmobile waters correlates with the

hydrological connectivity between bound and mobile water, resulting in a more depleted isotopic signal in

the continental runoff when more preferential flow occurs, while translatory flow would lead to isotopically

enriched continental runoff. Good et al. [2015] concluded for their global analysis that 62% of water entering

the streams is hydrologically disconnected (i.e., preferential flow) from the bound soil water.

Our concept of the subsequent fading of fractionation effects does not support the findings by Good et al.

[2015], because mixing with unfractionated rain water and dispersion during the percolation brings the iso-

topic signal of the recharging water close to the signal of the precipitation input making the stream water

signal less sensitive to soil water fractionation.

In addition, the reviewed studies showed that the vegetation can adapt to water availability in the soil, indi-

cating that the water uptake by roots is preferably in areas or pore spaces which are relatively easily acces-

sible. Thus, it is questionable if ecohydrological separation is actually taking part or if instead the soil water

undergoes isotopic changes over space (e.g., depth) and time (e.g., seasonality) leading to distinct isotopic

signals between the top soil and subsoil, which will directly affect the isotopic signal of the root water.

7. Future Work

Our review showed that water stable isotopes are increasingly used to study the soil-vegetation-atmosphere

interface. However, especially where disciplines like hydrology, soil science, and ecology overlap, a better
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understanding of the interactions between water, minerals, and vegetation remains challenging. As such, we

see three major aspects for future work.

First, the different pore water stable isotope analysis methods and the problem of defining their sampled

pore space or comparing their precision and applicability needs to be better understood [Orlowski et al.,

2016a; Sprenger et al., 2015a]. The influence of soil texture [Meißner et al., 2014; Oerter et al., 2014; Orlowski

et al., 2016b; Oshun et al., 2016] and organic material [West et al., 2010] on the pore water stable isotope ana-

lysis is increasingly acknowledged. Also, the composition of carrier gas was shown to have an influence on

the isotope analysis with laser spectrometry by altering the 2H to 18O ratio [Gralher et al., 2016]. Thus, soil sam-

ples analyzed with the direct equilibration method can be affected by the carrier gas and gases developed

my microbial activity (e.g., CO2 or CH4) [Gralher et al., 2016]. Nevertheless, how to account for these issues

for the pore water isotope sampling methods is currently up for debate and probably needs a combined

effort to systematically compare methods, analysis systems, and approaches from several groups around

the world.

Second, in situ measurements of water stable isotope signals have shown to provide valuable insights due to

high-frequency sampling of precipitation input [Berman et al., 2009; Herbstritt et al., 2012; Pangle et al., 2014],

soil water infiltration [Volkmann et al., 2016a], soil water evaporation [Gangi et al., 2015; Gaj et al., 2016;

Rothfuss et al., 2015], and vegetation transpiration [Dubbert et al., 2014a; Volkmann et al., 2016a, 2016b;

Wang et al., 2012b]. These methods allow for higher sampling intervals in time to study short-term responses

within the soil and vegetation on the one hand, but the in situ measurements provide also the means for a

high spatial sampling of the isotopic signal in the soil-vegetation-atmosphere interface. The inclusion of the

pore water stable isotope data for the calibration of numerical models as shown by, e.g., Sprenger et al.

[2015b, 2016b] or [Huang et al., 2015], provide a promising perspective for modeling soil processes

[Vereecken et al., 2016].

Lastly, the progress made in pore water stable isotope analysis enables a higher spatial coverage of the soil

water isotope sampling. Thus, replicates to account for the subsurface heterogeneity allow supporting a

more general picture of the spatial variability [Brooks et al., 2010; Sprenger et al., 2016b; Thomas et al.,

2013]. This is especially true for vadose zone transit time studies, where repeated measurements are rather

an exception than the rule (Table 1). Spatial information of the pore water isotopic signal over an area and

in depth could be applied for soil water isoscapes [Bowen, 2010; Bowen and Good, 2015] and allow bench-

marking hydrological models [Birkel et al., 2014; Sprenger et al., 2016b]. This way, a multiobjective parameter-

ization including hydrochemical data and hydrometric data, as widely applied for catchment outlet data, can

be extended to vadose zone data to account for processes within catchments than rather concentrating on

the integrated signal in the discharge.

8. Conclusion and Summary

Our review shows that there is an interplay of various processes that alter the pore water isotopic composi-

tion and the dominant factors being controlled by the climate, soil texture, soil structure, and land use.

Thus, a multidisciplinary approach is required, where the interactions of the soil with the atmosphere,

groundwater, and vegetation are considered to understand the isotopic composition of the vadose zone.

The application of pore water stable isotope analyses can be adjusted depending on the research question,

but the multidisciplinary character of the pore water data needs to be considered nevertheless. As shown in

this review, the use of pore water stable isotopes is continuously increasing due to the technical develop-

ments in the last two decades making the analyses more time and cost efficient. However, many aspects

regarding the physical processes affecting the pore water isotopic composition are still poorly understood.

Especially, the hydroecological interactions are challenging to study with spatial scales ranging from small

soil pores, where water is tightly bound and possibly taken up by roots, to large catchments, where the

vegetation cover governs the partitioning between soil evaporation and transpiration. Also, the temporal

dynamics in the flow and mixing of water with different isotopic composition has not been observed

and studied in the necessary details yet.

Based on the presented studies in this review, we propose to consider the following points when pore water

stable isotopes are being used: (1) Knowledge about the past precipitation inputs is indispensable to inter-

pret pore water stable isotope data. (2) Consideration of both 18O and 2H (or the d-excess and lc-excess)
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reveals important insights into evaporation processes in the topsoil. (3) The hydroecological feedbacks are

not restricted to the topsoil but influence also the travel times of the recharge flux (e.g., preferential seasonal

root water uptake and evaporation). (4) Recharge water that is not isotopically fractionated does not neces-

sarily imply that the vegetation, which xylem water shows a fractionated isotopic signal, uses a different pool

of pore water. (5) The choice of the pore water stable analysis method may determine the pore space that is

sampled, which is directly related to the mobility of the soil water. (6) The sampling frequency of rainfall input

and pore waters needs to be adapted in space and time with regard to the addressed research question. (7)

Replicates of pore water samples strengthen the explanatory power and allow inferring generalizable conclu-

sions for the highly heterogeneous vadose zone.

Glossary

Deuterium excess (d-excess) is the deviation from the global meteoric water line defined as: d-

excess = δ
2H - 8*δ18O [Dansgaard, 1964].

Dual-isotope plot describes the relation between two isotopes. Here we limit the concept on the relation

between δ
18O and δ

2H.

Equilibrium fractionation for water stable isotopes is given when the phase change in any direction (e.g.,

liquid to vapor or vapor to liquid) does not alter the ratio of the water isotopes in a closed system at a con-

stant temperature at 100% humidity.

Evaporation line is a regression line that describes the enrichment of heavy isotopes due to evaporation

fractionation in open water or soil water.

Global meteoric water line (GMWL) describes the global relation between δ
18O and δ

2H in precipitation

water [Craig, 1961]. This relationship is given as [Rozanski et al., 1993]

δ2HVSMOW ¼ 8:2 δ18OVSMOW þ 11:27

Isotope delta (δ notation) is the relative difference in the ratio of heavy to light isotopes (e.g., 2H/1H for

deuterium and 18O/16O for oxygen-18) of a water sample to a standard water, the Vienna Standard Mean

Ocean Water; for 18O: δ18OVSMOW ¼
R 18O=16Oð Þ

sample

R 18O=16Oð Þ
VSMOW

� 1

� �

and for 2H: δ2HVSMOW ¼
R 2H=2Hð Þ

sample

R 2H=2Hð Þ
VSMOW

� 1

� �

.

Kinetic fractionation describes the fact that the ratio between heavy and light isotopes will get altered

during a phase change (e.g., liquid to vapor), because one of the isotopes is less likely to do the phase change

due to the differences in mass of the isotopes.

Line-conditioned excess (lc-excess) is the deviation from the local meteoric water line defined by

Landwehr and Coplen [2006] as lc-excess = δ
2H� a*δ18O� b, with a and b being the slope and interception

of the LMWL, respectively. Negative lc-excess indicates that the water sample experienced evaporation frac-

tionation processes.

Local meteoric water line (LMWL) describes the local (regionally limited) relation between δ
18O and δ

2H

in precipitation water.

Travel time (or transit time) is the time a water particle takes to pass through a hydrological system

[McDonnell et al., 2010].

Vadose zone is as the unsaturated soil/sediment between soil surface and groundwater table [Hopmans

and van Genuchten, 2005].

Vienna Standard Mean Ocean Water (VSMOW) is a standard water of defined 2H/1H and 18O/16O ratios;

used as a reference for the calibration of the measurements of stable isotopes of water to ensure a compar-

ability [Craig, 1961; Gonfiantini et al., 1995].

Xylem water is the water transported in the transport tissues (xylem) of vegetation.
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