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Nearly all science and engineering fields use search al-

gorithms, which automatically explore a search space to
find high-performing solutions: chemists search through the
space of molecules to discover new drugs; engineers search
for stronger, cheaper, safer designs, scientists search for
models that best explain data, etc. The goal of search al-
gorithms has traditionally been to return the single highest-
performing solution in a search space. Here we describe a
new, fundamentally different type of algorithm that is more
useful because it provides a holistic view of how high-
performing solutions are distributed throughout a search
space. It creates a map of high-performing solutions at each
point in a space defined by dimensions of variation that
a user gets to choose. This Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites) algorithm illuminates search
spaces, allowing researchers to understand how interest-
ing attributes of solutions combine to affect performance,
either positively or, equally of interest, negatively. For ex-
ample, a drug company may wish to understand how per-
formance changes as the size of molecules and their cost-
to-produce vary. MAP-Elites produces a large diversity of
high-performing, yet qualitatively different solutions, which
can be more helpful than a single, high-performing solu-
tion. Interestingly, because MAP-Elites explores more of the
search space, it also tends to find a better overall solution
than state-of-the-art search algorithms. We demonstrate the
benefits of this new algorithm in three different problem do-
mains ranging from producing modular neural networks to
designing simulated and real soft robots. Because MAP-
Elites (1) illuminates the relationship between performance
and dimensions of interest in solutions, (2) returns a set
of high-performing, yet diverse solutions, and (3) improves
the state-of-the-art for finding a single, best solution, it will
catalyze advances throughout all science and engineering
fields.

Author’s Note: This paper is a preliminary draft of a paper that intro-
duces the MAP-Elites algorithm and explores its capabilities. Normally
we would not post such an early draft with only preliminary experimen-
tal data, but many people in the community have heard of MAP-Elites,
are using it in their own papers, and have asked us for a paper that de-
scribes it so that they can cite it, to help them implement MAP-Elites,
and that describes the experiments we have already conducted with it.
We thus want to share both the details of this algorithm and what we
have learned about it from our preliminary experiments. All of the ex-
periments in this paper will be redone before the final version of the paper
is published, and the data are thus subject to change.

1 Background and Motivation

Every field of science and engineering makes use of search al-
gorithms, also known as optimization algorithms, which seek to
automatically find a high-quality solution or set of high-quality
solutions amongst a large space of possible solutions1, 2. Such
algorithms often find solutions that outperform those designed

Fig. 1. The MAP-Elites algorithm searches in a high-dimensional space
to find the highest-performing solution at each point in a low-dimensional
feature space, where the user gets to choose dimensions of variation of in-
terest that define the low dimensional space. We call this type of algorithm
an “illumination algorithm”, because it illuminates the fitness potential of
each area of the feature space, including tradeoffs between performance
and the features of interest. For example, MAP-Elites could search in the
space of all possible robot designs (a very high dimensional space) to find
the fastest robot (a performance criterion) for each combination of height
and weight.

by human engineers3: they have designed antennas that NASA
flew to space4, found patentable electronic circuit designs3, auto-
mated scientific discovery5, and created artificial intelligence for
robots6–15. Because of their widespread use, improving search al-
gorithms provides substantial benefits for society.

Most search algorithms focus on finding one or a small set of
high-quality solutions in a search space. What constitutes high-
quality is determined by the user, who specifies one or a few ob-
jectives that the solution should score high on. For example, a
user may want solutions that are high-performing and low-cost,
where each of those desiderata is quantifiably measured either by
an equation or simulator. Traditional search algorithms include
hill climbing, simulated annealing, evolutionary algorithms, gra-
dient ascent/descent, Bayesian optimization, and multi-objective
optimization algorithms1, 2. The latter return a set of solutions that
represent the best tradeoffs between objectives16.

A subset of optimization problems are challenging because
they require searching for optima in a function or system that is
either non-differentiable or cannot be expressed mathematically,
typically because a physical system or a complex simulation is
required. Such problems require “black box” optimization algo-
rithms, which search for high-performing solutions armed only
with the ability to determine the performance of a solution, but
without access to the evaluation function that determines that
performance. On such problems, one cannot use optimization
methods that require calculating the gradient of the function,
such as gradient ascent/descent.

A notorious challenge in black box optimization is the presence
of local optima (also called local minima)1, 2. A problem with most
search algorithms of this class is that they try to follow a path that
will lead to the best global solution by relying on the heuristic that
random changes to good solutions lead to better solutions. This
approach does not work for highly deceptive problems, however,
because in such problems one has to cross low-performing valleys
to find the global optima, or even just to find better optima2.

Because evolutionary algorithms are one of the most success-
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ful families of black-box search algorithms2, 3, and because the
work we build on comes from that community, here we adopt the
language and metaphors of evolutionary computation. In that
parlance, a solution is an organism or phenotype or individual, the
organism is described by a genome or genotype, and the actions
performed by that organism are the organism’s behavior. The per-
formance or quality of a solution is called its fitness, and the equa-
tion, simulation, etc. that returns that fitness value is the fitness
function. The way of stochastically producing new solutions is
to take an existing solution and mutate its genome, meaning to
change the genome in some random way, and or to produce a
new solution descriptor by sampling portions of two parent de-
scriptors, a process called crossover. Solutions that produce new
offspring organisms are those that are selected, and such selection
is typically biased towards solutions with higher fitness2.

To encourage a broad exploration of the search space,
many modern evolutionary algorithms encourage diversity
through a variety of different techniques, including increas-
ing mutation rates when the rate of performance improve-
ment stagnates1, 2, 17–19, explicitly selecting for genetic diversity2, 20

or behavioral diversity21–25, or changing the structure of the
population26. Such diversity-promoting techniques often im-
prove the quality of the solutions produced and the number of
different types of solutions explored, but search algorithms still
tend to converge to one or a few good solutions early and cease
to make further progress2, 21, 25.

An alternate idea proposed in recent years is to abandon the
goal of improving performance altogether, and instead select
only for diversity in the feature space (also called the behavior
space): This algorithm, called Novelty Search, can perform bet-
ter than performance-driven search on deceptive problems21–24.
The user defines how to measure the distance between behav-
iors, and then Novelty Search seeks to produce as many different
behaviors as possible according to this distance metric. The al-
gorithm stops when an individual in the population solves the
objective (i.e. their performance is high enough). Because Nov-
elty Search does not work well with very large feature/behavioral
spaces27, 28, there have been many proposals for combining selec-
tion for novelty and performance28–31. The main focus of these
hybrid algorithms remains finding the single best individual that
solves a task, or a set of individuals that represent the best possi-
ble tradeoff between competing objectives.

In the last few years, a few algorithms have been designed
whose goal is not to return one individual that performs well on
one objective, but a repertoire of individuals that each performs
well on a different, related objective14, 22, 32. Along with research
into behavioral diversity and Novelty Search, such repertoire-
gathering algorithms inspire the algorithm we present in this pa-
per.

While the exploration of search spaces is at the center of many
discussions in optimization, we rarely see these search spaces be-
cause they are often too high-dimensional to be visualized. While
the computer science literature offers plenty of options for dimen-
sionality reduction and visualization of high-dimensional data
33–36, such algorithms are “passive” in that they take a fixed data
set and search for the best low-dimensional visualization of it.
They do not tackle the issue of generating this data set. In other
words, they do not explore a high-dimensional space in such a
way as to reveal interesting properties about it to a user via a low-
dimensional visualization. Such exploration algorithms are nec-
essary when the entire search space is too large to be simply visu-
alized by a dimensionality reduction algorithm, but instead must
be actively explored to learn interesting facts about it. For exam-
ple, to identify all the performance peaks in a large search space,
we must actively search for them. It is not enough to sample mil-
lions of solutions and plot them, for the same reason as random
sampling is often not a good optimization algorithm: finding a
fitness peak by chance is very unlikely for large search spaces
(in most cases, the probability of finding the best possible fitness

will decrease exponentially when the number of dimensions of
the search space increases).

Here we present a new algorithm that, given N dimensions of
variation of interest chosen by the user, searches for the highest-
performing solution at each point in the space defined by those
dimensions (Fig. 1). These dimensions are discretized, with the
granularity a function of available computational resources. Note
that the search space can be high-dimensional, or even of infinite
dimensions, but the feature space is low-dimensional by design.
We call this algorithm the multi-dimensional archive of pheno-
typic elites, or MAP-Elites. It was used and briefly described in6,
but this paper is the first to describe and explore its properties in
detail.

The benefits of MAP-Elites include the following:

• Allowing users to create diversity in the dimensions of vari-
ation they choose.

• Illuminating the fitness potential of the entire feature space,
not just the high-performing areas, revealing relationships
between dimensions of interest and performance.

• Improved optimization performance; the algorithm often
finds a better solution than the current state-of-the-art search
algorithms in complex search spaces because it explores
more of the feature space, which helps it avoid local optima
and thus find different, and often better, fitness peaks.

• The search for a solution in any single cell is aided by the
simultaneous search for solutions in other cells. This paral-
lel search is beneficial because (1) it may be more likely to
generate a solution for one cell by mutating a solution to
a more distant cell, a phenomenon called “goal switching”
in a new paper that uses MAP-Elites37, or (2) if it is more
likely to produce a solution to a cell by crossing over two
solutions from other cells. If either reason is true, MAP-
Elites should outperform a separate search conducted for
each cell. There is evidence that supports this claim below,
and this specific experiment was conducted in Nguyen et al.
201537, which found that MAP-Elites does produce higher-
performing solutions in each cell than separately searching
for a high-performing solution in each of those cells.

• Returning a large set of diverse, high-performing individ-
uals embedded in a map that describes where they are lo-
cated in the feature space, which can be used to create new
types of algorithms or improve the performance of existing
algorithms6.

2 Optimization vs. Illumination Algorithms

Optimization algorithms try to find the highest-performing solu-
tion in a search space. Sometimes they are designed to return a
set of high-performing solutions, where members in the set are
also good on other objectives, and where the set represents the
solution on the Pareto front of tradeoffs between performance
and quality with respect to those other objectives. Optimization
algorithms are not traditionally designed to report the highest-
performing solution possible in an area of the feature space that
cannot produce either the highest-performing solution overall, or
a solution on the Pareto front.

A different kind of algorithm, which we call illumination algo-
rithms, are designed to return the highest-performing solution
at each point in the feature space. They thus illuminate the fit-
ness potential of each region of the feature space. In biological
terms, they illuminate the phenotype-fitness map38. Any illumi-
nation algorithm can also be used as an optimization algorithm,
making illumination algorithms a superset of optimization algo-
rithms. MAP-Elites is an illumination algorithm. It is inspired
by two previous illumination algorithms, Novelty Search + Local
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procedure MAP-ELITES ALGORITHM (SIMPLE, DEFAULT VERSION)
(P ← ∅,X ← ∅) ⊲ Create an empty, N -dimensional map of elites: {solutions X and their performances P}
for iter = 1→ I do ⊲ Repeat for I iterations.

if iter < G then ⊲ Initialize by generating G random solutions
x
′ ← random solution()

else ⊲ All subsequent solutions are generated from elites in the map
x← random selection(X ) ⊲ Randomly select an elite x from the map X
x
′ ← random variation(x) ⊲ Create x′, a randomly modified copy of x (via mutation and/or crossover)

b
′ ←feature descriptor(x′) ⊲ Simulate the candidate solution x′ and record its feature descriptor b′

p′ ←performance(x′) ⊲ Record the performance p′ of x′

if P(b′) = ∅ or P(b′) < p′ then ⊲ If the appropriate cell is empty or its occupants’s performance is ≤ p′, then
P(b′)← p′ ⊲ store the performance of x′ in the map of elites according to its feature descriptor b′

X (b′)← x
′ ⊲ store the solution x′ in the map of elites according to its feature descriptor b′

return feature-performance map (P and X )

Fig. 2. A pseudocode description of the simple, default version of MAP-Elites.

Competition (NS+LC)22 and the Multi-Objective Landscape Ex-
ploration algorithm (MOLE)32. All three are described below.

3 Details of the MAP-Elites algorithm

MAP-Elites is quite simple, both conceptually and to implement.
Pseudocode of the algorithm is in Fig. 2. First, a user chooses a
performance measure f(x) that evaluates a solution x. For exam-
ple, if searching for robot morphologies, the performance mea-
sure could be how fast the robot is. Second, the user chooses N

dimensions of variation of interest that define a feature space of
interest to the user. For robot morphologies, one dimension of in-
terest could be how tall the robot is, another could be its weight, a
third could be its energy consumption per meter moved, etc. An
alternate example could be searching for chess programs, where
the performance measure is the win percentage, and the dimen-
sions of variation could be the aggressiveness of play, the speed
with which moves are selected, etc. A further example is evolv-
ing drug molecules, where performance could be a drug’s effi-
cacy and dimensions of variation could be the size of molecules,
the cost to produce them, their perishability, etc.

Each dimension of variation is discretized based on user prefer-
ence or available computational resources. This granularity could
be manually specified or automatically tuned to the available re-
sources, including starting with a coarse discretization and then
increasing the granularity as time and computation allow.

Given a particular discretization, MAP-Elites will search for the
highest performing solution for each cell in the N -dimensional
feature space. For example, MAP-Elites will search for the fastest
robot that is tall, heavy, and efficient; the fastest robot that is tall,
heavy, and inefficient, the fastest robot that is tall, light, and effi-
cient, etc.

The search is conducted in the search space, which is the space
of all possible values of x, where x is a description of a candidate
solution. In our example, the search space contains all possible
descriptions of robot morphologies (note that we must search in
the space of descriptions of robot morphologies; it is not possible
to search directly in the space of robot morphologies or directly
in the feature space). We call the x descriptor a genome or genotype
and the robot morphology the phenotype, or px. We have already
mentioned that a function f(x), called a fitness function, returns
the performance of each x. A feature (a.k.a. behavior) function
b(x) must also exist or be defined that, for each x, determines x’s
value in each of the N feature dimensions. In other words, b(x)
returns bx, which is an N -dimensional vector describing x’s fea-
tures. In our example, the first dimension of bx is the robot’s
height, the second dimension is its weight, and the third is its en-
ergy consumption per meter moved, etc. Some elements of the
feature vector may be directly measured in the phenotype (e.g.
height, weight), but others (e.g. energy consumption) require

measuring the behavior of the phenotype while it performs, ei-
ther in simulation or reality.

Note that there may be many levels of indirection between x

and bx. With direct encoding, each element in the genome specifies
an independent component of the phenotype2, 7, 39. In that case, it
is straightforward to map genotypes into phenotypes, and then
measure performance and features (evaluating the phenotype in
a simulator or the real world if necessary). An extra level of indi-
rection can occur with indirect encoding, also known as generative
or developmental encoding, in which information in the genome
can be reused to affect many parts of the phenotype (also called
pleiotropy); such encodings have been shown to improve regular-
ity, performance, and evolvability2, 7, 8, 11–13, 39–42. In other words, a
complex process can exist that maps genome x → to phenotype
px → to features bx and performance fx.

MAP-Elites starts by randomly generating G genomes and de-
termining the performance and features of each. In a random or-
der, those genomes are placed into the cells to which they belong
in the feature space (if multiple genomes map to the same cell, the
highest-performing one per cell is retained). At that point the al-
gorithm is initialized, and the following steps are repeated until
a termination criterion is reached. (1) A cell in the map is ran-
domly chosen and the genome in that cell produces an offspring
via mutation and/or crossover. (2) The features and performance
of that offspring are determined, and the offspring is placed in
the cell if the cell is empty or if the offspring is higher-performing
than the current occupant of the cell, in which case that occupant
is discarded.

The termination criterion can be many things, such as if a set
amount of time expires, a fixed amount of computational re-
sources are consumed, or some property of the archive is pro-
duced. Examples of the latter could include a certain percentage
of the map cells being filled, average fitness in the map reaching
a specific level, or n solutions to a problem being discovered.

One can consider the archive, which is the set of descriptors in
all the cells, as the traditional population in an evolutionary algo-
rithm. The difference is that in MAP-Elites each member of the
population is by definition diverse, at least according to the di-
mensions of the feature space.

The above description, for which pseudocode is provided in
Fig. 2, is the default way to implement MAP-Elites. To encour-
age a more uniform exploration of the space at a coarse resolu-
tion, and then a more fine-grained search afterwards, we created
a hierarchical version that starts with larger cells in the feature
space that are then subdivided into smaller cells during search af-
ter predetermined numbers of evaluations have been performed
(Methods). We further parallelized this algorithm to run on clus-
ters of networked computers, by farming out batches of evalua-
tions to slave nodes, instead of performing each evaluation seri-
ally (Methods). Section 8 contains ideas for additional, alternate
possible variants of MAP-Elites.
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There are two things to note about MAP-Elites:

• It is not guaranteed that all cells in the feature space will be
filled, for two reasons. (1) There may be no genome x that
maps to a particular cell in the feature space. For example,
it may be impossible to have a robot of a certain height and
weight due to physical laws. (2) The search algorithm may
fail to produce a genome that maps to a cell in the feature
space, even if such a genome exists.

• There are many genotypes that can be mapped to the same
cell in the feature space, perhaps an infinite number. For ex-
ample, there are many robot blueprints that produce a robot
with the same height, weight, and energy consumption. For
that reason, and because it is not known a priori which
genomes will map to which cells, it is not possible to search
directly in the feature space. Recall that there is, even with
direct encodings, and especially with indirect encodings, a
complex mapping from genome x to the feature vector bx. If
it is possible in a given problem to directly take steps in the
feature space, then MAP-Elites is unnecessary because one
could simply perform exhaustive search in the feature space.
One can think of MAP-Elites as a way of trying to perform
such an exhaustive search in the feature space, but with the
additional challenge of trying to find the highest-performing
solution for each cell in that feature space.

4 Differences between MAP-Elites and previous,
related algorithms

In 2011, Lehman and Stanley22 note that combining a selective
pressure for feature diversity with one performance objective that
all of the different types of phenotypes compete on is akin to hav-
ing butterflies and bacteria compete with bears and badgers on
one performance criterion (e.g. speed). Doing so is unhelpful
for producing the fastest of each type of creature, given the dif-
ferent speed scales these creatures exhibit. Instead, Lehman and
Stanley propose encouraging diversity in the feature space, but
having each organism compete on performance only with other
organisms that are near it in the feature space, an algorithm they
call Novelty Search + Local Competition (NS+LC)22. NS+LC accom-
plishes these goals via a multi-objective algorithm with two ob-
jectives: (1) maximizing an organism’s performance relative to its
closest 15 neighbors (i.e. local competition, but note that these rel-
ative scores are then entered into a global competition, the impli-
cations of which are discussed below), and (2) maximizing a nov-
elty objective, which rewards organisms the further they are in
feature space from their 15 closest neighbors. Whereas normally
evolutionary algorithms do not produce much diversity within
one run, but instead have to perform multiple, independent runs
to showcase diversity8, NS+LC produces a substantial amount of
different types of high performing creatures within one evolving
population22.

NS+LC inspired us to create two algorithms that also seek to
find the highest performing solution at each point in a feature
space. The first was the Multi-Objective Landscape Exploration
(MOLE) algorithm32 and the second is MAP-Elites, the algorithm
presented in this paper. MOLE has two objectives: the first is
performance, and the second for each organism to be as far from
other organisms as possible, where distance is measured in a fea-
ture space that a user specifies.

Both NS+LC and MOLE have similar goals to MAP-Elites: they
search for the highest-performing solution at each point in a fea-
ture space. However, both are more complicated and, as will be
shown in the results section, do not perform as well as MAP-
Elites empirically.

Specific differences between MAP-Elites and NS+LC include:

• Novelty Search needs to compute the feature distance to ev-
ery other organism each generation; such nearest neighbor

calculations are O(n log(n))43 each generation. MAP-Elites
only needs to look up the current occupant of the cell, which
is O(1).

• Novelty Search contains both a current population and an
archive of previous solutions that serves as a memory of
which points in the feature space have been visited. Main-
taining both a population and an archive requires many ad-
ditional parameters that have to be chosen carefully or per-
formance can be detrimentally affected29.

• Given that Novelty Search rewards individuals that are dis-
tant from each other in the feature space, having only a pop-
ulation would lead to “cycling”, a phenomenon where the
population moves from one area of the feature space to a new
area and back again, without any memory of where it has al-
ready explored. The archive in NS+LC limits, but does not
eliminate, this phenomenon. MAP-Elites does away with the
archive vs. population distinction by having only an archive.
It thus avoids cycling and is always simultaneously focused
on expanding into new niches (until there are none left) and
improving the performance of existing niches.

It is thus quite easy to intuit what the selection pressure for
MAP-Elites is over time. In contrast, the selection pressures
for Novelty Search are more dynamic and thus harder to un-
derstand, even for Novelty Search variants that have only an
archive and no population29. For example, it is hard to pre-
dict how much search will be focused in each area of the fea-
ture space, because a relatively sparse area during one era of
the search can become relatively crowded later on, and vice
versa.

The dynamics of NS+LC are even more dynamic, complex,
and unpredictable. One thing to keep in mind is that, while
the performance of solutions in NS+LC is only judged ver-
sus neighbors, these relative performance scores are then
competed globally within the (relative) performance objec-
tive. Overall, therefore, NS+LC biases search towards under-
explored areas of the feature space (taking into account
the archive and the population), areas of the search space
with the highest relative performance, and tradeoffs between
these two objectives. An organism in an area that is bet-
ter than its neighbors, but where this gap is not as large
as elsewhere, will not be explored as often unless or until
that larger performance gap elsewhere is reduced. The fo-
cus of the (relative) performance objective is thus complex
and ever-changing. The diversity objective is also complex
and dynamic, because NS+LC does not only store one so-
lution per cell. Many solutions can pile up in one area of
the space, creating a pressure to explore under-explored ar-
eas until those areas are more explored relative to the initial
area, creating a pressure to return to the initial area, and so
on.

For both objectives, thus, it is hard to intuit both the dy-
namics themselves and what effects these dynamics have on
search. MAP-Elites, in contrast, produces offspring by uni-
formly sampling from the existing archive, such that the only
thing that changes over time is the number of cells that are
filled and their performance. MAP-Elites thus embodies the
main principle of illumination algorithms, which is to search
for the highest-performing solution at each point of the fea-
ture space, in a more simple, intuitive, and predictable way.

• In the default version of MAP-Elites, organisms only com-
pete with the organism (the current occupant) in their cell, so
the range of features they compete with is fixed. In Novelty
Search and NS+LC, organisms compete with their nearest
neighbors in the feature space. Especially at the beginning of
the run before the archive fills up, that might mean that or-
ganisms are competing with others that have very different

Mouret and Clune arXiv | 4



features, which is contrary to the spirit of local competition
in the feature space.

Specific differences between MAP-Elites and MOLE include:

• MOLE features one global performance competition (via the
performance objective). Thus, a few high-performing indi-
viduals will dominate this objective, making it hard to rec-
ognize and keep a slightly better performing solution in a
low- or medium-performing region of the space. MAP-Elites
is better at recognizing and keeping any improvement to fit-
ness in any region of the space, no matter how the perfor-
mance of that cell compares to other cells. As an example of
when MOLE might fail to reward an important innovation,
imagine a new solution in a medium-performing, densely
packed region of the space, that is higher-performing than
anything previously found in that cell. This new solution,
which represents the best performance yet found in that
cell, would not be selected for because it is neither high-
performing versus other organisms in the population, nor
would it be kept because it is diverse. Thus, the organism
does not perform well in either of the MOLE objectives, yet
it is precisely what we truly want: the highest performing
individual found so far in that area of the feature space.

• Like Novelty Search, the diversity objective in MOLE has un-
stable temporal dynamics. The population may rush to a rel-
atively unexplored area, fill it up, then rush off to a new rel-
atively unexplored area, and then rush back to the original
area. It does not evenly search for improvements to all areas
of the map simultaneously.

5 Criteria for Measuring the Algorithms

There are many different ways to quantify the quality of illumi-
nation algorithms and optimization algorithms. In this paper, we
evaluate algorithms on the following quantifiable measures:

• Global Performance: For each run, the single highest-
performing solution found by that algorithm anywhere in
the search space divided by the highest performance possi-
ble in that domain. If it is not known what the maximum
theoretical performance is, as is the case for all of our do-
mains, it can be estimated by dividing by the highest perfor-
mance found by any algorithm in any run. This measure is
the traditional, most common way to evaluate optimization
algorithms. One can also measure whether any illumination
algorithm also performs well on this measurement. Both the
ideal optimization algorithm and the ideal illumination al-
gorithm are expected to perform perfectly on this measure.

• Global reliability: For each run, the average across all cells
of the highest-performing solution the algorithm found for
each cell (0 if it did not produce a solution in that cell) di-
vided by the best known performance for that cell as found
by any run of any algorithm. Cells for which no solution was
found by any run of any algorithm are not included in the
calculation (to avoid dividing by zero, and because it may
not be possible to fill such cells and algorithms thus should
not be penalized for not doing so). Section 9.4.1 provides the
formal equation.

This measure assesses how reliable an algorithm is at find-
ing the highest-performing solution for each cell in the map.
It is the most important measure we want an illumination
algorithm to perform well on, and the ideal illumination al-
gorithm would perform perfectly on it. There is no reason
to expect pure optimization algorithms, even ideal ones, to
perform well on this criterion.

• Precision (opt-in reliability): For each run, if (and only if)
a run creates a solution in a cell, the average across all such
cells of the highest performing solution produced for that cell
divided by the highest performing solution any algorithm
found for that cell. Section 9.4.2 provides the formal equa-
tion.

This metric measures a different notion of reliability, which
is the trust we can have that, if an algorithm returns a solu-
tion in a cell, that solution will be high-performing relative to
what is possible for that cell. To anthropomorphize, the al-
gorithm gets to opt-in which cells it wishes to fill and thus
be measured on. The ideal illumination algorithm would
have a perfect score of 1 for this criterion. Optimization al-
gorithms should fare better on this criterion than global reli-
ability, because they will tend to explore only a few areas of
the feature space, but should produce high-performing so-
lutions in many cells in those areas. Note, however, that if
an optimization algorithm starts in a low-performing region
of the feature space and moves to a neighboring region, it is
expected that its relative performance in the cells it started
in will stay low, as optimization algorithms are not asked to
improve performance in those cells. Thus, even ideal opti-
mization algorithms are not expected to perform perfectly
on this criterion on average, although they may do so once
in a while.

• Coverage: Measures how many cells of the feature space a
run of an algorithm is able to fill of the total number that are
possible to fill. The mathematical details are specified in sec-
tion 9.4.3. This measure does not include the performance of
the solutions in the filled cells. The ideal illumination algo-
rithm would score perfectly on this metric. The ideal opti-
mization algorithm is not expected to perform well on this
criterion.

6 Experiments and Results

We evaluated MAP-Elites in three different search spaces: neu-
ral networks, simulated soft robot morphologies, and a real, soft
robotic arm. The neural network search space is interesting be-
cause evaluations are fast, allowing us to draw high-resolution
feature-space maps for a high-dimensional search space. The
experiments with both simulated and real soft robot are inter-
esting because soft robots are important, new design spaces
where traditional design and control methods do not work well,
if at all. Thus, we need advanced search algorithms to find
high-performing designs. The first two search spaces (neu-
ral networks and simulated soft robots) are extremely high-
dimensional, demonstrating the ability of MAP-Elites to cre-
ate low-dimensional feature maps from high-dimensional search
spaces. The third, involving the soft robot arm, involves eval-
uations that are performed directly on a real robot because the
soft properties of the robot are too complex to simulate. This do-
main demonstrates that MAP-Elites is also effective even in a low-
dimensional, challenging, real-world problem.

6.1 Search space 1: neural networks

This problem domain is identical to one from Clune et al. 201332,
which itself is based on the domain from Kashtan and Alon
200544. The following explanation of the domain is adapted from
Clune et al. 201332.

The problem involves a neural network that receives stimuli
from an eight-pixel retina. Patterns shown on the retina’s left and
right halves may each contain an object (i.e. a pattern of interest).
Networks have to answer whether an object is present on both
the left and right sides of the retina32, 44. Each network iteratively
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sees all possible 256 input patterns and answers true (≥ 0) or false
(< 0). Its performance is the percentage of correct answers.

Because it has been shown that minimizing connection costs
promotes the evolution of modularity32, it is interesting to vi-
sualize the relationship between network connection costs and
modularity. To do so, we can create a 2D feature space where the
first feature dimension (x axis) is connection cost (the sum of the
squared length of the connections in a network32), and the sec-
ond feature dimension is network modularity (computed using
an efficient approximation of Newman’s modularity score45). The
resolution of the map is 512× 512; the map is filled by the hierar-
chical version of MAP-Elites with 10,000 evaluations (Methods).

For this domain, we compare MAP-Elites to three other algo-
rithms: (1) a traditional, single-objective evolutionary algorithm
with selection for performance only, which thus does not explic-
itly seek diversity in either feature dimension, (2) novelty search
with local competition (NS+LC) 22, which is described above,
where novelty is measured in the same 2D feature space, and
(3) to random sampling. For these three control experiments, we
record all the candidate solutions evaluated by the algorithm and
then keep the best one found per cell in the feature space (i.e.
the elite performer for each cell), and report and plot these data.
Each treatment is allocated the same number of fitness evalua-
tions (Methods). For each treatment, 20 independent runs are per-
formed, meaning 20 independent replicates that each start with a
different random number seed and thus have different stochastic
events.

The results reveal that MAP-Elites scores significantly higher
(p < 1×10−7) than the three control algorithms on all four criteria
described in section 5: global performance, global reliability, pre-
cision, and coverage (Fig. 3, Top). Qualitatively, the difference in
MAP-Elites vs. the controls is apparent in typical, example maps
produced by each treatment (Fig. 3, Bottom). Overall, MAP-Elites
finds solutions that are more diverse and high-performing than
traditional optimization algorithms (here called the “traditional
EA”), novelty search with local competition, and random sam-
pling.

It is surprising that, even when looking only at the best perfor-
mance overall (global performance), MAP-Elites outperforms the
traditional EA, which focuses explicitly on finding the single best-
performing individual in the search space. That is likely because
the retina problem is deceptive32 and this traditional evolutionary
algorithm has no pressure for diversity, which is known to help
with deception2.

While MAP-Elites significantly outperforms all controls on
both reliability and precision (opt-in reliability), the gap is much
narrower for precision, as is to be expected. In terms of coverage,
random sampling was the second best of the algorithms in our
study. MAP-Elites likely outperforms it in this regard because
mutations to members of a diverse population are more likely
to fill new cells versus randomly generating genomes. That is
especially true if cells are more likely to be filled by mutating a
nearby cell than by randomly sampling from the space of all pos-
sible genotypes. Imagine, for example, that most randomly sam-
pled genotypes are in the center of a map. In that case, it would
be unlikely to produce an organism in a corner by random sam-
pling. In contrast, MAP-Elites could slowly accumulate organ-
isms in cells closer and closer to the corner, making it more likely
to eventually fill that corner. Random sampling likely produces
more coverage than the traditional EA because the latter tends to
allocate new individuals as offspring of the highest-performing
organisms found so far, focusing search narrowly at the expense
of exploring the feature space. It is not clear why random sam-
pling produced more coverage than NS+LC, although this result
needs to be tested across a wider range of parameters before its
robustness is known.

We can also report anecdotally that MAP-Elites performs much
better in this domain than the MOLE algorithm, which was pre-
viously applied to this same domain and feature space32. For this

early draft of the paper we do not yet have data to share because
the MOLE runs in that paper were at a lower resolution; we will
add a fair comparison of MOLE to MAP-Elites in a future draft of
this paper. We can report that the MOLE figures from Clune et al.
2013 required merging data from many (specifically, 30) different
runs of MOLE, meaning that across many MOLE runs we took
the highest-performing network found in each cell. The variance
in these MOLE runs was high, such that many of the runs did not
find high-performing networks in large regions of the space; we
thus were only able to get a good picture of the fitness potential of
each region by taking data from many different runs. That high
variance means that any individual MOLE run did not produce
a reliable, consistent, true picture of the fitness potential of each
region of the space; such a picture only came into view with a
tremendous amount of computation spent on many MOLE runs.
In contrast, each individual MAP-Elites run produces a consistent
picture that looks similar to the result of merging many MOLE
runs. There is still variance between MAP-Elites runs, but it is
much smaller, meaning that each run of the algorithm is more
reliable.

We next investigated the assumption that elites are found by
mutating genomes nearby in the feature space, and found that
this assumption is largely true (Fig. 4, Left). Most organisms de-
scend from nearby organisms, whether close neighbors, nearby
neighbors, or more distant neighbors within the same region of
the space. None of the organisms we randomly sampled were
produced by a parent more than halfway across the feature map.
That said, many high-performing elites do descend, not from
immediate neighbors, but from a high-performing neighbor a
medium distance away. That fact shows that purely local search,
which likely concentrates on one area of the feature space, may
not be the best way to discover high-performing solutions, and
suggests that one reason MAP-Elites is able to find so many high-
performing solutions is because collecting a large reservoir of
diverse, high-performing solutions makes it more likely to find
new, different, high-performing solutions.

Looking at the direct parents of elites suggests that a relatively
local, but overlapping, search is taking place in each region of the
map. However, looking at the entire lineage of four randomly
chosen elites reveals that lineages frequently traverse long paths
through many different regions of the map (Fig. 4, right). These
lineages further underscore the benefit of simultaneously search-
ing for high-performing organisms at each point in the map: do-
ing so may provide stepping stones to high-performing solutions
in a region that may not have been discovered had search been
trying to increase performance by searching only in that region.
This result was replicated in a recent study in a different domain
that investigated this issue with MAP-Elites in more depth37.

6.2 Simulated soft, locomoting robot morphologies

Soft robots are made of soft, deformable materials; they open up
new design spaces, allowing the creation of robots that can per-
form tasks that traditional robots cannot46–49. For example, they
can adapt their shape to their environment, which is useful in re-
stricted spaces like pipelines, caves, and blood arteries. They are
also safer to have around humans50. However, they are harder
to design because their components have many more non-linear
degrees of freedom48, 51.

It has previously been shown that an evolutionary algorithm
with a modern, generative encoding (explained below) can pro-
duce a diversity of soft robots morphologies that move in dif-
ferent ways8. However, the diversity of morphologies shown in
that paper and its accompanying video (https://youtu.be/
z9ptOeByLA4) came from different runs of evolution. Within each
run, most of the morphologies were similar. As is typical with
evolutionary algorithms, in each run the search found a local op-
timum and became stuck on it, spending most of the time explor-
ing the similar designs on that peak.
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(e) MAP-Elites

Fig. 3. MAP-Elites produces significantly higher-performing and more diverse solutions than control algorithms. Top: MAP-Elites significantly out-
performs controls on global performance (finding the single highest-performing solution), reliability (average performance across all fillable cells),
precision (average performance only of cells filled by the algorithm), and coverage (the number of cells filled). All of the metrics are normalized.
Section 5 explains these metrics in more detail. In the box plot for each metric, the black line shows the median. Bottom: Example maps produced
by a single run (the first one) of each treatment. As described in Clune et al. 201332, the x-axis is connection cost, the y-axis is modularity, and heat
map colors indicate normalized performance. These maps show that MAP-Elites illuminates more of the feature space, revealing the fitness potential
of each area.

The morphologies evolved in Cheney et al.8 also rarely in-
cluded one of the four materials available, a stiff (dark blue) ma-
terial analogous to bone. The authors (one of which is the last
author on this paper) tried many different parameters and envi-
ronmental challenges to encourage the optimization algorithm to
use more of this material, but it rarely did. One could, of course,
explicitly include a term in the fitness function to reward the in-
clusion of this material, but that may cause evolution to over in-
vest in it, and it is hard to know ahead of time how much material
to encourage the inclusion of to produce interesting, functional
designs. The ideal would be to see the highest-performing crea-
ture at each level of bone use, and thus learn how the use of bone
affects both fitness and morphology design. That is exactly what
MAP-Elites is designed for. The authors of Cheney et al. 2013

were also interested in morphologies of different sizes, which can
also be added as a different dimension of variation to be explored
by MAP-Elites.

Here we test whether MAP-Elites can address the issues raised
in the two previous paragraphs. Specifically, we test (1) whether
MAP-Elites can produce a large diversity of morphologies within
one run and (2) whether it can produce high-performing mor-
phologies for a range of levels of bone use and body size, and
combinations thereof.

We adopt the same domain as Cheney et al. 20138 by evolving
multi-material, soft robots in the Voxcad simulator52. Robots are
specified in a space of 10× 10× 10 voxels, where each voxel is ei-
ther empty or filled with one of four kinds of material: bone (dark
blue, stiff), soft support tissue (light blue, deformable), muscles
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Fig. 4. Most elites are found by mutating a parent genome that was nearby in the feature space, but the entire lineages of example elites reveals
search paths that traverse large distances through the feature space. The data in these plots are from the neural network domain. As in Fig. 3
and Fig. 3 of Clune et al.32, the x-axis is connection cost and the y-axis is modularity. Left: For a random subset of elites from the neural network
domain, we draw an arrow pointing at that elite that starts in the location of the parent that produced that elite. If there were no correlation between the
location of an elite and its parent, there would be far more long arrows. Most elites are produced from parents within a range of distances in a nearby
region (approximately 0.2 or less). The color of the beginning of each arrow denotes the performance of the parent, and the color toward the tip of
the arrow denotes the performance of the elite. Note that many high-performing elites descend from other high-performing elites, but often not from
direct neighboring cells. These data suggest that collecting high-performing elites in many different locations helps discover high-performing elites in
new locations, which is likely why MAP-Elites is able to find so many different, high-performing solutions. Right: Example lineages tracing all of the
descendants of four randomly selected final elites. For each of the four elites, a dashed line of a different color (green, orange, blue, or purple) starts at
its randomly generated, generation 0 ancestor (red circle), which interestingly is the same for all four elites. Note that the colors and paths are harder to
differentiate when the different lineages overlap. Each dashed line passes through the location in the feature space of each ancestor along the lineage
of that elite and terminates at that elite’s location in the feature space. The color of arrows along each lineage denote the performance of the parent
that was located at the tail end of the arrow and produced the offspring at arrowhead. The main conclusion is that the stepping stones that lead to a
high-performing elite at a particular location in the feature space are distributed throughout the feature space, suggesting that MAP-Elites’ strategy of
simultaneously rewarding high-performing organisms at each point in the space may help discover high-performing solutions in very different regions.

that contract and expand in phase (green, cyclical volumetric ac-
tuation of 20%), and muscles that contract and expand in opposite
phase (red, counter-cyclical volumetric actuation of 20%).

The material of each voxel is encoded with a compositional
pattern-producing network (CPPN)53, an encoding based on de-
velopmental biology that causes robot phenotypes to be more
regular and high-performing7, 8, 11, 12, 53–57. CPPNs are similar to
neural networks, but with evolvable activation functions (in this
paper, the functions can be sine, sigmoid, Gaussian, and linear)
that allow the network to create geometric patterns in the pheno-
types they encode. Because these activation functions are regu-
lar mathematical functions, the phenotypes produced by CPPNs
tend to be regular (e.g. a Gaussian function can create symme-
try and a sine function can create repetition). CPPN networks are
genomes that are run iteratively for each voxel in the workspace
to determine whether that voxel is empty or full and, if full, which
type of material is present. Specifically, for each voxel, the Carte-
sian (x, y, and z) coordinates of the voxel and its distance from the
center (d) are provided as inputs to the CPPN, and one CPPN out-
put specifies whether a voxel is empty. If the voxel is not empty,
the maximum value of an additional four outputs (one per ma-
terial type) determines the type of material for that voxel. This
method of separating the presence of a phenotypic component
and its parameters into separate CPPN outputs has been shown
to improve performance58, 59. If there are multiple disconnected
voxel patches, only the most central patch is considered as the
robot morphology. A lengthier explanation of CPPNs and how
they specify the voxels of the soft robots in this domain can be
found in Cheney et al. 20138, from which some text in this de-
scription of methods was derived.

While the soft robot morphologies are indirectly encoded by
CPPNs, the CPPN networks themselves are directly encoded and
evolved according to the principles of the NEAT algorithm20, as is
customary for CPPNs7, 8, 11, 12, 53–56. Here, the NEAT principles are

implemented in the Sferesv2
60 evolutionary platform, which has

some departures from the original NEAT algorithm. Specifically,
our direct encoding does not include crossover or genetic diver-
sity via speciation. See Mouret and Doncieux 201225 for a more
detailed description of the Sferes version of NEAT.

Performance for these soft robots is defined as the distance cov-
ered in 10 simulated seconds. The first (x-axis) dimension of the
feature space is the percentage of voxels that are the stiff bone
(dark blue) material. The second feature-space dimension is the
percentage of voxels filled. The resolution of the map is 128× 128.
We launched 10 runs for each treatment, but some had not com-
pleted in time to be included in this draft of the paper. We thus
include data only from runs that finished in our plots and statisti-
cal analyses (7 for the EA treatment, 5 for the EA+Diversity treat-
ment, and 8 for the MAP-Elites treatment). In later drafts of this
paper we will report on a complete set of finished experiments,
which will also have a larger and consistent number of runs per
treatment.

Our two control algorithms are implemented in NSGA-II and
have been used in previous studies 25, 57: (1) a single-objective evo-
lutionary algorithm optimizing performance only, which we refer
to as the “traditional EA” or just “EA” for short, and (2) a two-
objective evolutionary algorithm that optimizes performance and
diversity, which we call EA+D. Diversity is measured for each
individual as the average distance in the feature space to every
other individual. Both control treatments performed the same
number of evaluations as MAP-Elites.

In this domain, MAP-Elites does a far better job than the con-
trols of revealing the fitness potential of each area of the fea-
ture space, which is the goal of illumination algorithms (Fig. 5).
It has significantly higher reliability and coverage (p < 0.002),
and example maps highlight the tremendous difference in terms
of exploring the feature space between the MAP-Elites illumina-
tion algorithm and the two control optimization algorithms, even
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though one has a diversity pressure.
In terms of global performance, while MAP-Elites has a higher

median value, there is no significant difference between it and the
other treatments (p > 0.05). If one cared only about finding a sin-
gle, high-performing solution, then there would thus be no sta-
tistical difference between MAP-Elites and the two optimization
algorithm controls. However, if one wanted a variety of different,
high-performing solutions, MAP-Elites produces far more.

MAP-Elites is significantly worse at precision than the two con-
trol algorithms (p < 0.01). This result is likely explained by the
fact that the control algorithms allocate all of their evaluations to
very few cells, and thus find good solutions for those cells. In
contrast, MAP-Elites has to distribute its evaluations across or-
ders of magnitude more cells, making it hard to always find a
high-performing solution in each cell. Note that MAP-Elites is
usually competing against itself in this regard: because there is so
little exploration by the control algorithms, they rarely produce
the highest-performing solution across all runs of all treatments
for a particular cell. Those instead tend to come from MAP-Elites.
Thus, most low precision scores for MAP-Elites come when one
run of MAP-Elites does not find as high-performing a solution in
a cell as another run of MAP-Elites. We hypothesize that if each
run of MAP-Elites were given more evaluations (i.e. run longer),
it would catch up to, if not surpass, the controls in precision. That
is a beneficial, and rare, property for an evolutionary algorithm
to have: that it can benefit from additional computation because
it does not get stuck on local optima and cease to innovate.

There is variance in the maps produced by independent runs
of MAP-Elites. That reflects the fact that it is a stochastic search
algorithm with historical contingency. The perfect illumination
algorithm would always find the highest-performing solution at
each point in the map, and thus have no between-run variance.
However, while there are differences between the maps of differ-
ent runs, they largely reveal the same overall pattern (Figs. 5 and
6).

By looking at pictures and videos of the elites in the final map
of individual runs, we observed that MAP-Elites does indeed pro-
duce smooth changes across the chosen dimensions of variation
(Fig. 6). Consider the column of examples from the right side
of Fig. 6, Top, where the percent of voxels filled is roughly 75%.
Starting at the bottom, with around 10% bone, there is a design
with a red muscle hind leg, green muscle front leg, and no bone
in the back connecting these legs (instead there is light blue soft
tissue). Sweeping up in that column, the percentage of bone is in-
creased, predominantly in the back connecting the legs, and the
soft tissue and amount of muscle in each leg is reduced to gradu-
ally increase the amount of dark blue bone. These same creatures
visualized from the side (rightmost column of images in Fig. 6,
Top) shows that the basic biped locomotion pattern is preserved
despite these changes, going from (in the bottom) a fast, flexible
biped that resembles a rabbit, to a slow biped creature that re-
sembles a turtle with a massive, heavy shell. MAP-Elites is thus
achieving its goal of providing the requested variation and pro-
ducing a high-performing solution of each type. True to the mo-
tivation of illumination algorithms 22, 32, finding the fastest, heavy
shelled turtle does not preclude finding the fastest rabbit: in this
case, they both can win the race.

From these maps, one can also learn about the fitness potential
of different regions of the feature space. For example, the previ-
ous example showed that, holding the percentage of voxels filled
at 75%, the more bone in a creature, the slower it is. The full map
reveals that is generally true for almost all body sizes. The maps
also reveal an interesting, anomalous, long, skinny island of high
performance in the column where the percentage of voxels filled
is roughly 7%. It turns out that column contains a variety of dif-
ferent solutions that are all one voxel wide. Some quirk of the
simulator allows these vertical sheet organisms to perform better
than creatures that are more than one voxel wide. It might take
hundreds or thousands of runs with traditional optimization al-

gorithms to learn of this high-performing region of the space, but
with MAP-Elites it jumps out visually in each map. Even within
this island, we can still see smooth gradients in the desired di-
mensions of variation, starting with sheets made entirely of mus-
cle and transitioning to sheets made mostly of bone. Space con-
straints prevent showing all of the final elites, but we consistently
observed that one can start in nearly any location of the map and
smoothly vary the designs found there in any direction. A second
example map is provided (Fig. 6, Bottom) to show that these find-
ings are not limited to one run of MAP-Elites, but are consistently
found in each map: while the actual design themes are differ-
ent from map to map, the fact that MAP-Elites provides smooth
changes in these themes according to the desired dimensions of
variations is consistent.

6.3 Real soft robot arm

While the previous section featured simulated soft robots, in this
section we test whether MAP-Elites can help find controllers for
a real, physical, soft robot arm. The physics of this arm are quite
complicated and difficult to simulate, making it necessary to per-
form all evaluations on the real robot. That limits the number
of evaluations that can be performed, requiring a small feature
space. This domain thus demonstrates that MAP-Elites is effec-
tive even on a challenging, real-world problem with expensive
evaluations and a small feature space.

We built a soft robotic arm (Fig. 7) by connecting 3 actuated
joints (dynamixel AX-18 servos) with highly compliant tubes
(made of flexible, washing machine drain pipes). An external
camera tracked a red point at the end of the arm. A solution is
a set of 3 numbers specifying the angle of each of the 3 joints.
Specifically, each servo can move between -150 and +150 steps
(out of the possible range for AX-18s of -512 and + 512 steps,
which covers all 360 degrees of rotation). When the arm is fully
extended and horizontal, the first servo from the base is at posi-
tion 150, and the other two are at position 0.

The feature space is one-dimensional: the x-value of the red
circle at the end of the arm (in the coordinates of the image from
the perspective of the camera). It is discretized into 64 cells. The
performance function is to maximize the y-value of the end of the
arm. The experiments thus attempt to discover the boundaries of
the workspace of the robot, which is hard to compute analytically
with a flexible robot.

We evaluated MAP-Elites and two controls: random sampling
and a traditional grid search algorithm. In the random sampling
control, each solution is determined by randomly choosing an
angle for each joint in the allowable range. The grid search al-
gorithm specifies, for each joint, eight points evenly distributed
within the range of allowable angles for that joint, and then tests
all combinations of the possible values for each joint. We repli-
cated each experiment 10 times, except for grid search, which is
a deterministic algorithm and thus need only be run once. Each
MAP-Elites and random sampling experiment were allocated 640
evaluations; the grid search required 729 evaluations (9× 9× 9).

The results show that all three treatments find approximately
the correct boundary for high values of x (∼600 to ∼800). Our ob-
servations of the robot revealed why this is a relatively easy task:
these points can be reached by setting the angles of the first and
second joints (counting from the base) to put the third joint on the
ground, and only changing the angle of this third joint. Because
of the flexibility of the links, many different combinations of an-
gles for the first and second joint result in having the wrist on the
table.

Intermediate values of x (approximately 400-600) represent
harder problems, because in this range there are fewer joint angle
values that combine to reach near the maximum height. MAP-
Elites outperforms both grid search and random sampling in this
region. Even when they are at their best, MAP-Elites tends to out-
perform these algorithms. For each control algorithm, there are
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(c) MAP-Elites

Fig. 5. MAP-Elites does much better than a traditional evolutionary algorithm (EA) and an EA with diversity (EA+D) at finding high-performing solutions
throughout a feature space. Data are from the simulated, soft robot morphologies problem domain. Top: MAP-Elites significantly outperforms the
controls in global reliability and coverage (top, p < 0.002). Bottom: Qualitatively, example maps produced by two independent runs demonstrate
MAP-Elites’ ability to both fill cells (coverage) and reveal the fitness potential of different areas of the feature space. Note the difference in feature-space
exploration between the MAP-Elites illumination algorithm and the optimization algorithms.

values in this region were their performance is especially poor.

Lower values of x represent even harder challenges. Grid
search found only a few points below 500, and thus provides a
less-informative (lower-resolution) picture than MAP-Elites does.
To have good coverage of this low-x-value region (200-500), we
would need to significantly increase the resolution (discretiza-
tion) of grid search, which would require exponentially more
evaluations. The rarity of high-performing solutions in this part
of the feature space results in even lower performance for ran-
dom sampling. MAP-Elites, in contrast, provides many high-
performing solutions for all values of x. These data are still
too preliminary to provide reliable statistical results, but we plot
them to show what we know to date about MAP-Elites and the
controls in this problem domain.

7 Discussion and Conclusion

This paper introduces the term “illumination algorithms” for the
class of algorithms that try to find the highest-performing solu-
tion at each point in a user-defined feature space. It also intro-
duces a new illumination algorithm called MAP-Elites, which is
simpler to implement and understand than previous illumination
algorithms, namely Novelty Search + Local Competition22 and
MOLE32. Finally, the paper presents preliminary evidence show-
ing that MAP-Elites tends to perform significantly better than
control algorithms, either illumination algorithms or optimiza-
tion algorithms, on three different problem domains. Because of
the preliminary nature of the experimental data, we do not wish
for readers at this point to conclude anything for certain yet about
MAP-Elites’ empirical performance, but in many cases the data
suggest that MAP-Elites is a promising new illumination algo-
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rithm that outperforms previous ones.
Perhaps the best way to understand the benefits of illumination

algorithms versus optimization algorithms is to view the feature
maps from the simulated soft robot domain (Fig. 5). Optimiza-
tion algorithms may return a high performing solution, but they
do not teach us about how key features of a search space relate
to performance. MAP-Elites and other illumination algorithms,
in contrast, map the entire feature space to inform users about
what is possible and the various tradeoffs between features and
performance. Such phenotype-fitness maps, as they are known
in biology38, are interesting in their own right, and can also be
put to practical use. For example, a recent paper showed that the
map can provide a repertoire of different, high-performing solu-
tion that can initiate search for new behaviors in case an original
behavior no longer works (e.g. if a robot becomes damaged or
finds itself in a new environment)6.

MAP-Elites is also a powerful optimization algorithm, putting
aside its additional benefits regarding illuminating feature land-
scapes. It significantly outperformed or matched control algo-
rithms according to the narrow question of which algorithm
found the single, highest-performing solution in each run. As dis-
cussed above, that could be because simultaneously searching for
a multitude of different, related stepping stones may be a much
better way to reach any individual stepping stone than directly
searching only for a solution to that stepping stone37.

For a similar reason, illumination algorithms like MAP-Elites
may help evolutionary algorithms move closer to the open-ended
evolution seen in the natural world, which produced a tremen-
dous diversity of organisms (within one run). In nature, there
are a multitude of different niches, and a species being good in
one niche does not preclude a different species from being good
in another: i.e., that bears are stronger does not crowd out the
ability for butterflies to flourish in their own way22. By simul-
taneously rewarding a multitude of different types of creatures,
MAP-Elites captures some of that diversity-creating force of na-
ture. One drawback to MAP-Elites, however, is that it does not
allow the addition of new types of cells over time that did not
exist in the original feature space. It thus, by definition, cannot
exhibit open-ended evolution. Nature, in contrast, creates new
niches while filling others (e.g. beavers create new types of en-
vironments that other species can specialize on). Future work is
required to explore how to create illumination algorithms that do
not just reveal the fitness potential of a predefined feature space,
but that report the highest-performing solutions at each point in
an ever expanding feature space that is intelligently enlarged over
time.

In conclusion, illumination algorithms, which find the highest-
performing solution at each point in a user-defined feature space,
are valuable new tools to help us learn about complex search
spaces. They illuminate the fitness potential of different combina-
tions of features of interest, and they can also serve as powerful
optimization algorithms. MAP-Elites represents a simple, intu-
itive, new, promising illumination algorithm that can serve these
goals. It also captures some of the diversity generating power of
nature because it simultaneously rewards the highest-performing
solutions in a multitude of different niches.

8 Alternate variants of MAP-Elites

The following are alternate ways to implement MAP-Elites. Fu-
ture research is necessary to see whether, and on which types of
problems, any of these variants is consistently better than the sim-
ple, default version of MAP-Elites used in this paper.

Possible variants of this algorithm include:

• Storing more than one genome per feature cell to promote
diversity

• Biasing the choice of which cells produce offspring, such as

biasing towards cells who have empty adjacent cells, cells
near low-performing areas, cells near high-performing areas,
etc. In preliminary experiments, such biases did not perform
better than the default MAP-Elites.

• Including crossover. Crossover may be especially effective
when restricted to occurring between organisms nearby in
the feature space. Doing so allows different competing con-
ventions in the population (e.g. tall, skinny organisms being
crossed over only with other tall, skinny organisms, and the
same for short, fat organisms). One could make crossover
only occur within a certain radius of an individual or as
a probabilistic function of the distance between organisms
(leading to overlapping crossover zones), or only within cer-
tain regions (more akin to an island model). Note that even
with geographically restricted crossover, offspring could still
end up in different areas of the feature space than their par-
ents (either due to the effects of mutation or crossover).

9 Methods

9.1 Statistics

The statistical test for all p values is a two-tailed Mann-Whitney
U test.

9.2 Hierarchical, Parallelized MAP-Elites

To first encourage a course-grained search, and then allow for in-
creased granularity, we created a hierarchical version of MAP-
Elites. It starts with larger cells and then subdivides those cells
over time. In this hierarchical version of MAP-Elites, the sizes
of cells shrink during search, and thus the range of differences
in features that an organism competes with changes, although it
is bounded to within a cell: competition is thus still restricted to
solutions with similar features.

To make MAP-Elites run faster on a supercomputer containing
many networked computers, we created a batched, parallelized
version of hierarchical MAP-Elites. It farms out batches of eval-
uations to slave nodes and receives performance scores and be-
havioral descriptors back from these nodes. These optimizations
should not have any qualitative effect on the overall performance
of the algorithm. All of the experiments in this paper were con-
ducted with this hierarchical, paralleled version of MAP-Elites.

9.3 Experimental parameters

Retina experiments. 20 replicates for each treatment.
The MAP-Elites parameters are as follows:

• starting size of the map: 16 × 16

• final size of the map: 512 × 512

• batch size: 2,000

• number of iterations: 10,000

• initial batch: 20,000

• resolution change program (4 changes):

– iteration 0: 64 × 64

– iteration 1250: 128 × 128

– iteration 2500: 256 × 256

– iteration 5000: 512 × 512

• feature 1: connection cost (see 32)

• feature 2: network modularity (see 32)

• performance: percent answers correct on retina problem32
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Soft robots experiments. The MAP-Elites parameters are as
follows:

• feature 1: percentage of bones

• feature 2: percentage of voxels filled

• performance: covered distance

• starting resolution: 64 × 64

• final resolution: 128 × 128

• batch size: 1024

• initial batch: 4096

• iterations: 1400

Soft physical arm. 10 replicates for each treatment except for
the grid search, which is deterministic and thus requires only one
run.

For the grid search:

• total number of evaluations: 512

• discretization of the parameters: 8 steps

For the random sampling:

• total number of evaluations: 420

• we report the best solution found in each of the 64 cells used
by MAP-Elites

For MAP-Elites:

• total number of evaluations: 420

• feature 1: x coordinate

• fitness: maximize height (y coordinate)

• starting resolution: 64

• final resolution: 64

• batch size: 10

• initial batch: 120

• iterations: 30

9.4 Quantifiable measurements of algorithm quality

The notation in this section assumes a two-dimensional feature
map (x and y), but can be generalized to any number of dimen-
sions.

9.4.1 Global reliability

Measures how close the highest performing solution found by the
algorithm for each cell in the map is to the highest possible per-
formance for that cell, averaged over all cells in the map. Because
we do not know the highest performance possible for each cell,
we approximate it by setting it equal to the highest performance
found for that cell by any run of any algorithm. Cells that have
never been filled by any algorithm are ignored. If an algorithm in
a run does not produce a solution in a cell, the performance for
that algorithm for that cell is set to 0 because the algorithm found
zero percent of that cell’s potential.

We first define Mx,y as the best solution found across all runs of
all treatments at coordinates x, y. IfM = m1, · · · ,mk is a vector
containing the final map from every run of every treatment, then

Mx,y = max
i∈[1,··· ,k]

mi(x, y)

We then define the global reliability G(m) of a map m as follows:

G(m) =
1

n(M)

∑

x,y

m(x, y)

M(x, y)

where x, y ∈ {[xmin, · · · , xmax; ymin, · · · , ymax]}, and n(M) is
the number of non-zero entries in M (i.e. the number of unique
cells that were filled by any run from any treatment).

9.4.2 Precision (opt-in reliability)

Same as global reliability, but for each run, the normalized perfor-
mance is averaged only for the cells that were filled by that algo-
rithm in that run. This measure addresses the following question:
when a cell is filled, how high-performing is the solution relative
to what is possible for that cell?

Mathematically, the opt-in reliability, or precision, P (m) of a
map m is:

P (m) =
1

n(m)

∑

x,y

m(x, y)

M(x, y)

for x, y ∈ {[xmin, · · · , xmax; ymin, · · · , ymax]|filledm(x, y) = 1},
where filledm(x, y) is a binary matrix that has a 1 in an (x, y) cell
if the algorithm produced a solution in that cell and 0 otherwise,
and where n(M) is the number of non-zero entries in M (i.e. the
number of unique cells that were filled by any run from any treat-
ment).

9.4.3 Coverage

For a map m produced by one run of one algorithm, we count
the number of non-empty (i.e. filled) cells in that map and divide
by the total number of cells that theoretically could be filled given
the domain (i.e. for which a genome exists in the search space that
maps to that feature-space cell). Unfortunately, we do not know
this total number of cells that theoretically could be filled for the
experimental domains in this paper. We approximate this number
by counting the number of unique cells that have been filled by
any run from any treatment. Using the notation of the previous
two sections, this number is n(FM ), where FM = filledM .
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Fig. 6. Example maps annotated with example organisms from different areas of the feature space. Within a map, MAP-Elites smoothly adapts
a design theme along the desired dimensions of variation. Between maps, one can see that there is some variation between maps, both in the
performance discovered at specific points, and in the types of solutions discovered. That said, in general each map generally paints the same overall
picture of the performance capabilities of each region of the feature space. Note the different scale of the bottom color map. Additional example maps
are shown in Fig. 5. Because videos do a better job of revealing the similarity and differences in these organisms, both in their body and their behavior,
a future draft of the paper will include a video of these individuals.
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Fig. 7. On a real, soft robot, MAP-Elites consistently finds high-performing solutions (higher y values) across the feature space (different x values)
than controls.
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