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Abstract. The illumination chromaticity estimation based on the dichromatic 
reflection model has not been made practicable, since the method needs image 
segmentation beforehand. However, its two-dimensional model is sufficiently 
robust, when it is combined with the least square method. The proposed algo-
rithm executes the color space division instead of the segmentation. The origi-
nal image is divided into small color regions, each of which corresponds to one 
of color sub-spaces. Though this division is imperfect image segmentation, the 
illumination chromaticity estimation based on the chromaticity distribution in 
the color regions is possible. Experimental result shows that this method is also 
applicable to images of apparently matt surfaces. 

Keywords: Illumination color estimation, Dichromatic reflection model, Color 
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1   Introduction 

Illumination color/chromaticity estimation from an image is one of the essential prob-
lems in color image processing. Computational color constancy algorithms based on 
the estimation have been proposed for identification of objects under various illumi-
nations. If illumination color is known, object identification by color information 
becomes easier. In digital cameras, ‘white balancing’ is an important function. It es-
timates the illumination color/chromaticity of the scene in a photographed image; then 
some other digital process compensates the estimated color shift of the image. Color 
image simulation under other illumination would also be possible if the illumination 
color can be estimated. 

Conventionally, the “Maximum of RGB (MOR)” algorithm or the “Gray World 
Assumption (GWA)” algorithm has been used for the illumination estimation in prac-
tice. They work reasonably well in normal cases. However, MOR fails if the image 
does not contain any ‘white’ object or objects with the maximum RGB values. It is 
self-evident that the GWA does not hold in many situations. For example, the average 
color of an image of green leaves is not gray. 

Recently, many algorithms have been proposed from the view point of color con-
stancy. The “Color by Correlation” algorithm [1] compares the chromaticity gamut of 
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an input image with the illumination color gamut which is filled by possible object 
colors under the illumination. If any color of the image is outside the illumination 
color gamut, the image is judged not to have been taken under the illumination. Pos-
sible illuminations are estimated in that way. 

The pattern recognition approach [2][3] is more straightforward, though the infor-
mation used is similar to that in the color by correlation algorithm. A chromaticity 
diagram is divided into many tiny regions. The chromaticity distribution of an image 
is described as an occupation map of the regions. Considering the maps as feature 
vectors, the pattern learning process is carried out, using many images. After the 
learning process, arbitrary images can be classified. Chromaticity estimation perform-
ance is reported to be good. The drawback of these algorithms is that the image to be 
classified must have many colors. As an image with a small number of colors occu-
pies a small area on the chromaticity diagram, its chromaticity distribution could be 
from under various illuminations; that makes it difficult to limit the range of possible 
illumination. In addition, the pattern recognition approach needs many images for 
learning. 

This paper deals with the illumination chromaticity estimation method based on the 
“Dichromatic Reflection Model,” with which the estimation is possible, in principle, 
even if the image has only two colors. However, it has been considered impractical, 
since the image must be segmented before the estimation process. This paper shows 
that the method is practical even if the image segmentation is imperfect. 

2   Illumination Color Estimation Based on the Dichromatic 
Reflection Model 

Shafer proposed the “Dichromatic Reflection Model (DRM)” for computer vision [4]. 
The model is simply described by Eq.(1): 
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where ( )t
ooo BGR ,, is the color of the diffuse reflection (i.e. the object color), and 

( )t
www BGR ,,  is the color of the specular reflection (i.e. the illumination color). It is 

known that Eq. (1) holds for almost all non-metal objects [5]. The model means that 

the observed color values ( )tBGR ,,  of an object with one homogeneous color are 

distributed on a plane in the RGB three-dimensional color space.  

When there is another object with another homogeneous color ( )t
ooo BGR ',','  in 

the image, observed color values are distributed on another plane. As the illumination 
color is common for all objects, two planes intersect at the illumination color vector 
(Fig.1). Hence the illumination color is estimated as follows. 

(1) Calculate the plane on which the color distribution of each object lies. 
(2) Estimate the line where the planes intersect as the illumination color vector 

[6][7].  
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Fig. 1. Illumination estimation based on the 
Dichromatic Reflection Model 

Fig. 2. Chromaticity of dichromatically re-
flected light lies on straight lines 

This algorithm needs only two colors in an image for the estimation. However, this 
algorithm has not yet come into use, since each color object (or color region on an 
object) must be segmented before the distribution plane is calculated. 

This three-dimensional DRM can be reduced to the two-dimensional model [8]. In 
color science, it is known that the chromaticity of the mixture of two colored lights is 
on the straight line that connects the chromaticities of the two colors on the chroma-

ticity diagram. The chromaticity ( )tyx,  is calculated by Eq.(2), if the tri-stimulus 

values are CIE-XYZ values. It is also true for ( )tgr, , if the tri-stimulus values are 

RGB values. 
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This means that ( )tyx,  is on the straight line that connects the object chromaticity 

( )t
oo yx ,  and the illumination chromaticity ( )t

ww yx , . If there are many objects, many 

lines that are oriented toward the illumination chromaticity should lie on the chroma-
ticity diagram (Fig.2). Detecting the intersection of these lines, we can obtain the 
illumination chromaticity. 

The illumination chromaticity estimation using this two-dimensional model has 
been studied. Lehmann and Palm [9] applied the model to color lines around specular 
highlights in an image. This algorithm needs specular highlights in the image. Finlay-
son and Schaefer [10] discussed the model to estimate the chromaticity of Planckian 
radiator-like illuminations, assuming the segmentation is perfect. Ebner and 
Herrmann [11] applied the model to image regions which have been segmented, and 
whose color saturation is high. 

However, though it is necessary for the three-dimensional model to perfectly seg-
ment the image and precisely detect the plane, it is expected for the simplified two-
dimensional model that the illumination chromaticity estimation by the line detection 
could be made robust so that the image segmentation might not have to be perfect. 

In practical cases, the chromaticity of an object (or a color region) does not exactly 
lie on a line because of the image noise. For real applications, the following procedure 
is more reasonable. 
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(1) Apply the principal component analysis (PCA) to the chromaticity value 
distribution of the pixels in each color region. Two eigenvalues σ1 and σ2 are 
obtained.  

(2) If the relation σ1>>σ2 holds, we assume that the chromaticity values lie on 
the line which is in the direction of the first principal component. 

(3) As the lines are not expected to cross each other at a point in real cases, the 
chromaticity point with the smallest squared distances from the lines is  
estimated to be the illumination chromaticity. 

The distance di between the i-th line (Eq.(3)) and the point (x,y) is expressed by 
Eq.(4). 
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The least square method, in which ∑=
i

iidwyxF 2),( is minimized, definitely deter-

mines the illumination chromaticity ( )t
ww yx , , where wi is a weight, which may be the 

area of the color region, since statistics would be more reliable if the region is larger. 
The minimization is carried out by solving the simultaneous equations (Eq.(5)). 
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Now that the illumination chromaticity estimation is formulated on the least squares 
method, the estimation can be made robust using many color regions, even if each 
distribution line estimation result is not so reliable because of the image noise. 

3   Color Space Division for Imperfect Segmentation 

The reason why the illumination color estimation based on DRM has not been devel-
oped might be the impression that the color distribution plane can be estimated only 
when a color region contains a wide-range color variation from the diffuse reflection 
to the specular reflection. For obtaining such a color region, a very powerful image 
segmentation technique would be necessary. However, in the previous section, the 
problem is reduced to the distribution line estimation in the two-dimensional chroma-
ticity space. It is easier to detect a small chromaticity shift, even if the color region is 
small. For this purpose, we try to use a color image segmentation algorithm that seg-
ments an image based on the color information. The algorithm might divide a large 
color region that contains a wide-range color variation into several small sub-regions, 
each of which containing only a part of the wide color variation. However, it is  
sufficient if the sub-region contains a part of chromaticity shift from the object  

chromaticity ( )t
oo yx ,  to the illumination chromaticity ( )t

ww yx , . 
The color space division described in this section is a technique to be used to im-

perfectly segment an image. This technique was originally developed to represent  
a color image with a small number of colors. Using the algorithm, a full color  
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(24-bit/pixel) image could be represented by 256 colors without visual degradation 
[12]. In this application, the algorithm is adjusted so that normal images are  
represented by about 20~50 colors. 

The color space division is carried out in the following steps. 

(1) Convert the color space from RGB to CIELAB, and consider the whole  
three-dimensional space as one color sub-space. 

(2) Compute the pixel color distribution in each color sub-space, and apply  
‘principal component analysis (PCA)’. 

(3) Divide the sub-space by a plane that is perpendicular to the first principal axis, 
so that the new two sub-spaces satisfy the criterion for the discriminant analysis 
[13]. This division is not carried out when either of the following two  
conditions is satisfied. 

(a) The color difference between the mean colors of the pixels in the two sub-
spaces is smaller than a predetermined threshold (=th). th is determined so 
that all colors within the final sub-space may be considered to have the 
same color. 

(b) The number of pixels in one of the two sub-spaces is smaller than a prede-
termined threshold (=n). This prevents a sub-space being generated by the 
image noise.  

(4) If there is no sub-space that can be divided, finish the division. Otherwise, 
return to step (2). 

The division takes place in the three-dimensional L*-a*-b* color space, and every 
pixel is classified to one of the sub-spaces. For the explanation purpose, this division 
is illustrated in the two-dimensional a*-b* color space in Fig.3. A color distribution is 
illustrated as a contour map.  

For the pixel colors in the whole space S0, the principal axis PC0 is calculated. The 
division plane DP0, which is perpendicular to PC0, divides S0 to generate sub-spaces 
S1 and S2. This procedure is repeated for the sub-spaces, and sub-spaces S11 and S12 
are generated from S1 based on the principal axis PC1 and the division plane DP1. S21 
and S22 are generated from S2 by the same procedure. 
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Fig. 3. Color space division Fig. 4. Color region image. Each region corre-
sponds to the color sub-space. 
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Though this is the color space division procedure, the color image is also divided 
into color regions, each of which corresponds to a sub-space (Fig.4). However, multi-
ple color regions in an image may correspond to a single color sub-space. To make 
sure that the chromaticity distribution of one color region is analyzed, the connected 
component labeling process is applied to the color region image. By this process, 
many connected color regions are generated. For these color regions, chromaticity 
distribution is analyzed. 

4   Experiments 

4.1   Illumination Chromaticity Estimation 

As the first experiment, a scene that contains typical dichromatic reflection objects 
was processed (Fig.5). Colorful plastic objects are illuminated by fluorescent lamps in 
a lighting booth (Gretag-Macbeth Judge II®). Figure 5(a) shows the scene under the 
illuminant D65 simulator (Condition 1). The image was taken by a consumer use 

 

    
                                 (a)                                                                 (b) 

             
                                     (c)                                                        (d) 

Fig. 5. Experiment on an image with dichromatic objects: (a) Input image under Condition 1. 
(b) Color region image (54 colors). (c) Chromaticity distribution of reliable pixels. (d) Illumina-
tion chromaticity estimation. 
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digital camera Fujifilm FinePix F31fd. The auto white balancing function was off, 
and the color balance was set to ‘Daylight’. Auto exposure control function was used, 
and specular highlights are included in this image. Image size was reduced to 
640×480 pixels. Obtained RGB pixel values are dealt with as sRGB values.  

The color space division procedure requires two parameters as described in 3. The 
parameters th and n were set to 10 and 256, respectively. For this image, the whole 
color space was divided into 54 subspaces. After the connected component labeling, 
the original image was divided into 7297 color regions. The color region image is 
shown in Fig. 5(b). Large color region with wide color variation (e.g. the red color 
region in the bell part of the toy trumpet) is divided into four or five color regions, 
while some color region (e.g. the pink spoon) is united with a neighboring region. 

The chromaticity estimation was carried out with reliable pixels in a color region 
with ‘good’ characteristics. Four threshold values were defined. Chromaticity calcula-
tion is reliable only for the pixels that are neither very dark nor saturated. Hence, 
chromaticity was calculated for the pixels that satisfies the following conditions: 
(a) minRGBBGR ≥++  and (b) ( ) max,,max RGBBGR ≤ . In these calculations, the 
linearized R, G and B values (i.e. no original sRGB values) were used. A color region 
with the ‘good’ characteristics is a color region in which the number of reliable pixels 
is sufficiently large and the pixel chromaticities are distributed in a linear shape. The 
minimum for the number of reliable pixels was defined as nr.  The distribution shape 
was defined by the ratio between the standard deviations σ1 and σ2 in two principal 
axes. These threshold values were temporarily set to RGBmin=50, RGBmax=240, 
nr=200 and ratio=2.0, respectively. However, the estimation result was not sensitive 
to the threshold selection. 

Figure 5(c) shows the chromaticity distribution of reliable pixels. On the x-y chro-
maticity diagram, blackbody chromaticity locus (yellow) and daylight chromaticity 
locus (orange) were added. In addition, the first principal axes for ‘good’ color re-
gions were depicted with white lines in Fig.5 (d), where the estimated illumination 
chromaticity was shown with a red cross, too. The estimated chromaticity for this 
 

     
                                        (a)                                                         (b) 

Fig. 6. Typical chromaticity distribution in a color region. The chromaticity of the color region 
painted in white in (a) is distributed in the white region in (b). 
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                                      (a)                                                            (b) 

Fig. 7. Experiment under Condition2: (a) Input image under Condition 2. (b) Illumination 
chromaticity estimation. 

image was (x1,y1)=(0.2741, 0.3064). Typical chromaticity distribution of a color re-
gion is shown in Fig.6 (a) and (b). The area painted in white in Fig.6 (a) is a part of a 
red region, where there are 2516 reliable pixels. The chromaticity distribution of the 
region is also painted in white in Fig.6 (b). The ratio (=σ1/σ2) of the region is 6.52, 
and its linear shape can be clearly observed. 

Though the correct chromaticity of D65 illuminant is (x,y)=(0.3127, 0.3290), camera 
characteristics are related to the color reproduction. The comparison with the chroma-
ticity of the neutral gray (N7) on the inner surface of the booth is more appropriate.  
Assuming that the image data is generated in sRGB space, the mean chroma-ticity of  
the gray background of the image in Fig.5 (a) was (0.283, 0,312). The chromaticity  
estimation error was about -0.009 in x direction and -0.006 in y direction. 

The same scene was also taken under the illuminant A simulator (Condition 2 -
Fig.7(a)). The image looks very yellowish. The same processing as above was  
applied, and Fig.7 (b) shows the estimation result. In this case, the estimated chroma-
ticity was (x2,y2)=(0.4775, 0.4158). The mean chromaticity of the gray background in 
this image was (0.448, 0.415). The estimation error was about +0.027 in x direction 
and +0.001 in y direction. The estimation for the scene was successful, and the esti-
mation error was reasonably small, though the estimation of x for Condition 2 was not 
so accurate. 

However, the scene consists of plastic objects, whose reflection is ideally composed 
of diffuse reflection and specular reflection. We applied the algorithm to another scene, 
which contains only ‘Gretag-Macbeth Color Checker®’ under Condition 1. The sur-
face of the colored areas is very matt, and no specular reflection can be observed  
(Fig. 8(a)). The same image processing as to the previous image (Fig. 5) was applied. 
As the Color Checker is flat and matt, each color region on the Color Checker was 
clearly divided as one color region after the color space division (Fig. 8(b)). The whole 
color space was divided into 30 subspaces. After the connected component labeling, 
the original image was divided into 6064 color regions. Figure 8(c) shows the chroma-
ticity distribution of reliable pixels, and Fig. 8(d) shows the first principal axes and the 
estimated illumination chromaticity. 
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                                 (a)                                                                (b) 

            
                                    (c)                                                       (d) 

Fig. 8. Experiment on an image with matt objects. (a) Original image. (b) Color region image (30 
colors). (c) Chromaticity distribution of reliable pixels. (d) Illumination chromaticity estimation. 

Very interestingly, the color distribution of the pixels in each large color region, 
which corresponds to one color area on the Color Checker, is sufficiently elliptical and 
can be used for the illumination chromaticity estimation. The estimation result was 
(x1,y1)=(0.2810, 0.3069). The mean chromaticity of the gray background, in this case, 
was (0.286, 0.312). The chromaticity estimation error was about -0.005 in both x and y 
directions. The same scene was also taken under Condition 2, and the estimation was 
carried out. In this case, the estimated chromaticity was (x2,y2)=(0.4169, 0.4125). The 
estimation error was about -0.034 in x direction and -0.001 in y direction. 

4.2   Discussion 

In the previous subsection, it was shown that the illumination chromaticity estimation 
algorithm based on the two-dimensional DRM and the color space division is appli-
cable to real images. One image contained typical objects with diffuse reflection and 
specular reflection, while another image contained objects with very matt surfaces. 
The estimation algorithm worked very well not only for the former image which has 
ideal characteristics for the algorithm, but also for the latter image without apparent 
specular reflection. In the real world, object surfaces would have the reflection char-
acteristics between these two. The estimation algorithm can be applicable to most 
surfaces in real scenes. 
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The estimation result was sufficiently good for the images under Condition 1 (illu-
minant D65 simulator). However, it was not for the images under Condition 2  
(illuminant A simulator). Under Condition 2, x coordinate estimation was especially 
inaccurate. The reason is not clear at this moment. Though more experiments should 
be carried out for the analysis and the algorithm improvement, it may be partly due to 
the fact that the camera used was one for consumer use. Color calibration may not be 
accurate, or some color rendering process may have been applied to the original sig-
nal. In addition, it may be due to the chromaticity distribution under Condition 2. 
From Fig. 7(b), it is observed that chromaticity distribution is pushed to upper area of 
the chromaticity diagram. Major first principal axes are oriented nearly parallel. This 
may cause the inaccuracy, especially in x direction. 

5   Conclusions 

In this paper, the illumination chromaticity estimation using the two-dimensional 
DRM combined with imperfect image segmentation was proposed. Though the color 
space division algorithm may divide a large homogeneous color region into several 
small regions or merge several color regions, the robust chromaticity estimation could 
find the illumination chromaticity based on the least squares method, allowing seg-
mentation error to a certain extent. Wide dynamic range color regions that include 
both diffuse reflection and specular reflection areas were not necessary. The proposed 
algorithm was applied to real images taken by a digital camera. The result was en-
couraging. In addition, it turned out that the two-dimensional DRM is also applicable 
to apparently matt surfaces like Gretag-Macbeth Color Checker. 

The scenes used for this experiment included many colors. The algorithm is  
considered to be useful for the scenes with a few colors, in principle. However, no 
algorithm is all-round for all images. In practice, combining the algorithm with other 
simpler methods (e.g. MOR or GWA) would be desirable. 
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