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Abstract—This paper presents a novel illumination normalization ap-

proach for face recognition under varying lighting conditions. In the pro-
posed approach, a discrete cosine transform (DCT) is employed to compen-

sate for illumination variations in the logarithm domain. Since illumination
variations mainly lie in the low-frequency band, an appropriate number
of DCT coefficients are truncated to minimize variations under different

lighting conditions. Experimental results on the Yale B database and CMU
PIE database show that the proposed approach improves the performance

significantly for the face images with large illumination variations. More-
over, the advantage of our approach is that it does not require any modeling

steps and can be easily implemented in a real-time face recognition system.

Index Terms—Discrete cosine transform, face recognition, illumination
normalization, logarithm transform.

I. INTRODUCTION

Face recognition has attracted significant attention because of its

wide range of applications [1]. Recently, more researchers focus on

robust face recognition such as face recognition systems invariant to

pose, expression and illumination variations. Illumination variation is

still a challenging problem in face recognition research area, especially

for appearance-based approaches. The same person can appear greatly

different under varying lighting conditions. A variety of approaches

have been proposed to solve the problem [3]–[16]. These approaches

can be generally classified into three main categories.

• Preprocessing and Normalization: In this approach, face

images are preprocessed using some image processing tech-

niques to normalize the images to appear stable under different

lighting conditions. For instance, histogram equalization (HE),

Gamma correction, logarithm transform, etc. are widely used

for illumination normalization [3], [4]. However, nonuniform

illumination variation is still difficult to deal with using these

global processing techniques. Recently, adaptive histogram

equalization (AHE) [2], region-based histogram equalization

(RHE) [3], and block-based histogram equalization (BHE) [5]

have also been proposed to cope with nonuniform illumination

variations. Although recognition rates on face databases with

nonuniform illumination variations can be improved compared

with the HE, their performances are still not satisfactory. In

[13], by combining symmetric shape-from-shading (SSFS)

and a generic three-dimensional (3-D) model, the performance

of face recognition under varying illuminations is enhanced.

However, this method is only efficient for exact frontal face

images and it is assumed that all faces share a similar common
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shape. In [3], the authors proposed a normalization method

called quotient illumination relighting (QIR). This method is

based on the assumption that the lighting modes of the images

are known or can be estimated.

• Invariant Feature Extraction: This approach attempts to ex-

tract facial features which are invariant to illumination varia-

tions. Edge maps, derivatives of the gray-level and Gabor-like

filters are investigated in [9]. However, empirical studies show

that none of these representations are sufficient to overcome

image variations due to changes in the direction of illumination.

Another well-known feature extraction method is called Fisher-

face [also known as linear discriminant analysis (LDA)] which

linearly projects the image space to a low-dimensional subspace

to discount variations in lighting and facial expressions [11].

But, this method is a statistical linear projection method which

largely relies on representativeness of the training samples. In

[12], the quotient image is regarded as the illumination invariant

signature image which can be used for face recognition under

varying lighting conditions. Bootstrap database is required for

this method and the performance degrades when dominant fea-

tures between the bootstrap set and the test set are misaligned.

• Face Modeling: Illumination variations are mainly due to the

3-D shape of human faces under lighting in different directions.

Recently, some researchers attempt to construct a generative 3-D

face model that can be used to render face images with different

poses and under varying lighting conditions [6], [7], [10] and

[14]. A generative model called illumination cone was presented

in [6], [7]. The main idea of this method is that the set of face

images in fixed pose but under different illumination conditions

can be represented using an illumination convex cone which can

be constructed from a number of images acquired under variable

lighting conditions and the illumination cone can be approxi-

mated in a low-dimensional linear subspace. In [10], the authors

showed that the set of images of a convex Lambertian object

obtained under a variety of lighting conditions can be well ap-

proximated by a 9D linear subspace. One of the drawbacks of

the model-based approaches is that a number of images of the

subject under varying lighting conditions or 3-D shape informa-

tion are needed during the training phase. This drawback limits

its applications in practical face recognition systems. In addi-

tion, existing model-based approaches assume that the human

face is a convex object, i.e., the casting shadows are not consid-

ered. The specularity problem is also ignored even though the

human face is not a perfect Lambertian surface.

To the best of our knowledge, one ideal way of solving the illumina-

tion variation problem is to normalize a face image to a standard form

under uniform lighting conditions. In fact, the human visual system

usually cares about the main features of a face, such as the shapes and

relative positions of the main facial features, and ignores illumination

changes on the face while recognizing a person. Accordingly, in this

paper, we propose an illumination normalization approach to remove

illumination variations while keeping the main facial features unim-

paired. The key idea of the proposed approach is that illumination vari-

ations can be significantly reduced by truncating low-frequency dis-

crete cosine transform (DCT) coefficients in the logarithm DCT do-

main. Our approach can be categorized into the first approach group

although feature extraction can be carried out directly in the logarithm

DCT domain.
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The remainder of this paper is organized as follows. In Section II, we

describe the illumination normalization approach in the logarithm DCT

domain in detail. Experimental results and discussions are presented in

Section III. Finally, conclusions are drawn in Section IV.

II. ILLUMINATION NORMALIZATION IN THE LOGARITHM DCT DOMAIN

A. Logarithm Transform

Logarithm transform is often used in image enhancement to expand

the values of dark pixels [9] and [21]. Here, we show why illumina-

tion compensation should be implemented in the logarithm domain. In

a simple situation, the image gray level f(x; y) can be assumed to be

proportional to the product of the reflectance r(x; y) and the illumina-

tion e(x; y) [23], i.e.,

f(x; y) = r(x; y) � e(x; y): (1)

To our knowledge, the Retinex algorithm is related to the reflectance

constancy [17]. The invariant property of reflectance ratio has been ap-

plied in object recognition [18]. Since the reflectance is a stable charac-

teristic of facial features, our goal is to recover the reflectance of faces

under varying illumination conditions. Taking logarithm transform on

(1), we have

log f(x; y) = log r(x; y) + log e(x; y): (2)

It follows from (2) that in the logarithm domain, if the incident illumi-

nation e(x; y) and the desired uniform illumination e0 are given (e0 is

identical for every pixel of an image), we have

log f 0(x; y) = log r(x; y) + log e0

= log r(x; y) + log e(x; y)� �(x; y)

= log f(x; y)� �(x; y) (3)

where

�(x; y) = log e(x; y)� log e0

and f 0(x; y) is the pixel value under desired uniform illumination.

From (3), we can conclude that the normalized face image can be ob-

tained from the original image by using an additive term �(x; y) called

compensation term which is the difference between the normalized il-

lumination and the estimated original illumination in the logarithm do-

main.

B. Discrete Cosine Transform

There are four established types of Discrete Cosine Transforms

(DCT’s), i.e., DCT-I, DCT-II, DCT-III, and DCT-IV. The DCT-II

is more widely applied in signal coding because it is asymptotically

equivalent to the Karhunen–Loeve Transform (KLT) for Markov-1

signals with a correlation coefficient that is close to one [24]. For

example, JPEG image compression is also based on the DCT-II [25].

The DCT-II is often simply referred to as “the DCT”. The 2D M �N

DCT is defined as follows:

C(u; v) = �(u)�(v)

M�1

x=0

N�1

y=0

f(x; y)

� cos
�(2x+ 1)u

2M
cos

�(2y + 1)v

2N
(4)

and the inverse transform is defined as

f(x; y) =

M�1

u=0

N�1

v=0

�(u)�(v)C(u;v)

� cos
�(2x+ 1)u

2M
cos

�(2y + 1)v

2N
(5)

where

�(u) =

1p
M
; u = 0

2

M
; u = 1; 2; � � � ;M � 1

�(v) =

1p
N
; v = 0

2

N
; v = 1; 2; � � � ; N � 1:

In the JPEG image compression standard, original images are initially

partitioned into rectangular nonoverlapping blocks (8 � 8 blocks) and

then the DCT is performed independently on the subimage blocks [25].

In the proposed approach, the DCT is performed on the entire face

image to obtain all frequency components of the face image.

C. Illumination Compensation

Given a face image, illumination variations can be well compen-

sated by adding or subtracting the compensation term �(x; y) of (3)

in the logarithm domain if we know where illumination variations

and important facial features are. However, facial feature detection

is a nontrivial task especially for face images with large illumination

variations. Nevertheless, in a face image, illumination usually changes

slowly compared with the reflectance except some casting shadows and

specularities on the face. As a result, illumination variations mainly

lie in the low-frequency band. Since we attempt to recognize faces

using reflectance characteristic, illumination variations can be reduced

by removing low-frequency components. It should be noted that only

face images without hair are considered in our approach because the

intensity of human’s hair is a kind of low-frequency feature which

will be impaired by discarding low-frequency components of face

images. However, a human’s hair is a kind of unstable feature which

will change greatly with time. Therefore, in many face recognition

systems, human’s hair is not regarded as a kind of important facial

feature.

The DCT can be used to transform an image from spatial domain to

frequency domain. Besides, it can be implemented using a fast algo-

rithm which significantly reduces the computational complexity. Low-

frequency components of a face image can be removed simply by set-

ting the low-frequency DCT coefficients to zero. Evidently, the re-

sulting system works like a high-pass filter. Since illumination vari-

ations are mainly low-frequency components, we can estimate the in-

cident illumination on a face by using low-frequency DCT coefficients.

It follows from (4) that setting the DCT coefficients to zero is equiva-

lent to subtracting the product of the DCT basis image and the corre-

sponding coefficient from the original image. If n low-frequency DCT

coefficients are set to zero, we have

F
0(x; y) =

M�1

u=0

N�1

v=0

E(u; v)�

n

i=1

E(ui; vi)

=F (x; y)�

n

i=1

E(ui; vi) (6)

where

E(u; v)=�(u)�(v)C(u;v)cos
�(2x+1)u

2M
cos

�(2y+1)v

2N
:

Since illumination variations are expected to be in the low-frequency

components, the term
n

i=1
E(ui; vi) can be approximately regarded

as the illumination compensation term. It follows from (3) that the term

F 0(x; y) in (6) is just the desired normalized face image in the loga-

rithm domain. Therefore, discarding low-frequency DCT coefficients

in the logarithm domain is equivalent to compensating for illumination

variations. This is the reason why DCT should be implemented in the

logarithm domain.
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The first DCT coefficient (i.e., the DC component) determines the

overall illumination of a face image. Therefore, the desired uniform

illumination can be obtained by setting the DC coefficient to the same

value, i.e.,

C(0; 0) = log� �
p
MN (7)

where C(0;0) is the DC coefficient of the logarithm image. For the

convenience of understanding and visualization, we normally choose a

value of � near the middle level of the original image. In other words,

the normal face has an average gray level of �. It should be noted that

we do not regard the skin color as a kind of facial feature because it is

unstable when illumination changes. For example, the face of a black

man normally has an average gray level below �. It is actually regarded

as a normal face under weak illumination conditions. It follows from

(3) and (6) that the difference between the original DC component and

the normalized DC component, together with the other discarded low-

frequency AC components, approximately make up the compensation

term �(x; y).

D. Logarithm Domain Versus Original Domain

Since illumination variations mainly lie in the low-frequency band,

we can approximately estimate them using the low-frequency DCT

basis images and their corresponding coefficients. As a simple example

to illustrate the idea, note that the half-lighted face image is highly cor-

related with the (0,1)th basis image. In other words, the illumination

difference on a half-lighted face can be approximately estimated from

the (0,1)th DCT coefficient. Therefore, the invariant reflectance can be

obtained by discarding the (0,1)th DCT coefficient. As illustrated in

Fig. 1, the facial features in the dark area of the original image are re-

covered much better by applying DCT on the logarithm image. In fact,

only the brightness of the image is adjusted by discarding DCT co-

efficients of the original image, whereas discarding DCT coefficients

of the logarithm image will adjust the illumination and recover the re-

flectance characteristic of the face.

E. Logarithm Image for Recognition

Human faces are not perfect Lambertian surfaces. In some cases,

there are specularities on a face image which do not lie in the low-

frequency band. Moreover, some shadows also lie in the same fre-

quency band as the main facial feature. As a consequence, illumina-

tion variations on some small areas may not be correctly compensated

by discarding the low-frequency coefficients. For example, some small

areas under high illumination level may be incorrectly adjusted to even

higher level. As we know, the addition operation in the logarithm do-

main is equivalent to multiplication in the original domain. If the log-

arithm image is restored to the original one, incorrect adjustment will

make it even worse. Accordingly, in our approach, logarithm images

are directly used for recognition, i.e., the inverse logarithm transform

step is skipped. In fact, there are also physiological evidences that the

response of the retina cells can be approximated as a log function of

the intensity [9]. Fig. 1(c) and (d) shows the reconstructed nonloga-

rithm image and the logarithm image after discarding the (0,1)th DCT

coefficient to correct half-lighted illumination, respectively.

F. Discarding DCT Coefficients

As aforementioned, low-frequency DCT coefficients which are

highly related to illumination variations should be discarded. There

remains another issue: which and how many DCT coefficients should

be discarded in order to obtain the well normalized face image?

Fig. 1. (a) Original image. (b) Reconstructed image by applying DCT on the
original image and discarding the (0,1) th DCT coefficient. (c) Reconstructed
image by applying DCT on the logarithm image and discarding the (0,1) th
DCT coefficient (� = 100). (d) Reconstructed logarithm image by applying
DCT on the logarithm image and discarding the(0,1) DCT coefficient (i.e., (c)
without the inverse logarithm transform).

Fig. 2. Standard deviations of the logarithm DCT coefficients.

Fig. 3. Manner of discarding DCT coefficients.

Fig. 2 shows the standard deviations of the logarithm DCT coeffi-

cients which are calculated from 64 face images of the same subject

(only the first 30 � 30 coefficients are shown). As we can see from

Fig. 2, standard deviations of the coefficients with great magnitude are

mainly located in the upper-left corner of the DCT coefficient matrix.

Accordingly, illumination variations of face images can be reduced by

discarding these low-frequency coefficients [the DC coefficient is set

to a constant value according to (7)]. The manner of discarding DCT

coefficients is shown in Fig. 3.
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TABLE I
SUBSETS DIVIDED ACCORDING TO LIGHT SOURCE DIRECTION

Fig. 4. Sample images of an individual divided into five subsets.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Face Database

In this paper, the Yale Face Database B and the CMU PIE Face Data-

base are both used to evaluate the proposed approach. These two face

databases contain face images with large illumination variations.

1) Yale Face Database B: There are ten individuals under 64 dif-

ferent lighting conditions for nine poses in the database. Since we are

only concerned with the illumination problem in this paper, frontal face

images under varying lighting conditions are used. As shown in Table I,

Fig. 5. Sample images of an individual in CMU PIE database. (a) Training.
(b) Testing.

Fig. 6. Normalized logarithm images with differentD : (a) original image;
(b) D = 3; (c) D = 6; (d) D = 15; (e) D = 20; (f) D = 35;
and (g) D = 50.

the face images are divided into five subsets according to the angle be-

tween the light source direction and the camera axis. Interested readers

may refer to [7] for more detailed information of the database. In the ex-

periments, face images are all cropped and aligned in accordance with

[7]. The distance between eyes is equal to four sevenths of the cropped

window width and the face was centered along the vertical direction so

that the two imaginary horizontal lines passing through the eyes and

mouth are equidistant from the center of the cropped window. In this

paper, all the face images are rescaled to the size of 120 � 105. Fig. 4

shows the images of one individual divided into five subsets based on

different lighting conditions. We use Subset 1 as the training set and

other subsets are used for testing.

2) CMU PIE Face Database: In the CMU PIE database, there are

68 subjects with pose, illumination and expression (PIE) variations.

In our experiments, only frontal face images under different lighting

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 06,2010 at 07:58:09 EST from IEEE Xplore.  Restrictions apply. 



462 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006

Fig. 7. Performance on the Yale B database with different D . (a) Correlation. (b) Eigenfaces.

Fig. 8. Performance on the CMU PIE database with differentD .

conditions (without expression variations) are selected. As shown in

Fig. 5, the frontally lighted face images are chosen as the training set.

The remaining 20 face images of each subject with different illumina-

tion variations are used for testing. Face images in the experiment are

all cropped and aligned in the same way as images in the Yale B data-

base.

B. Experimental Results

In the experiments, the nearest neighbor classifier based on the Eu-

clidean distance is employed for classification. All the face images used

in the experiments are normalized so that they have zero mean and unit

variance.

An appropriate number of discarded DCT coefficients should be

chosen in order to normalize the illumination well and not weaken im-

portant facial features. We employ the dimensionality of the discarded

coefficients (Ddis shown in Fig. 3) to measure the extent of discarding

coefficients. Fig. 6 shows examples of normalized logarithm images

with different Ddis.

Results of employing correlation and Eigenface methods [22] on

the normalized face images of both databases with different Ddis are

shown in Figs. 7 and 8. For the Eigenface method, 50 principal com-

ponents are used. It is evident that the error rate significantly decreases

after a few DCT coefficients are discarded. As illustrated in Figs. 7 and

8, the best and stable performances approximately lie in the range of

18 � Ddis � 25. In other words, in this range, illumination variations

TABLE II
RECOGNITION PERFORMANCE COMPARISONS OF DIFFERENT METHODS

are largely reduced while important facial features are preserved. For

the Yale B database, the small number of subjects is one of the reasons

that the performance does not drop even when Ddis is around 50 be-

cause the high-frequency features are enough to distinguish these few

subjects. Another reason is that discarding low-frequency DCT coeffi-

cients keeps high-frequency features well. In fact, illumination varia-

tions and facial features are not perfectly separated with respect to fre-

quency components. Some illumination variations, especially shadows

and specularities, lie in the same frequency bands as some facial fea-

tures do. As a consequence, in order to compensate for such illumi-

nation variations, some facial information, mainly low-frequency in-

tensity variations of facial feature components, has to be sacrificed.

Nevertheless, our experiments show that high performance can still

be achieved without these features. The low-frequency features actu-

ally become less effective under large illumination variation condi-

tions. From Figs. 7 and 8, we can see that the performance has sig-

nificantly improved when Ddis > 5. Therefore, for some applica-

tions without large illumination variations, especially shadowing, more

low-frequency components can be preserved. It should be noted that

our method is different from the DCT applied for dimensionality reduc-

tion in face recognition [20], in which only low-frequency coefficients

are used as facial features. Our method should use higher frequency

features in order to reduce the illumination variations. Nevertheless,

if logarithm images are used for recognition based on their method,
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Fig. 9. Performance comparison between logarithm and nonlogarithm images (Yale B). (a) Subset 4. (b) Subset 5.

robustness against illumination variations can be easily improved by

discarding several low-frequency DCT coefficients.

Comparison results with other methods dealing with illumination

variations on both databases (mainly Yale B) are shown in Table II.

The results of our normalization method are the average error rates of

18 � Ddis � 25. Some listed results of the existing methods are di-

rectly from other papers since they are based on the same database. We

can see from Table II that the proposed method outperforms most of

the existing methods except the cones-cast method. However, it should

be pointed out that the illumination cone method needs much more

complicated modeling steps, thus it cannot be applied in some prac-

tical applications. Moreover, in their paper, results on the most difficult

subset (Subset 5) are not given.

C. Performance Comparison Between Logarithm and

Non-Logarithm Images

As described in Section II-E, for face recognition, normalized log-

arithm face images should outperform nonlogarithm (i.e. with inverse

logarithm transform) face images. Performance comparisons using the

correlation method on the Yale B and CMU PIE databases are shown

in Figs. 9 and 10, respectively. It is clear that better performance is

achieved while using logarithm face images. It is more evident in the

initial stage of discarding DCT coefficients for the reason that some

higher frequency illumination variations are incorrectly estimated by

using only a few low-frequency coefficients. As a consequence, loga-

rithm face images should be used for recognition in the proposed ap-

proach.

D. Discarding DCT Coefficients Versus Discarding PCA Components

For the Eigenface method (PCA), it has been suggested that by dis-

carding the three most significant principal components, variations due

to lighting can be reduced. In [11], experimental results show that the

Eigenface method performs better under variable lighting conditions

after removing the first three principal components. However, the first

several components not only correspond to illumination variations, but

also some useful information for discrimination [11]. Besides, since the

Eigenface method is highly dependent on the training samples, there is

no guarantee that the first three principal components are mainly re-

lated to illumination variations. Fig. 11 shows the performance based

on the Eigenface method by discarding different numbers of the first

several principal components. It is evident that discarding first several

principal components cannot improve the performance significantly.

Fig. 10. Performance comparison between logarithm and nonlogarithm
images (CMU PIE).

Fig. 11. Performance based on the Eigenface method by discarding different
numbers of principal components (on original images, 50 principal components
are used, i.e., the dimension of feature vectors is 50).

E. DCT Versus DFT

If the method of discarding DCT coefficients is regarded as a kind of

filtering, DFT can also be employed since it is widely used as an image

filtering method in the frequency domain. If DFT is employed instead
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Fig. 12. Performance on the Yale B database using high-pass filters with different transfer functions. (a) Subset 4. (b) Subset 5.

Fig. 13. Performance on the CMU PIE database using high-pass filters with
different transfer functions.

of DCT, the proposed approach is similar to the so-called homomor-

phic filtering, an image enhancement approach which is used for con-

trast enhancement [21]. Homomorphic filtering can be accomplished

by applying high-boost filtering or high-frequency emphasis filtering in

the logarithm domain and subsequently transforming the filtered image

to the original spatial domain using inverse logarithm transform. Dif-

ferent from the homomorphic filtering method for image enhancement,

in illumination normalization applications, low-frequency illumination

variations should be completely suppressed. Hence, high-pass filtering

should be employed in the logarithm domain to reduce low-frequency

illumination variations.

Normally, an ideal filtering method is not recommended for image

filtering because unwanted ringing behavior will be generated [21].

However, in face recognition applications, we are more concerned

with recognition performance rather than image quality. Fig. 12 shows

the performances based on the correlation method of high-pass filters

with different transfer functions, i.e., the second- and fourth-order

Butterworth high-pass filters, and the ideal high-pass filter. As shown

in Fig. 12 and Fig. 13, these transfer functions achieve similar perfor-

mances. The only difference is that the Butterworth high-pass filter

has a smoother performance curve with varying cutoff frequencies for

the reason that, unlike the ideal filter, which has a sharp edge between

passed and filtered frequencies, it employs a smooth transfer function.

However, the best performance is achieved using the ideal high-pass

filter. Moreover, the ideal filter is computationally less complex.

Fig. 14. (a) Second-order Butterworth filter. (b) Fourth-order Butterworth
filter. (c) Ideal filter. (cuto� = 0:06).

Consequently, ideal filters can be used for illumination normalization

for face recognition applications. Fig. 14 shows the filtered images

using different transfer functions of high-pass filters.

The DCT is employed in this paper because it has a few advantages

over the DFT: 1) the DCT is real-valued instead of complex (i.e., it

involves magnitude and phase) such that it is easier to be implemented

than the DFT; 2) when the DFT transform coefficients are truncated, the

Gibbs phenomenon causes the boundary points to take on erroneous

values [21]; this can be observed from Fig. 14; 3) the DCT is more

efficient for illumination variation estimation than the DFT. This can

be experimentally shown in the following part.

Similar to the definition of the energy packing efficiency (EPE) [24],

we may define the variation estimation efficiency (VEE) as the perfor-

mance criterion of variation estimation. For images of the same person,

the VEE is the variance portion contained in the first M of N transform

coefficients, i.e., for person P , and is given by

VEEP (M) =
M�1

i=0
E (Xi � �Xi)

2

N�1

i=0
E (Xi � �Xi)2 :

(8)

The average VEE of the Yale B and CMU PIE database are respectively

shown in Fig. 15(a) and (b). Obviously, the DCT has better VEE than

the DFT, especially for the first few coefficients. In other words, DCT

basis images are more correlated with illumination variations. We can

also see from Table III that better recognition performance is achieved

by using the DCT. (The results are the average error rates of the best

performance range.)

F. Performance With Misaligned Face Images

The above experiments are all based on the well-aligned face images.

Therefore, the higher frequency features are well utilized for recogni-

tion. In some practical applications, face images may not be aligned

well. In this section, some experimental results on slightly misaligned
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Fig. 15. Average VEE of the Yale B and CMU PIE databases (Coefficients are sorted according to the DCT discarding and DFT filtering manner). (a) Yale B.
(b) CMU PIE.

Fig. 16. Examples of misaligned face images from Yale B Subset 1.

Fig. 17. Performance on the misaligned Yale B database with different D . (a) Correlation. (b) Eigenfaces.

face images are presented. Since the face alignment is based on eye co-

ordinates, the misaligned face images are obtained by randomly adding

offset errors to the eye coordinates such that there are small translation,

scale and rotation variations in face images. Fig. 16 shows the slightly

misaligned face images from Yale B Subset 1.

As shown in Fig. 17 and Fig. 18, the overall performance on mis-

aligned images is worse than the well aligned images. This is the major

drawback of appearance-based face recognition approaches. Besides,

the performance degrades earlier in terms of Ddis because higher fre-

quency features cannot be efficiently utilized. As a result, the value

of Ddis should also be chosen taking into consideration accuracy of

the alignment procedure. As aforementioned, discarding DCT coeffi-

cients is a tradeoff between low-frequency features and illumination

variations. The properDdis should be chosen to minimize illumination

variations as well as to keep low-frequency information as much as pos-

sible. Moreover, it also depends on how efficient the feature extraction

TABLE III
RECOGNITION PERFORMANCE COMPARISON BETWEEN

DCT AND DFT (CORRELATION)

method could utilize higher-frequency features that are essential for

precise face recognition especially under large illumination variations.

Nevertheless, the experimental results on these two databases show that

recognition performance can be significantly improved whenDdis > 5

even when the face images cannot be well aligned.
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Fig. 18. Performance on the misaligned CMU PIE database with different
D .

IV. CONCLUSIONS

A novel illumination normalization approach is proposed in this

paper. Illumination variations under different lighting conditions can

be significantly reduced by discarding low-frequency DCT coefficients

in the logarithm domain. Our approach has several advantages: 1) no

modeling step and bootstrap sets are required; 2) our approach is very

fast and it can be easily implemented in a real-time face recognition

system; and 3) the proposed approach outperforms most of existing

approaches. Nevertheless, the shadowing and specularity problems are

not perfectly solved because they lie in the same frequency band as

some facial features. Our future work will focus on reducing illumi-

nation variations caused by shadows and specularities. Furthermore,

higher frequency facial features are more difficult to extract while

poses and expressions change. Currently, we are exploring an efficient

feature extraction method to make good use of higher frequency facial

features.

ACKNOWLEDGMENT

The authors would like to thank Yale University for the use of the

Yale Face Database B and Dr. Athinodoros S. Georghiades for pro-

viding useful information on this database. The authors would also like

to thank Dr. S. Baker for providing the CMU PIE database.

REFERENCES

[1] R. Chellappa, C. L. Wilson, and S. Sirohey, “Human and machine recog-
nition of faces: a survey,” Proc. IEEE, vol. 83, no. 5, pp. 705–740, May
1995.

[2] S. M. Pizer and E. P. Amburn, “Adaptive histogram equalization and
its variations,” Comput. Vis. Graph., Image Process., vol. 39, no. 3, pp.
355–368, 1987.

[3] S. Shan, W. Gao, B. Cao, and D. Zhao, “Illumination normalization for
robust face recognition against varying lighting conditions,” in Proc.

IEEE Workshop on AMFG, 2003, pp. 157–164.

[4] M. Savvides and V. Kumar, “Illumination normalization using logarithm
transforms for face authentication,” in Proc. IAPR AVBPA, 2003, pp.
549–556.

[5] X. Xie and K.-M. L, “Face recognition under varying illumination based
on a 2D face shape model,” Pattern Recognit., to be published.

[6] P. N. Belhumeur and D. J. Kriegman, “What is the set of images of an
object under all possible illumination conditions,” Int. J. Comput. Vis.,
vol. 28, no. 3, pp. 245–260, Jul. 1998.

[7] A. S. Georghiades, P. N. Belhumeur, and D. W. Jacobs, “From few
to many: illumination cone models for face recognition under variable
lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 23, no.
6, pp. 630–660, Jun. 2001.

[8] H. F. Chen, P. N. Belhumeur, and D. J. Kriegman, “In search of illu-
mination invariants,” in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, vol. 1, 2000, pp. 13–15.
[9] Y. Adini, Y. Moses, and S. Ullman, “Face recognition: the problem of

compensating for changes in illumination direction,” IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 19, no. 7, pp. 721–732, Jul. 1997.
[10] R. Basri and D. W. Jacobs, “Lambertian reflectance and linear sub-

spaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 2, pp.
218–233, Feb. 2003.

[11] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces versus
Fisherfaces: recognition using class specific linear projection,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997.
[12] A. Shashua and T. Riklin-Raviv, “The quotient image: class-based

re-rendering and recognition with varing illuminations,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 23, no. 2, pp. 129–139, Feb. 2001.
[13] W. Zhao and R. Chellappa, “Illumination-insensitive face recognition

using symmetric shape-from-shading,” in Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 2000, pp. 286–293.
[14] L. Zhang and D. Samaras, “Face recognition under variable lighting

using harmonic image exemplars,” in Proc. IEEE Conf. Computer Vi-

sion and Pattern Recognition, vol. 1, 2003, pp. 19–25.
[15] J. Zhao, Y. Su, D. Wang, and S. Luo, “Illumination ratio image: syn-

thesizing and recognition with varying illuminations,” Pattern Recognit.

Lett., vol. 24, pp. 2703–2710, 2003.
[16] K.-C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear subspaces for

face recognition under variable lighting,” IEEE Trans. Trans. Pattern

Anal. Mach. Intell., vol. 27, no. 5, pp. 684–698, May 2005.
[17] E. H. Land and J. J. McCann, “Lightness and retinex theory,” J. Opt.

Soc. Amer., vol. 61, pp. 1–11, 1971.
[18] S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,”

Int. J. Comput. Vis., vol. 17, no. 3, pp. 219–240, 1996.
[19] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and ex-

pression database,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no.
12, pp. 1615–1618, Dec. 2003.

[20] Z. M. Hafed and M. D. Levine, “Face recognition using the discrete
cosine transform,” Int. J. Comput. Vis., vol. 43, no. 3, pp. 167–188, 2001.

[21] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading,
MA: Addison-Wesley, 1992.

[22] M. A. Turk and A. P. Pentland, “Eigenfaces for recognition,” J. Cog.

Neurosci., vol. 3, pp. 71–86, 1991.
[23] B. K. P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1986.
[24] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-

tages, Applications. Boston, MA: Academic, 1990.
[25] W. Pennebaker and J. Mitchell, JPEG Still Image Data Compression

Standard. New York: Van Nostrand Reinhold, 1993.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 06,2010 at 07:58:09 EST from IEEE Xplore.  Restrictions apply. 


	toc
	Illumination Compensation and Normalization for Robust Face Reco
	Weilong Chen, Meng Joo Er, Member, IEEE, and Shiqian Wu, Member,
	I. I NTRODUCTION
	II. I LLUMINATION N ORMALIZATION IN THE L OGARITHM DCT D OMAIN
	A. Logarithm Transform
	B. Discrete Cosine Transform
	C. Illumination Compensation
	D. Logarithm Domain Versus Original Domain
	E. Logarithm Image for Recognition
	F. Discarding DCT Coefficients


	Fig.€1. (a) Original image. (b) Reconstructed image by applying 
	Fig.€2. Standard deviations of the logarithm DCT coefficients.
	Fig.€3. Manner of discarding DCT coefficients.
	TABLE€I S UBSETS D IVIDED A CCORDING TO L IGHT S OURCE D IRECTIO
	Fig.€4. Sample images of an individual divided into five subsets
	III. E XPERIMENTAL R ESULTS AND D ISCUSSIONS
	A. Face Database
	1) Yale Face Database B: There are ten individuals under 64 diff



	Fig.€5. Sample images of an individual in CMU PIE database. (a) 
	Fig. 6. Normalized logarithm images with different $D_{\rm dis}$
	2) CMU PIE Face Database: In the CMU PIE database, there are 68 

	Fig. 7. Performance on the Yale B database with different $D_{\r
	Fig. 8. Performance on the CMU PIE database with different $D_{\
	B. Experimental Results

	TABLE€II R ECOGNITION P ERFORMANCE C OMPARISONS OF D IFFERENT M 
	Fig.€9. Performance comparison between logarithm and nonlogarith
	C. Performance Comparison Between Logarithm and Non-Logarithm Im
	D. Discarding DCT Coefficients Versus Discarding PCA Components

	Fig.€10. Performance comparison between logarithm and nonlogarit
	Fig.€11. Performance based on the Eigenface method by discarding
	E. DCT Versus DFT

	Fig.€12. Performance on the Yale B database using high-pass filt
	Fig.€13. Performance on the CMU PIE database using high-pass fil
	Fig.€14. (a) Second-order Butterworth filter. (b) Fourth-order B
	F. Performance With Misaligned Face Images

	Fig.€15. Average VEE of the Yale B and CMU PIE databases (Coeffi
	Fig.€16. Examples of misaligned face images from Yale B Subset 1
	Fig.€17. Performance on the misaligned Yale B database with diff
	TABLE€III R ECOGNITION P ERFORMANCE C OMPARISON B ETWEEN DCT AND
	Fig.€18. Performance on the misaligned CMU PIE database with dif
	IV. C ONCLUSIONS
	R. Chellappa, C. L. Wilson, and S. Sirohey, Human and machine re
	S. M. Pizer and E. P. Amburn, Adaptive histogram equalization an
	S. Shan, W. Gao, B. Cao, and D. Zhao, Illumination normalization
	M. Savvides and V. Kumar, Illumination normalization using logar
	X. Xie and K.-M. L, Face recognition under varying illumination 
	P. N. Belhumeur and D. J. Kriegman, What is the set of images of
	A. S. Georghiades, P. N. Belhumeur, and D. W. Jacobs, From few t
	H. F. Chen, P. N. Belhumeur, and D. J. Kriegman, In search of il
	Y. Adini, Y. Moses, and S. Ullman, Face recognition: the problem
	R. Basri and D. W. Jacobs, Lambertian reflectance and linear sub
	P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, Eigenfaces 
	A. Shashua and T. Riklin-Raviv, The quotient image: class-based 
	W. Zhao and R. Chellappa, Illumination-insensitive face recognit
	L. Zhang and D. Samaras, Face recognition under variable lightin
	J. Zhao, Y. Su, D. Wang, and S. Luo, Illumination ratio image: s
	K.-C. Lee, J. Ho, and D. J. Kriegman, Acquiring linear subspaces
	E. H. Land and J. J. McCann, Lightness and retinex theory, J. Op
	S. K. Nayar and R. M. Bolle, Reflectance based object recognitio
	T. Sim, S. Baker, and M. Bsat, The CMU pose, illumination, and e
	Z. M. Hafed and M. D. Levine, Face recognition using the discret
	R. C. Gonzalez and R. E. Woods, Digital Image Processing . Readi
	M. A. Turk and A. P. Pentland, Eigenfaces for recognition, J. Co
	B. K. P. Horn, Robot Vision . Cambridge, MA: MIT Press, 1986.
	K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Adv
	W. Pennebaker and J. Mitchell, JPEG Still Image Data Compression



