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Abstract

In this paper, we propose a novel framework to jointly

recover the illumination environment and an estimate of the

cast shadows in a scene from a single image, given coarse

3D geometry. We describe a higher-order Markov Random

Field (MRF) illumination model, which combines low-level

shadow evidence with high-level prior knowledge for the

joint estimation of cast shadows and the illumination en-

vironment. First, a rough illumination estimate and the

structure of the graphical model in the illumination space

is determined through a voting procedure. Then, a higher

order approach is considered where illumination sources

are coupled with the observed image and the latent vari-

ables corresponding to the shadow detection. We examine

two inference methods in order to effectively minimize the

MRF energy of our model. Experimental evaluation shows

that our approach is robust to rough knowledge of geome-

try and reflectance and inaccurate initial shadow estimates.

We demonstrate the power of our MRF illumination model

on various datasets and show that we can estimate the illu-

mination in images of objects belonging to the same class

using the same coarse 3D model to represent all instances

of the class.

1. Introduction

Image formation is a function of three components: the

3D geometry of the scene, the reflectance properties of the

present surfaces, and the distribution of lights. Much work

has been done in estimating one or two of these compo-

nents, assuming that the rest are known [18, 21, 23, 25, 26].

Illumination estimation methods often assume known ge-

ometry that is combined with strong assumptions about re-

flectance. In this work, we describe a method that relaxes

these assumptions, based on the information contained in

cast shadows. Cast shadows as a cue are relatively stable in

the presence of large inaccuracies in knowledge of geome-

Figure 1. Our approach: from left to right, the original image; our

shadow estimate; a sun dial rendered with the estimated illumina-

tion from our algorithm and overlayed on the image

try and reflectance, compared to shading or specularities.

In the computer vision community, there has been much

research in extracting illumination from shading, specular

reflection or shadows of objects. In [26], a small number

of light source directions is detected using critical points,

and [25] extends it to an image of an arbitrary object with

known shape. In [23], a method is proposed for estimating

the illumination distribution of a real scene from shadows,

assuming known geometry illuminated by infinitely distant

light sources, casting shadows onto a planar lambertian sur-

face. In [7] illumination and reflectance are simultaneously

estimated without the distant illumination assumption. In

[27], a unified framework is proposed to estimate both dis-

tant and point light sources.

Prior art on illumination estimation using shadows cast

on textured surfaces is limited. In [23], an extra image is

necessary to deal with texture. In [18], a method is pro-

posed that integrates multiple cues from shading, shadow,

and specular reflections. [10] uses regularization by corre-

lation to estimate illumination from shadows when texture

is present, but requires extra user-specified information and

assumes lambertian surface reflectance and known geom-

etry. Recently, [19] proposed a method able to deal with

inaccurate geometry and texture, but the shadow detection

results when texture is present are limited. [14] proposed an

approach that combines cues from the sky, cast shadows on

the ground and surface brightness to estimate illumination

of outdoor scenes with the sun as the single light source.

Their method makes strong assumptions and is only appli-

cable to daytime outdoor scenes.
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There are several challenges when simultaneously esti-

mating shadows and illumination. Solving the low level

component that is the detection of cast shadows is not

straightforward. The illumination estimation itself is also

problematic due to the fact that measurements at the image

level correspond to cumulative effects of all light sources

leading to a very complex formulation. Shadow detection,

in the absence of illumination estimation or knowledge of

3D geometry is a well studied problem. [22] uses invariant

color features to segment cast shadows in still or moving

images. In [3, 4], a set of illumination invariant features is

proposed to detect and remove shadows from a single im-

age, making several assumptions about the lights and the

camera. Recently, [28] combined a number of cues in a

complex method to recognize shadows in monochromatic

images, while in [15], a learning approach is proposed to

detect shadows in consumer-grade photographs, focusing

on shadows on the ground.

While shadow detection can work at the image level, illu-

mination estimation necessitates assumptions about geom-

etry. In this paper, we propose a novel framework to re-

cover the illumination environment of a scene and a rough

cast shadow estimate from a single observed image, given

coarse 3D geometry. Our main goal is to relax the nec-

essary geometry assumptions so that simplistic approxima-

tions such as bounding boxes are enough to estimate illumi-

nation. Such approximate geometric information could be

derived as part of more general scene understanding tech-

niques, while enabling illumination estimation to be incor-

porated in the scene understanding loop; the obtained illu-

mination information could be a crucial contextual prior in

addressing various other scene understanding questions.

Graphical models can efficiently incorporate different

cues within a unified framework [24]. To deal with the joint

illumination and shadow estimation problem robustly in a

flexible and extensible framework, we formulate it as an

MRF model. All latent variables can then be simultane-

ously inferred by minimizing the MRF energy. To the best

of our knowledge, this is the first time that scene photome-

try is addressed using an MRF model.

The MRF model we propose captures the interaction

between geometry and light sources and combines it with

image evidence of cast shadows, for joint estimation of

cast shadows and illumination. The problem of shadow

detection is well-posed in terms of the graph topology

(graph nodes correspond to image pixels). On the other

hand, illumination estimation implies a potential depen-

dence between each pixel and all nodes representing the

light sources, corresponding to higher-order cliques in the

graph. At the same time, the number of light sources is

unknown, resulting in unknown MRF topology, and the

search space is continuous, complicating the use of dis-

crete methods. The problem of inference in the presence

of higher-order cliques has been given a lot of attention

recently [9, 13]. Furthermore, we are able to reduce the

search space and identify the MRF topology through an ini-

tial illumination estimate obtained using a voting algorithm.

We then describe two methods to perform inference on this

MRF model in the presence of higher-order cliques. We

make the following assumptions (common in illumination

modeling): the coarse 3D geometry is known, the illumi-

nation environment can be approximated by a set of dis-

tant light sources, and the reflectance of surfaces is roughly

lambertian. For the extraction of shadows we utilize a re-

cently proposed image cue [20]. It should be noted, how-

ever, that the proposed MRF model is flexible with respect

to the shadow cues.

We evaluate our method on a set of images captured in

a controlled environment, as well as on a set of car images

from Flickr and images from the Motorbikes class of Cal-

tech 101 [17]. Quantitative results are obtained on a syn-

thetic dataset. Our results show that our method is robust

enough to be able to use geometry consisting of bounding

boxes or a common rough 3D model for a whole class of

objects, while it can also be applied to scenes where some

of our assumptions are violated.

This paper is organized as follows: Sec. 2 introduces

the problem; Sec. 3 describes the MRF model to jointly

estimate the shadows and illumination, while in Sec. 4 we

discuss the inference process. Experimental results are pre-

sented in Sec. 5. Sec. 6 concludes the paper.

2. Problem Description

A commonly used set of assumptions, which we will use

here, is that the surfaces in the scene exhibit lambertian re-

flectance, and that the scene is illuminated by point light

sources at infinity, as well as some constant ambient illumi-

nation term. Under these assumptions, the outgoing radi-

ance at a pixel i is given by:

Lo(p) = ρp

(

α0 +

N
∑

i=1

Vp(di)αi max{di · np, 0}

)

,

(1)

where N is the number of light sources, ρp is the albedo at

point p, α0 is the ambient intensity, αi, i ∈ {1, ..., N} is

the intensity of the i-th light source, di is the illumination

direction of the i-th light source, and Vp(di) is a visibility

term for direction di at point p, defined as:

Vp(dj) =

{

0, if ray from p along dj intersects G
1, otherwise

(2)

Assuming a simplified linear model for the camera sen-

sors, we model the observed value at pixel (x, y) as:

I(x, y) = κLo(p) + ǫ, (3)
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where κ is an exposure parameter and ǫ is noise. Since we

can only estimate light source intensities up to scale, we

assume κ = 1.

We define illumination through parameters θL =
{α0, α1, ..., αN ,d1, ...,dN}, where di is the direction and

αi the intensity of light source i for i ∈ {1, N}, and α0

is the ambient intensity. The information available to our

method is a single color image I of the scene, an approxi-

mate 3D model of the geometry G of the scene and approx-

imate camera parameters.

We assume we can obtain an initial cast shadow estimate

from the input image (see Sec. 5.1). In such a shadow esti-

mate the effects of albedo ρ are roughly factored out and the

non-shadow pixels of I are masked out. Ideally, the value of

each shadow pixel (x, y) in such a shadow image Is would

be the shading at that point due to the non-occluded light

sources, given by:

Is(x, y) =

(

α0 +

N
∑

i=1

Vp(di)αi max{di · np, 0}

)

+ ǫ,

(4)

where p is the 3D point where (x, y) projects to. In prac-

tice we can obtain a cast shadow cue Îs which is a rough

approximation of Is.

In the following sections we will present a model to

jointly estimate the shadows Is and the illumination param-

eters θL from the approximate shadow cue Îs. In section

5.1 we present the shadow cue which we used to obtain our

results.

3. Global MRF for Scene Photometry

In this section we describe the MRF model which models

the creation of cast shadows, associating them with high-

level information about geometry and the light sources. As

mentioned earlier, the higher-order cliques in the model, the

unknown MRF topology and the continuous search space

complicate the problem. Therefore, we will first describe

a method to reduce the search space and identify the MRF

topology through an initial illumination estimate obtained

using a voting algorithm.

3.1. Initializing the MRF Model

We use a greedy approach to get a rough estimate of il-

lumination from the shadow cue Is, by the voting method

in Algorithm 1. The idea is that, shadow pixels that are not

explained from the discovered light sources vote for the oc-

cluded light directions. The pixels that are not in shadow

vote for the directions that are not occluded. The set of

all possible directions is evenly sampled by the nodes of a

geodesic sphere [23]. After discovering a new light source

direction, we estimate the associated intensity using the me-

dian of the values of pixels in the shadow of this new light

source. The process of discovering new lights stops when

the current discovered light does not have a significant con-

tribution to the shadows in the scene. The results of the vot-

ing algorithm are used to initialize the MRF both in terms of

topology and search space leading to more efficient use of

discrete optimization. When available, the number of light

sources can also be set manually.

Algorithm 1 Voting to initialize illumination estimate

Lights Set: L ← ∅

Direction Set: D ← all the nodes of a unit geodesic sphere

Pixel Set: P ← all the pixels in the observed image

loop

votes[d]← 0, ∀d ∈ D
for all pixel i ∈ P do

for all direction d ∈ D \ L do

if Is(i) < θS and ∀d′ ∈ L, Vi(d
′) = 0 then

if Vi(d) = 1 then votes[d]← votes[d] + 1
else

if Vi(d) = 0 then votes[d]← votes[d] + 1
d
∗ ← argmaxd(votes[d])
Pd∗ ← {i|ci(d

∗) = 1 and ∀d 6= d
∗, ci(d) = 0}

αd∗ ← median
{

1−Is(i)
max{−n(p(i))·d∗,0}

}

i∈Pd∗

if αd∗ < ǫα then

stop the loop

L ← L ∪ (d∗, αd∗)

3.2. Markov Random Field Formulation

The proposed MRF consists of one node for each im-

age pixel i ∈ P and one node for each light source l ∈ L.

Each pixel node and all the light nodes compose a high-

order clique c ∈ C. The 4-neighborhood system [1] com-

poses the edge set E between pixels. The energy of our

MRF model has the following form:

E(x) =
∑

i∈P

φp(xi) +
∑

l∈L

φl(xl) +
∑

(i,j)∈E

ψp(xi, xj)

+
∑

i∈P

ψc(xi,xL), (5)

where φp(xi) and φl(xl) are the singleton potentials for

pixel nodes and light nodes respectively, ψp(xi, xj) is the

pairwise potential defined on a pair of neighbor pixels, and

ψc(xi,xL) is the high-order potential associating all lights

in L and a pixel xi.
The latent variable xi for pixel node i ∈ P represents

the intensity value for that pixel. We uniformly discretize

the real intensity value [0, 1] into N bins to get the candi-

date set Xi for xi. The latent variable xl for light node l ∈ L
is composed of the intensity and the direction of the light.

We sample the space in the vicinity of the light configu-

ration obtained by the previous voting approach to get the

candidate set Xl for xl (see details later in this section).
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3.2.1 Singleton Potentials for Pixel Nodes

This term encodes the similarity between the estimated in-

tensity value and the shadow cue value and is defined as:

φp(xi) = ws min{|xi − Is(i)| , tp}. (6)

where an upper bound tp for this cost term is used to avoid

over-penalizing outliers and ws is a positive weight coeffi-

cient (same for wl, wp and wc below).

3.2.2 Singleton Potentials for Light Nodes

We use this term to favor illumination configurations gener-

ating shadow shapes that match observed shadow outlines

by incorporating a shadow shape-matching prior into the

MRF model.

We detect edges in the shadow cue image using a Sobel

detector [5]. Let τ(i) ∈ [0, 2π) be the angle of the gradient

at pixel i with the x-axis, and τ̂(i) ∈ {0,K−1} a quantiza-

tion of τ(i). For each possible direction d ∈ {0,K−1}, we

compute a distance map υd which contains, for each pixel,

the distance to the closest edge of orientation d (zero for

pixels that lie on an edge of orientation d).

For pixel i with gradient angle τ(i), the distance func-

tion is computed by interpolating between the distance map

values for the two closest quantized orientations:

distτ(i)(i) = (1− λ) · υτ̂(i)(i) + λ · υτ̂(i)+1(i), (7)

λ =

{

K · τ(i)

2π

}

, (8)

where {.} indicates the fractional part. In our experiments,

we chose K = 4.

We examine a configuration xl of light l. The shape-

matching prior expresses the quality of the match between

the edges of the synthetic shadow Sl associated with xl,
given the geometry G, and the observed edges in the shadow

cue image:

φl(xl) = wl

1

|ESl
(xl)|

∑

i∈PE(xl)

distτSl
(i)(i), (9)

where ESl
(xl) is the set of all pixels that lie on edges of

the shadow Sl generated by light label xl and τSl
(i) is the

gradient angle of the synthetic shadow edge generated by

xl at pixel i. To determine the set of shadow edge pixels

ESl
(xl), we generate the shadow Sl created by light label

xl and the geometry G and then apply gaussian smoothing

and the Sobel edge detector. The set ESl
(xl) contains all

pixels whose gradient magnitude is above θe.

Note that our MRF model is flexible with respect to both

singleton terms and other singleton measures can be con-

sidered.

3.2.3 Pairwise Potentials

We adopt the well-known Ising prior to define the pairwise

potential between a pair of neighboring pixels (i, j) ∈ E to

favor neighbor pixels having the same value:

ψp(xi, xj) =

{

wp if xi 6= xj
0 if xi = xj

(10)

3.2.4 Higher-order Potentials

We use this term to impose consistency between the illumi-

nation configuration and the pixel intensity values.

Let S be the synthetic shadow, generated by light con-

figuration xL and geometry G. The intensity at pixel i ∈ S ,

given a configuration xL of the lights, is:

s′i(xL) = xα0 +
∑

l∈L

xαl Vi(x
dir
l )max{−xdir

l · n(i), 0},

(11)

where xα0 corresponds to the ambient intensity, xαl is the

light intensity component of xl, x
dir
l is the light direction

component, n(i) is the normal at 3D point p imaged at pixel

i and Vi(x
dir
l ) ∈ {0, 1} is the visibility term for light direc-

tion xdir
l at 3D point p (cf. Eq.2). For pixels i /∈ S , we set

s′i(xL) = 1, according to the definition of our shadow cue

Is(i). The clique potential is defined as:

ψ(1)
c (xi,xL) = wc min{(s′i(xL)− xi)

2, tc}, (12)

where tc is also an upper bound to avoid over-penalizing

outliers.

In cases where the geometry G is far from the real scene

geometry, a light configuration that does not generate any

visible shadows in the image might result to a lower MRF

energy than the true light source. To avoid this degenerate

case, we introduce the term ψ
(2)
c (xL), which penalizes light

configurations that do not generate any visible shadows in

the image. The final form of the clique potential is:

ψc(xi,xL) = ψ(1)
c (xi,xL) + ψ(2)

c (xL). (13)

4. Inference

We can simultaneously estimate the cast shadows and the

illumination through a minimization over the MRF’s energy

defined in Eq. 5:

xopt = argmin
x

E(x) (14)

This MRF model contains high-order cliques of size |L|+2,

which make energy minimization challenging.

The most straightforward manner to minimize the model

energy is the high-order clique reduction technique pro-

posed in [9], while a more promising alternative given the
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complexity and the dimensionality of the problem is the

dual decomposition [13].

[9] performs inference in a higher-order MRF with bi-

nary labels by reducing any pseudo-Boolean function to an

equivalent quadratic one while keeping the minima of the

resulting function the same as the original. Like [9], we em-

ploy the fusion-move [16] and QPBO [6, 12] algorithms to

extend this method to deal with multi-label MRFs: During

energy minimization, a number of iterations is performed,

and for each iteration, the algorithm fuses the current label-

ing Lcur and a proposed labeling Lprop by minimizing a

pseudo-Boolean energy [9].

However, this method in practice failed to provide good

solutions. This can be explained by the complexity of the

graph-structure, the number of labels (in particular with re-

spect to the illumination variables) and the nature of pair-

wise and higher order interactions.

In order to address this failure and efficiently perform in-

ference, we can split the minimization of the energy in Eq.5

in two stages [2]. If we assume that the light parameters

are fixed, the high-order clique potentials in Eq.12 become

singleton potentials of the form:

ψ(1)
c (xi|L) = wc min{(s′i(xL)− xi)

2, tc}. (15)

This way, for a fixed light configuration L, we can com-

pute the energy of the MRF model by rewriting the energy

in Eq.5 as:

E(x) = EI(x|xL) + EL(xL), (16)

where

EI(x|xL) =
∑

i∈P

(

φp(xi) + ψ(1)
c (xi|L)

)

+
∑

(i,j)∈E

ψp(xi, xj)

(17)

is the energy of an MRF involving only pairwise potentials,

given the light configuration L, and

EL(xL) =
∑

l∈L

(

φl(xl) + ψ(2)
c (xL)

)

(18)

is the energy associated with the (fixed) light configuration

L. Given the light configuration L, we can minimize the en-

ergy EI(x|xL) using any of the various available inference

algorithms for pairwise MRF models. For our experiments,

we used the TRW-S belief propagation algorithm [11].

Furthermore, minx{EI(x|xL)} changes with different

light configurations, as shown in Fig.2. In order to min-

imize E(x), we sample the light parameter space around

the current estimate and we minimize the pairwise energy

EI(x|xL). We then compute the total MRF energy for a

sample t of the light parameter space as

E(s)(x) = min
x

{EI(x|xL) + EL(xL)} . (19)

When we have multiple lights, in each iteration of the al-

gorithm we change the parameters of only one of the light

sources to a new guess. The final solution corresponds to

the light parameter sample that generated the labeling with

the lowest energy:

xopt = argmin
s
E(s)(x). (20)

This method is more tolerant to local minima in the model

energy (which appear often in practice), while we also no-

ticed that, compared to a more standard gradient descent

method, it resulted in significantly less calls to evaluate en-

ergy EI(x}|xL), which are very costly. Results on conver-

gence can be found in the supplemental materials.

Figure 2. The model energy over possible directions of one light,

for a simple synthetic scene.

4.1. Generating Proposals

Both approaches above utilize sampling of the solution

space in order to generate proposals to minimize the MRF

energy. Generating good guesses for these proposals is im-

portant in order to achieve fast convergence to a good solu-

tion. Here we describe how we generate proposals for each

random variable class.

Light directions: We generate the proposed light source

direction x̂dir
l by drawing a sample from a von Mises-Fisher

distribution with mean direction ẋdir
l and concentration pa-

rameter κsample, where ẋdir
l is the estimated value from the

previous iteration of the algorithm. The estimate from the

voting algorithm is used for the first iteration. For our ex-

periments, κsample was set to 200. Samples are drawn using

the accept-reject algorithm.

Light intensities: For light source l, we compute a pro-

posed intensity by adding a random offset (drawn from a

normal distribution) to the current light source intensity es-

timate. We generate proposals for the ambient intensity x̂α0

in the same way.

Pixel intensities: In the case of higher-order clique re-

duction, we also need to generate proposals for the pixel

labels. The light proposal is kept fixed for N successive it-

erations, while each of the N pixel labels is proposed for

every pixel node, after which a new light proposal is gener-

ated.
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Figure 3. Bright channel: a. original image (from [3]); b. bright

channel; c. confidence map; d. refined bright channel

5. Experimental Validation

In our discussion so far, we have assumed that some per-

pixel estimate Îs of the shadow/shading image Is is avail-

able to be used as input in our MRF model. Before we pro-

ceed with the experimental validation, we will discuss the

cues we used to estimate shadow intensity.

5.1. Shadow Cues

We use the bright channel cue [20], which is based on

the following observations:

• The value of each of the color channels of the image

has an upper limit which depends on the incoming ra-

diance. This means that, if little light arrives at the

3D point corresponding to a given pixel, then all color

channels will have low values.

• In most images, if we examine an arbitrary image

patch, the albedo for at least some of the pixels in the

patch will probably have a high value in at least one of

the color channels.

From the above observations it is expected that, the maxi-

mum value of the r, g, b color channels in an image patch

will be roughly proportional to the incoming radiance for

many patches in the image. Therefore, the bright channel,

Ibright for image I is defined in a way similar to [8]:

Ibright(i) = maxc∈{r,g,b}

(

maxj∈Ω(i)(I
c(j))

)

(21)

where Ic(j) is the value of color channel c for pixel j and

Ω(i) is a rectangular patch centered at pixel i. As de-

scribed in [20], the bright channel cue is computed in mul-

tiple scales, and confidence values are computed for each

region based on hue differences across the region borders.

The confidences are combined across scales, and then dark

regions with low confidence are discarded (Fig.3).

5.2. Results

We evaluated our approach using images collected un-

der controlled illumination conditions in the lab, as well as

with real-world images of cars collected from Flickr, and

the Motorbike images from Caltech 101 [17]. To visualize

the estimated illumination, we rendered a synthetic verti-

cal pole (sun dial) using the estimated light parameters and

overlayed it to the original images.

We used 8 values for the pixel node labels, and per-

formed 1000 iterations of our algorithm. The values

we selected for the weights in our experiments were:

(ws, wl, wp, wc) = (8, 1, 1, 4). The upper bounds for

the truncated potentials were selected to be (tp, tc) =
(0.5, 0.5).

5.2.1 Synthetic Dataset

We evaluated our method quantitatively on a set of synthetic

images, rendered using a set of known light sources, se-

lected randomly for each test image. We used area light

sources of various sizes to evaluate our approach on both

soft and hard shadows. The number of light sources varied

from 1 to 3. We examined three different cases:

1. Accurate geometry: We estimated the illumination us-

ing the same 3D model used to render each image.

2. Approximate geometry: We estimated the illumination

using a coarse 3D model that roughly approximated

the original geometry by a bounding box and a ground

plane.

3. Approximate geometry with noisy shadow input: We

estimated the illumination using a coarse 3D model

and a noisy initial shadow estimate. To obtain the

latter, we added random dark patches to the rendered

shadow. The reason is that, on one hand our methods

are relatively insensitive to spatially-uniform random

noise, and on the other, this kind of patch-based noise

better emulates the errors in shadow estimation that

happen in real data, which generally result in whole

image regions erroneously identified as shadows.

For each estimated light source, we computed the dif-

ference in parameters from the true light source that was

closest in direction to the estimated one. Table 5.2 shows

the computed errors for light source direction and inten-

sity, averaged over all images in the synthetic test set. We

also compare the estimation accuracy with the results from

the voting algorithm used to initialize the MRF model pa-

rameters. Our results demonstrate both the accuracy of our

method and the robustness of the estimate with respect to

large inaccuracies in the geometry and initial shadow esti-

mate.

5.2.2 Real Datasets

We evaluated our approach further on images of the class

”Motorbikes” of the Caltech 101 dataset [17]. For every

image in this dataset we used the same rough 3D model

representing an average motorbike, and the same average

camera parameters across all images. We demonstrate that

our algorithm can estimate the illumination effectively, de-

spite the variations in geometry, pose and camera position
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Figure 4. Results for the Motorbikes class of the Caltech101 dataset. A synthetic sun dial (orange) rendered with the estimated illumination

is overlayed on each original image. A single 3D model capturing an average motorbike was used for the estimation in all instances, with

the same average camera parameters.

Exact geometry Approx. geometry Approx. geometry + noisy shadow input

Voting 12.30 12.86 28.81

MRF(without shape prior) 8.04 12.53 22.46

MRF(with shape prior) 6.77 13.38 15.44

MRF(HOCR [9])+shape prior 12.19 16.58 26.64

Table 1. Synthetic results: from left to right, we present the mean error in the estimated light directions on a synthetic dataset, using

the exact geometry to do the illumination estimation; using geometry approximated by bounding boxes and a ground plane; and using

approximate geometry and a noisy shadow input. Results are averaged over a random mix of images rendered with 1, 2 or 3 area light

sources of random size. As expected, the benefit from the shadow shape-matching prior is largest in the case of noisy shadow input.

in each individual image. Results are shown in Fig.4. The

results show that our approach is robust enough to estimate

the illumination by using the same generic 3D model for all

instances of a class of objects. In the most general case, an

object detector can be used to recognize objects of known

classes in an image, and then simple common class geome-

try can be used to estimate the illumination from that image,

combined with a horizon line estimator, without any other

information provided by the user for each image separately.

We also present results on images of cars collected from

Flickr (Fig.5). The geometry in these cases was a bounding

box corresponding to the car body and the ground plane.

Camera parameters were matched manually. Results with

both the Caltech 101 dataset and the images in Fig.5 were

obtained assuming one light source in the scene. Despite

our initial assumption of Lambertian reflectance, the results

show that our algorithm can cope with the abundance of

non-lambertian surfaces in these images.

Some cases where our algorithm fails are presented in

Fig.6. The two main reasons for failure are that either there

are large, dark areas that get mistaken for shadows or that

the shadows are very dim and not well-defined, as is the

case in cloudy days. In the case of the Caltech 101 dataset

another reason was that, for a few images, the common 3D

model we used was imaged at a significantly different posi-

tion than the motorbike in the image.

6. Conclusions

In this paper, we introduced a higher-order MRF model

to jointly estimate the illumination parameters and the cast

shadows, where the joint modeling of the low-level ev-

idence and the high-level prior knowledge within a sin-

gle probabilistic model significantly improves the estima-

tion performance. We presented results in various classes

of scenes, demonstrating the power of our MRF illumina-

tion model. Our results with the Caltech 101 dataset show

that we can estimate the illumination environment using the

same geometry and even pose for a large class of scenes -

aided by an object detector in more complex environments.

In many cases, as with our results on car images from Flickr,

a bounding box is enough to perform estimation. The ex-

periments show that our approach is more general and more

robust than previous approaches in illumination estimation

and thus quite successful in real world images. Future work

includes dual decomposition [13] for the optimization of

the MRF. Furthermore, we are interested in incorporating

our method in more general scene understanding tasks, e.g.

refining our knowledge of scene geometry from the illumi-

nation estimates.
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Figure 5. Results with images of cars collected from Flickr. Top row: the original image and a synthetic sun dial rendered with the estimated

illumination; Bottom row: the final shadow labels. The geometry consists of the ground plane and a single bounding box for the car.

Figure 6. Some failure cases; top: the dark ground is mistakenly

labeled as shadow; bottom: a very dim shadow and a dark ground

patch result in an incorrect shadow and illumination estimate.
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