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Abstract

A technique is presented to compute the refkted illumination

from curved mirror surfaces onto other surfaces. In accordance

with Fermat’s principle, this is equivalent to fiiding extremal

paths from the light source to the visible surface via the mirrors.

Once pathways of illumination are found, h-radiance is computed

from the Gaussian curvature of the geometrical wavefront. Tech-

niques from optics, differential geometry and interval analysis are

applied to this problem in global illumination.

CR Categories and Subject Descriptions: 1.3.3 [ Computer

Graphics ]: Picture/Image Generation; 1.3.7 [ Computer

Graphics ]: Three-Dimensional Graphics and Realism

General Terms: Algorithms

Additional Keywords and Phrases: Automatic Differentiation,

Caustics, Differential Geometry, Geometrical Optics, Global Illu-

mination, Interval Arithmetic, Ray Tracing, Wavefionts

1. Introduction

Ray tracing provides a straightforward means for synthesizing

realistic images on the computer. A scene is fwst modeled, usu-

ally by a collection of implicit or parametric surfaces. For each

point in an image, a visual ray is traced from the eye into the

scene. The visible (i.e., closest) surface intersection is found by

geometrical and numericsd methods, and the radiance at that visi-

ble point is calculated according to some shading model.

Whitted’s shading model extends the notion of visibility by simu-

lating refhxting and refracting surfaces [Whitted80]. A visual ray

that encounters a reflective surface is bounced off and continues

in the direction of reflection (see Figure 1). Eventually, it will

encounter a non-reflecting surface, and the shading crdculation is

performed,
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Figure 1. Reflected Visual Rays

This model simulates the effect of seeing the scene reflected in a

mirror or refkted through glass, but it does not extend the notion

of illumination. Once a visual ray arrives at a point p, the shading

calculation is liited to the dirtxt component of illumination-

just the effect of light traveling directly from the light ats. Shad-

ing occurs in two steps, fmt the irradiance at p is computed, and

next the reflected radianw in the direction of the visual ray is

determined, baaed on the bidirectional reflectance of the surface.
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Figure 2. Reflected Illumination

Figure 2 illustrates a much more difficult task; to illuminate a vis-

ible point with reflected light. There are two problems involved.

‘I?te first is fmdirtg the proper direction (or directions) irt which to

cast light rays, so that they arrive at the visible point p. The sec-
ond problem is to compute the proper irradiartce, given that the

light may reflect off a csuved surface and rmverge or diverge.
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Two approaches have been used previously to simulate specularly

reflected and refracted illumination. If the reflectors and refrac-

tors are polyhedral, illumination can be computed by backward

beam tracing [Shinya87, Shinya89, Watt90]. For each face of a

reflector visible from the light source, the subtended solid angle is

traced outward until it reaches a non-specular surface, where

radiant power is deposited.

For curved specuhu surfaces, backward ray tracing (also called

light-ray or illumination-ray tracing) provides an approximate

solution [Arvo86, Heckbert90, Shirley90]. In this method, rays

are cast stochastically from the light source, like individual

photons, reflecting through the scene until striking a non-specular

surface. Shirley has produced some of the most impressive

photorealistic images to date with this method (e.g., Figure 7 in

[Shirley90]).

The primary d~lculties with backward ray tracing involve

sampling and estimating the distribution of radiant power

(irradiance). Illumination rays arrive at their final destinations in

a nonuniform pattern; and if they gave us samples of imdisnce,

we would have some difficulty with nonuniform interpolation.

However, the problem is worse, because illumination rays just

give samples of radiant power. We must estimate the distribution

of radiant power from photon locations and density. This prob-

lem has been discussed by Heckbert [Heckbert90]. Chen et al.

[Chen91] describe a nice resampling method, but even this

method is fraught with difflcukiea. This is a troublesome prob-

lem which has not been eampletely solved. The method we pro-

pose will compute irradiance values at locations of our choosing,

and thus avoids both of these problems.

2. Geometrical Optics

The shading models of image synthesis are baaed on the princi-

ples of geometrical optics, where wave-like behavior of light is

assumed to occur only on an invisibly small scale. In this

scheme, light emitted from some point in some direction travels

along a curve or “ray” C(t) through space. We define the oplbxl
pa~h length from one point on a ray to another as the geometric

path length weighted by the refractive index of the media

S(l) = ~c q d;

A surface of constant S (relative to some source point) is called a

geometrical wavefiont, which is always perpendicular to the light

rays passing through it [Born80].

In homogeneous media, light rays are rectilinear; and if there are

regions of constant refractive index separated by smooth bound-

aries, then rays will travel along piecewise straight paths-

reflecting or refracting at boundaries. In a medium with smoothly

varying refractive index, rays would be curved. In all of these

settings, Ferrnd’s Principle is obeyed, which stipulates that light

travels along paths of stationary optical length, That is, the

optical path length is a 10CSImaximum or local minimum with

respect to any smafl variation in the path.

Given a stationary path, the important question is how much light

propagates along it. In optics, intensify, 1, is defined to be the

radiant power per wavefront area at any point along a ray. The

irradiance of a surface is then E = I cm 8, where (3 is the angle

between the ray and the surface normal. In the case of duect illu-

mination from a point source, rays emanate radially, and the

wavefronts are spherical. At a distance d, the wavefront intensity

is simply 1 = P/(4nd2 ), where P is the total power of the source,

However, once the ray has reflected off a curved surface, the

shape of the wavefront is no longer as simple.
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Figure 3, Wavefront and Principle Radii

Figure 3 illustrates the general situation in the neighborhood of a

point on a rectilinear ray. A plane containing the ray will inter-

sect the wavefront on a curve with some radius of curvature.

From elementary differential geometry, we know there will be

some orientation of the plane giving a curve with maximum

radius of curvature r,, and another orientation wilf give a mini-

mum radius r2. Furthermore, the planes associated with these

principle radii of curvature will rdways be orthogonal. The

circles of curvature are centered at points f, and f2, on the ray.

Let UM be an element of area on this wavefront. All the rays

passing through dA will intersect some subsequent wavefiont in

an area &i’. Let de, and d(lz be the elements of angle subtended

at the centers of curvature by these areas. By consemation of

energy, we know the following intensity law must hold true

I’ d rlr2d(31de2 r, rz
=—

I—’z= r;r~deld(lz r; r;

This shows the important fact that the intensity along the ray is

proportional to the Gaussian curvature of the wavefront 1/(r, r2 ).

3. Fermat Paths

A f~st step in computing the reflected illumination, as pictured in

Figure 2, would be to find the stationary paths from the point s to

p. Ingeneral, this would be a difficult problem of variational cal-

culus; but in the case we are considering, it reduces to a simple

optimization problem.

Figure 2 pictures a “one-bounce” path from the light s to p via a
reflection at x. The total optical path length is a simple function

of x.

d(x)=-+-

If the mirror surface is defined implicitly by g(x) = O, then the

optimization of d(x) subject to the contraint that all points lie on

g can be accomplished by the method of .bgrange multipliers.

This will give a system of four equations in four variables.

Vd(x) + kVg(x)) = O

g(x) = o

The solutions of these non-linear equations will yield paths of

locally extremal length.

Recall from analytic geometry that the loci of points whose sum

of distanms to two points is constant form an ellipsoid. Varying

the total distance yields a family of confocal ellipsoids whose foci

are s and p. Recall also that the gradient of an implicit function

evaluated on a surface is in the direction of the normal to the

surface. Thus, the system of equations produced by the method

of Lagrange multipliers have the simple geometric interpretation

that the extiemal points must not only lie on the implicit surface

g, but also that the ellipspid, and the surface must be tangent at
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those points (see Figure 4). Therefore, we seek those ellipsoids in

the family of confocsd ellipsoids that are tangent to the surface.

Figure 4. Osculating Ellipsoid

If the light is at infiiity, we cars use a simpler formula for optical

path length.

d(x) = +(p – X)2 – (s.x)

where in this case s is a unit vector in the direction of the light

source. The surfaces of varying d define a family of confocal

paraboloids about the visible point p. The extrema paths are

where these paraboloids are tangent to the surface.

The case of one-bounce refraction is similar to reflection. If the

tight and the visible point are on different sides of a smooth
boundary between two transparent mediz the optical path length

becomes:

d(x) =q1~+q2~

where q, and q z are the respective refractive indices. Surfaces

of constant d are confocal Carresian ovaIs. A Cartesian oval has

the appearance of an egg-shaped ellipsoid and is a quartic surface.

The mathematics of these surfaces are discussed in

[Stravroudis72].

If the curved mirror is defined by a parametric surface x(u,v),

then the tangency conditions are equivalent to stating that the

parametric derivatives of the surface are perpendicular to the

normal of the eUipsoid.

xU(u, v)”Vd(u, v) = O

xV(u, v). Vd(u, v) = O

where x. and x, are the derivatives in the u and v directions,

respectively, and d(u, v) is the distance function evaluated at

points on the surface, This leads to a system of two equations in

two unknowns. In this paper, we will focus on the problem of the

implicitly defined refkting surface. Such surfaces are harder to

deal with because they require a higher dimensional system of

equations. However, they are typically easier to ray trace.

The more general case of paths with N Imunces can be formulated

as a system of 4N equations. XO = s and XN+, = p; however,

only x, through x~ are variables in the optimization problem.

The total optical path length for multiple reflections is then:

N

d(x~, . ..xN +.)= ~~, (X,–X,+,)2
i=o

The implicit mirror surfaces are denoted by g, (xi ) = O, and the

so the system of equations to be solved are (for i from 1 to N):

V,d(xo, . .x N+,) +k, v;g, (xt) = o

g,(x,) = o

The gradient equations represent the condition that an ellipsoid

with foci at x,. , and x, + , must kiss the mirror surface

g; (x, ) = O. Notice that the V,d contains only three terms, and

hence the system of 4N equations is sparse.

There exist marry special purpose methods for solving the above

systems of equations for particular classes of surfaces. For

example, finding the ellipsoid tangent to a plane or to a sphere is

ve~ easy. In Section 5, however, we present numerical methods

based on interval techniques that work for general implicit

surfaces.

Once a path is determined, it is still necessary to check that no

intervening surface blocks light traveling rdong it. This is easily

done with the ray tracing occlusion tests. This is just the obvious

generrdization of Appel’s shadow-probe method [Appe168].

4. Wavefront Tracing

Once a path from the light source to the receiver has been deter-

mined, the intensity of the incoming ray must be computed. As

was discussed in Section 2, the intensity at a point along a ray

path is proportional to the Gaussian curvature of the wavefront

associated with that point. This intensity law suggests an algo-

rithm where we keep track of the Gaussian curvature as the ray

interacts with surfaces on its way to the receiver. The implemen-

tation requires (i) tools to analyze the differential geometry of

wavefronts and surfaces, and (ii) functions that tmuwform the

wavefront as it is transferred through homogeneous media and as

it reflects and refracts from a surface. Methods for performing (i)

are derived from classical differential geometry (For example

[Struik61]); methods for performing (ii) are derived from classical

geometrical optics (For example [Stavroudis72]). More details

(particularly the derivations) of the results used this section are

available in the quoted references.

The local properties of a surface can be derived by computing its

derivatives in different directions. A unit tangent in a direction

dx is equal to

*=LQ

ds

where dsz = dx. dx is the differential arc length. Differentiating

t again yields

dt
— = K“n+Kg(nxt)
ds

The normal curvature SC. is the component of curvature in the

direction ❑ .

dt dx dn dx.dn
Knin.—.__.—=–_

ds ds ds dxdx

where we use the fact that tn = O and hence t“n = -t, n’. In
the remainder of this paper whenever curvature is mentioned it

will mean the normal curvature. For this reason from this point on

the subscript n will be dropped.

The curvature is defined for aU directions tangent to the surface.

The radius of curvature, which is equal to the reciprocal of curva-

ture, is the radius of the osculating circle attached to a curve cre-

ated by cutting the surface with a normal plane, that is, a plane

containing n and t. Note that if a plane cuts the surface in a con-

vex curve, the cumature will be negative, whereas if the curve is

concave, the curvature will be posilive. A classic result in differ-

ential geometry is that the curvature attains a minimum and a

maximum value along two perpendicular directions calted the

lines of curvdure, or principal directions. These extrem% or

principal curvatures, are denoted by K, and Kj. The Gaussian
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curvature  K equals  ~1~2. If the Gaussian  curvature  is positive,
then K, and ~~  have the same  sign,  and hence the surface  is
locally  strictly convex  or concave.  However,  if the Gaussian
curvature  is negative,  then locally the surface  is saddle-shaped,
being  convex  along one line  of curvature  and concave  along
another.

Given  two principal  directions  u1 and u2, the curvature  in two
other  perpendicular  directions

u = cosOu,-sinerr

v = sin0u,+cost3u2

is given  by Euler’s  Formula (which  is easily derI.4  from the
definition  of curvature).

K” = KlCOS2e+K2Sin28

K,  = K,sin2~+K2Cos2~

& IV = (K1  -K2)COSeSid

where  K,  and K,  are the curvatures  in the directions  u and v,
respectively.  These  equations  can be inverted  to fiid the
principal  curvatures,  given  the curvatures  in any two other
orthogonal  directions.

tan20  = 2K,/(K,-K,)

K1  = K,CoS2e+2K,COSeSine+K,Sin2e

K2  = K,Sin28-2K,coS8Sine+K,coS28

This last formula  will  be used to derive  the principal  curvatures
after  a wavefront  interacts  with a surface.

Formulas  for curvature  are usually stated in terms  of derivatives
of parametric surfaces (see e.g. [Struik61]).  In our
implementation  we wish to compute  the curvature  of an implicit
surface,  so we derive  the curvature  formula in this case.
(Curiously,  in our scan of the literature,  we were  not able to find a
reference  to these formulae.)  Recall  the formula for curvature,

drdn
K=--

This requires  the evaluation  of dn, the derivative  of the unit
normal  vector  in the direction  dx . For an implicit  surface
f (&YJX

where

g = Vf

and

g-g = <fx”+f,‘+f,“,

From thii we can calculate

dn = --/+-&i$.  = ((g*8)1-(d))dg
(tI%) (f3T3)3’2

where

and I is the identity matrix.  The derivative  of g is

dg = Hdx

where  H is the Hessian  and equals

Thus, we arrive  at a formula for the curvature  that involves  the 1st
and 2nd partial  derivatives  of the surface.  In Section  5.1 we
discuss  a method  for efficiently computing  these derivatives  at a
point using automatic  differentiation.  In Plate  1, colors  code  the
Gaussian  curvature  of a quartic  surface  computed  using these
techniques.  Similar  illustrations  have  been produced  by
[Forrest791  and [JNlSl]  for parametric  surfaces.

Plate  1. Gaussian  Curvature

We now return to the task of tracing  a wavefront along a ray path.
The above  characterization  of the local  surface  geometry  in terms
of principal  curvature  leads  to a nice  representation  of the
wavefront at a point:

typedef struct  {
Vector3  u, v, n;
float KM,  K,;

) Wavefront;

The initial  wavefront for a point light source  is spherical;  this
implies  that both radii  of curvature  are equal  to the radius  of the
sphere and that there  are no distinguished  principal  directions
(that is, any directions  may be used). The initial  wavefront  for a
distant  light  source  is a plane;  this implies  that both radii  of curva-
ture are 0, and once again there are no unique  principal  directions.

The wavefront is now traced  through the system. This involves
three  operations:

l Transfer
l Reflection
l Refraction

The equations  describing  the evolution  of the wavefront  for each
of these situations  were  originally derived  in 1906 by Gullstrand
[GullstrandO6], and more  recently using modem  notation by
Kneisly  [Kneisly64]  and Stavroudis  [Stavmudis72].
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The equations of transfer are simplest:

Ku
Ku’ = —

1 -dKU

K,
Kv’ = —

l–d&

where d is the distance the wavefront moves. Noting that

K = 1/r, where r is the radius of curvature, these equations also

can be written in the form:

1 1—=_
r.’ rU–d

1 1—=—
r,’ t-, -d

which simply states that the radius of curvature of the waveffont

changes by an amount equal to the distance travelled. Remember

that for a converging wavefront the radius of curvature is positive.

Inspecting the above equations, we note that when a converging

wavefront moves a distance equal to original radius of curvature,

the denominator goes to O, and hence the intensity goes to infin-

ity. These positions of extremely high intensity are the caustics of
the wavefront.

The equations for refraction and reflection are more complicated

and involve the following three steps:

1)

2)

3)

Recall the equations giving the directions of the reflected

and refracted ray:

~(r) = ~(l)+2c05~ ~(.)

n(’) = q n(’)+y n(’)

In these equations n(t) and n(~) me the nomds to fie irlCl-

dent wavefront and surface, respectively; n(r) and n(’) are

the norrnrds to the reflected and transmitted (refracted)

wavefronts. q is the ratio of the indices of refraction in the

two media, q, /q ~, and ~ = qcosi + car (i is the angle of

incidence and / is the angle of refraction) [Stavroudis72].

The direction u = n(’) xn(’) is tartgent troth to the incident

wavefront and to the surface (since it is perpendicular to

both normals). The curvatures of the incident wavefront in

the direction u can be computed by rotating the principal

curvatures using the angle between u and the line of curva-
tures and Euler’s Formula. The curvatures of the surface

in this direction can be computed using the curvature ten-

sor of the surface.

The curvatures of the new wavefronts can be computed by

taking the directional derivatives of n(’) and n(’) in the

direction u. These derivatives can be computed directly

from the formulae for the refkzted and refracted vectors

and the directional derivatives of the normals on the inci-

dent wavefront and the surface. This calculation can be

found on pp. 149-157 of [Stavroudis72]; only the results

are stated here.

For reflection:

K:) = K:) +2cosiK$)

K((J = _ K(:)_ 2K(9

K(’) = K(’) +(2/COSi)K:)“ v

Remember that the cumature of a plane is O. Therefore, the cur-

vatures of an outgoing wavefront refkted horn a planar surface

will be the same as the incoming wavefront (the fact the K~

switches sign is a result of the change in orientation of the coordi-

nate system due to the reflection). This is as expected, since a

perfectly reflected wave does not change its shape. Note also that

a planar wavefront incident onto a reflecting surface essentially

inherits the curvature of the surface. Thus if the surface is con-

vex, the reflected wavefront will be diverging; whereas if the sur-

face is concave, the wavefront will be converging, eventually

forming a caustic.

Once we know the cunatures of the outgoing wavefront in the u
direction, we can compute the directions of principal curvatures

using Euler’s Formul% converting to our canonical wavefront rep-

resentation. This process is then repeated for the next surface that

the wavefront is incident upm.

The outgoing intensity of reflected and refracted light should also

k multiplied by the corresponding Fresnel coefficients to account

for the changes in the magnitudes of reflected vs. refracted light

as a function of the angle of incidence.

5. Numerical Techniques

Solving systems of nonlinear equations like the ones in section 3

can be a diftlcuh numerical problem; and in graphics, there is a

desire to include a diverse selection of implicit surfaces

g(x) = O. The combination of two interesting techniques make

this practical: automatic differentiation and interval arithmetic.

5.1. Automatic Differentiation

Imagine that we want to evaluate a function ~(xo ) at some point

and also the derivative ~X(xO). We could symbolically differenti-

ate J but this can result in a large expression that is computation-

ally expensive to evaluate. We could compute a finitedifference

approximation to the derivative, but this yields por numerical

accuracy.

An alternative is to compute with pairs of numbers representing

values of ~ and j, at a pint [Rrd181]. For constant ~ = c, this

pair will be (c, O), and for~ = x, the value/derivative pair is sim-

ply (XO,1). Starting from there, a formula for~ can be evaluated

by performing operations on these pairs of numbers. The pairs

are combined according to familiar rules of differentiation, such

as the following rules for multiplication and square root:

(8(XO), I?x(xo)) * (f(xo), f.(xo))

+ (go, g(xo)j-x(xo) + f(~o)gx(~o))

4U(XO) . fx(xo))

Ux)(xo) ~
+ (~),

2~)

This method can be easily extended to evaluate partial derivatives

with respect to different variables. It also can be extended to

simultaneously compute higher order derivatives.
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5.2. Interval Arithmetic

An alternative system of arithmetic can be defined, based on

interval numbers. A number of powerfuf numerical techniques

are based on interval arithmetic [Moore79], and some of these

techniques have been applied to problems in computer graphics

[Murdur84,Toth85,Mitchel190]. An interval number corresponds

to a range of real values and can be represented by a pair of

numlwrs [a, b], the lower and upper bounds of the interval.

Given intervaf numbers X and Y, we would like to compute

interval values of expressions such as X + Y or function values

~(X). Ideally, these values should be exact bounds, the range of

lowest to highest values of ~(x) for all x E X. Often it is not

possible to find the exact bound, but it may still be very useful to

know an interval value guaranteed to contain the exact bound.

It is straightforward to define interval extensions of basic

arithmetic operations:

[a,b] + [c,d] = [a + c, b + d] (la)

[a)b] - [c,d] = [a - d, b - c] (lb)

[a,b] * [c,d] =

[min(ac,ad,bc,bd), (lC)

max(ac, ad, bc, bd)]

andif O d [c, d]

[a,b] / [c,d] = [a,b] x [1/d,l/c] (Id)

Given a rational function r(x), the natural interval afension can

be defined by evaluating the expression r(X) for an intervaf

argument X = [xO, xl ] and using the interval- mithmetic

operations in (l). Interval extensions of familiar functions like

cosine or square root can also be defined and included in

expressions. The resulting interval value of r(X) is guaranteed to

contain the exact bound of the real-valued r(x) over the interval

X. The tightness of the bound may depend on how r(X) is

expressed. For example, intervaf arithmetic is subdistributive:

X(l’ + Z) c XY + XZ. One of the most important properties of

the natural interval extension is inclusion monotoniciiy:

X’ c X, implies r(X’ ) ~ r(X)

This means that as the interval X becomes more narrow, the

interval r(X) will converge to its real restriction.

5.3. Solving Nonlinear Systems

A robust and generaf method of solving nonlinear systems com-

bines automatic differentiation with interval arithmetic. Suppose

we aze attempting to solve a system of N equations in N

unknowns, f(x) = O. Ordinary Newton’s method does not pro-

vide a reliable way to locate every solution within a given region,

but interval extensions have been developed which do [Moore79].

The most straightforward interval Newton’s method is the

sequence beginning with some interval vector X ~:

X~+l = N(X~) nXl

where

N(X) = m(X) - [F’(X) ]-l~(m(X))

Here, m(X) is m ordinary vector made up of midpoint values of

the X components, and F’ ( X )-1 is the interval Jacobian of the

system of equations at X. The intersection N(X~ ) n X~ con-

strains the new intervaf to be within the originaf and is a common

precaution against effects of finite-precision machine arithmetic.

A problem with Newton-step operator N(X ) is that it involves the

inversion of an interval matrix. Krawczyk developed an

alternative Newton-like method using an operator which is

cheaper to compute. This operator only requires inversion of an

ordinary (non-interval) matrix:

K(X) = m(X) -[m(F’(X))]-lf(m( X))

+ (l-[m(F’(X))]-l F’(X) ](X–m(X))

Moore and others have proven a number of theorems about the

convergence of these Newton-like methods which are used to

construct a sound method for isolating and refiiing solution esti-

mates [Moore79,Ralf8 1].

Theorem 1 (Nonexistence I) ~0 # F(X), there is no soh.dion of

f(x) = o inx.

Theorem2 (Nonexistence II) ff K(X) n X = 0, (here are no

roots in X.

Theorem 3 (Convergence). If K(X) G X and
111- [m(F’(X))]-l F’(X)ll <1 , there is a unique root in X

and a number of iterative methods will converge to it.

The algorithm for fiiding all solutions is then quite simple.

Given an interval X, these three theorems are automatically tested.

The interval is discarded if it is known to have no solutions within

it. Some Newton-like iterative method is applied if Theorem 3

guarantees convergence. Otherwise, the interval is subdNided

and the procedure applied recursively. Subdivision must

terminate when the limits of machine-arithmetic are reached (i.e.,

when the width of X is less than some E=).

In our problem of reflected illumination, the systems given in

Section 3 must be solved. Since the equations involve Vg and

Vd, the interval Newton method will require values of the second

derivatives of g and d. The process of finding solutions must

begin with an initial intervaf value for the variables x, y,z,l. The

frost three dimensions are initialized to a box tightly enclosing the

impficit surface g( x) = O.
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Figure 5. Back-Facing Reflection Points

As Figure 5 shows, we wish to exclude points on the mirror

where the osculating elfipsoid touches a back-facing surface,

since the body of the mirror itself would block the light’s paths.

These points are eliminated automatically by choosing the initial

k interval to be [O, km]. This will only allow points where the

mirror’s normal points in the opposite direction of the normaf on

the osculating ellipsoid. A nice property of the interval root-

fmding methods is that they do not expend resources searching

outside the initial interval, so no time is wasted on back-facing

reflection points.

It’s important to note that more than one stationary path may exist
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from a given p to the light source. Figure 6 shows the paths at a

series of points in a two-dimensional scene. Rays from the fight

(in the upper right) to the surface are omitted to avoid chstterirsg

the image. Regions containing one path and a region containing

three paths are separated by a caustic surface. In the regions

containing three stationszy paths, notice that the middle pathway

is a local maximum. A common misconception is that Fermat’s

principle requires paths to be of minimum length.

Figure 6. Examples of Stationary Paths of Illumination

6. Implementing Multiple Extensions of a Function

Our ray tracer can accept an expression for an implicit surface in

a simple symbolic form, and then construct and solve the system

of equations described above. To accomplish this, expressions

g(x) are represented by sequences of codes for a push-down stack

machine. For example, the function for a unit sphere,

g(x) =x*+ y2+z*–l=o,

is defined as:

Bytecode sphere[] = {

LDX, SQR, LDY, SQR, LDZ, SQR,

ADD, ADD,

NUM, 1.0, SUB,

RET,

);

The LDX instruction pushes the value of x onto the stack. ADD

pops two vafues and pushes the sum, etc. A slightly more inter-

esting surface, shaped like a rounded cube with the faces dented

inward, is given by this quartic formul~

g(x) =x4+y4+z4–x*–y*– Z2 =0,

is defined as:

Bytecode cuboid[] = {

LDX,SQR,SQR,

LDY,SQR,SQR,

LDZ,SQR,SQR,

ADD,ADD,

LDX,SQR,LDY,SQR,LDZ, SQR,ADD,ADD,

SUB,

RET,

}

These stack-machine codes are evaluated by a collection of six

stack-machine interpreters in the ray tracer. Each of these inter-

preters takes a code sequence and argument x.

The frost group of interpreters operate on real numbers. The sim-

plest interpreter evaluates the code with ordimuy floating-point

arithmetic and returns the scalar value g(x). This stack machine

is used primarily during root refinement by ordinary Newton’s

method (when the interval methods have proven convergence

within an interval). A second stack machine used automatic dif-

ferentiation to compute g(x) and a corresponding value of Vg.

This is used primarily to find surface normal vectors for the shad-

ing calculation. A third machine computes the Hessian, and is

used irr wavefront-curvature calculations.

The second group of interpreters operate on intervals. A fust
machine in this group computes an interval extension of g and an

interval extension of the directional derivative ag/af along a ray.

This stack machine is used by the ray/surface intersection routines

as described in [Mitchel190]. A second machine computes inter-

val extensions of g and its gradient Vg, and a third machine com-

putes these as well as an interval extension of the Hessian matrix

for g. These two machines are used to compute the Krawczyk

operator (8) during the root isolation phase.

,,.

.

. .

... .. . .
,“, ::,’....,... .’. ... .

,. ..: “.. ,
. ...,

.. . . . .
.,.’

.“.

Figure 7. Spot Diagram ‘of Rays Reflected off Cuboid

7. Results

A basic ray tracer augmented with the reflection-illumination

techniques described above was implemented in 3400 lines of C

code. Two 512x5 12 images were rendered of a reflective

copper-colored cuboid defined by:

g(x)=xq+yg+zq–xz-yz– Z2=(I

This surface is a good test of our method, because it has regions

of concave, convex, and saddle-shaped curvature. The light

source is a point at infinity behind the viewer and slightly to their

right. In Plate 2, the wavefront intensity is not used, so the

brightness of the reflection is simply a function of how many vir-

tual light sources illuminate each visible point. Plate 3 is the

same image, using the intensity laws develo~d in Section 4.

Note that some reflections seen in Plate 2 have vanished because

they make an insignificant contribution to the intensity. Interest-

ing skucture in the reflection includes the bright focal point blow

the concave side and the bright edges of the caustic structure-a

singularity in intensity that occurs at the boundaries between

regions having different numbers of virtual lights. These plates

(as well as Figure 6) further demonstrate that the table top is

divided into distinct regions according to how many virtual lights

(i.e, stationary paths to the light source) me present.
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Figure 7 shows a spot  diagram of this system. This is the pattern
of dots formed by casting light rays toward the reflector  and
recording  where they hit the table. In this case, the light was not
at infinity,  so the shape of the caustic  is slightly different,  but the
topology  is essentially the same. Not only does this help verify
the correctness  of the geometry  and intensity  calculation,  but it is
an excellent  demonstration  of why backward ray tracing has
difficulty  deriving a smooth and correct  irradiance  value from a
nonuniform pattern of radiant-power  samples.

Plate 3 was computed on an &processor  Silicon  Graphics IRIS

(model 480) in about 10 hours.

Plate 2. Illumination  from Virtual Lights

8. Discussion

Our algorithm is based on two key ideas. Fit, Fermat’s
Principl+tbat light  travels along extremal  paths-allows  us to
formulate  the path calculation  as a multidimensional  non-linear
optimization  problem,  which  we can solve robustly  using interval
techniques. Second, the intensity law states that the incident  irra-
diance at a point  is proportional  to the Gaussian curvature  of the
wavefront at that point. Gaussian curvature  is computed by keep-
ing track of the local geometry of the wavefront  as it propagates
along a Fermat path. The combination  of the two techniques
allows us to calculate  directly  the illumination  via virtual  lights at
any point in the scene.

The intensity  law has been used in the two-pass  rendering algo-
rithms developed  by Shinya and Takahashi  [Shinya87,Shinya89]
and by Watt [Wat@O].  What is novel about our approach is that
we avoid the second pass, and hence the problem of resampling
the light  rays by the eye rays. We also formulate  the intensity  cal-
culation in a way suitable for ray tracing programs.  Shinya and
Takahashi’s  formulation  requires the notion of paraxial  rays, and
Watt’s formulation only works for polygonal  beams. We also
discuss how to compute curvatures for general implicit  functions.

Profiling our program, we fiid that the majority  of the time is
spent solving for path extrema. The time involved  is significant,

Plate 3. Illumination  with Intensity Law

but we take solace in a observation  by Turner Whitted that his
first ray tracer  spent the majority of its time in the line-surface
intersection  calculation.  We believe  that cost of solving for
ellipse-surface  tangency has roughly  the same complexity  as
line-surface  intersection,  and,  hence, can be speeded up signifl-
cantly.

An important  application  of this technique that we have yet to
explore  is the calculation  of extended form factors [Sparrow62].
A form factor  between two surface elements  is defined to be the
percentage  of light leaving one element  that impinges directly  on
the other. An extended form  factor  includes light traveling  via
intermediate  specular  surfaces. Fermat path tracing finds all the
paths between the two surface elements  explicitly.  Previous tech-
niques compute extended form factors by distributing  rays over
the hemisphere  above a surface [Wallace87,Sillion89].  Since this
involves sampling the hemisphere, it may miss important  modes
of light transport. Also, the wavefront intensity  correction must
be performed  if the path involves interactions  with curved sur-
faces. To the authors’  knowledge,  this  has not been done in exist-
ing systems.

Finally,  we have discussed  the local geometry of wavefronts, but
have ignored their global geometry. This distinction  roughly cor-
responds to that of sampling  visibility at a point vs. over an area.
The key feature of wavefronts are their singularities,  or caustics,
where the intensity  goes to infinity  and bright burning spots are
formed. Although caustics  at first seem to be a Problem (since
they cause a potentially  nasty divide  by zero), they can also be
used to advantage. Caustics separate  “ray-space”  into topologi-
tally uniform regions---for example,  where there are one vs. three
virtual  light  sources. Within topologically  uniform regions we
can compute paths incrementally  using Newton’s method,  since
there is no need to go through a root isolation  phase, since we
already  know a neighboring path. Thii observation  has the poten-
tial for speeding up the program enormously.  Also, the shapes of
the caustics  themselves  are very interesting. There is a one-to-
one correspondence  between the types of caustics and the types of
singularities,  or catastrophes,  produced  by a function and its
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gradient map [Berry80]. Producing mathematical visualizations

of such functions would be extremely interesting to mathematical

physicists.
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