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Illumination from Shadows
Imari Sato, Yoichi Sato, and Katsushi Ikeuchi

Abstract— In this paper, we introduce a method for recovering an illu-

mination distribution of a scene from image brightness inside shadows cast

by an object of known shape in the scene. In a natural illumination con-

dition, a scene includes both direct and indirect illumination distributed

in a complex way, and it is often difficult to recover an illumination dis-

tribution from image brightness observed on an object surface. The main

reason for this difficulty is that there is usually not adequate variation in

the image brightness observed on the object surface to reflect the subtle

characteristics of the entire illumination. In this study, we demonstrate the

effectiveness of using occluding information of incoming light in estimating

an illumination distribution of a scene. Shadows in a real scene are caused

by the occlusion of incoming light, and thus analyzing the relationships be-

tween the image brightness and the occlusions of incoming light enables us

to reliably estimate an illumination distribution of a scene even in a com-

plex illumination environment. This study further concerns the following

two issues that need to be addressed. First, the method combines the illumi-

nation analysis with an estimation of the reflectance properties of a shadow

surface. This makes the method applicable to the case where reflectance

properties of a surface are not known a priori and enlarges the variety of

images applicable to the method. Second, we introduce an adaptive sam-

pling framework for efficient estimation of illumination distribution. Using

this framework, we are able to avoid unnecessarily dense sampling of the

illumination and can estimate the entire illumination distribution more ef-

ficiently with a smaller number of sampling directions of the illumination

distribution. To demonstrate the effectiveness of the proposed method, we

have successfully tested the proposed method by using sets of real images

taken in natural illumination conditions with different surface materials of

shadow regions.

Keywords—computer vision, physics based vision, illumination distribu-

tion estimation

I. INTRODUCTION

The image brightness of a three-dimensional object is the

function of the following three components: the distribution of

light sources, the shape of a real object; and the reflectance of

that real object surface [8], [9]. The relationship among them

has provided three major research areas in physics-based vi-

sion: shape-from-brightness (with a known reflectance and illu-

mination), reflectance-from-brightness (with a known shape and

illumination), and illumination-from-brightness (with a known

shape and reflectance).

The first two kinds of analyses, shape-from-brightness and

reflectance-from-brightness, have been intensively studied using

the shape from shading method [10], [12], [11], [24], as well as

through reflectance analysis research [13], [22], [7], [1], [15],

[18], [30], [35].

In contrast, relatively limited amounts of research have been

conducted in the third area, illumination-from-brightness. This

is because real scenes usually include both direct and indirect il-

lumination distributed in a complex way and it is difficult to an-

alyze characteristics of the illumination distribution of the scene

from image brightness. Most of the previously proposed ap-

proaches were conducted under very specific illumination con-
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ditions, e.g., there were several point light sources in the scene,

and those approaches were difficult to be extended for more nat-

ural illumination conditions [11], [13], [30], [33], [36], or multi-

ple input images taken from different viewing angles were nec-

essary [17], [23].

In this study, we present a method for recovering an illumi-

nation distribution of a scene from image brightness observed

on an object surface in that scene. To compensate for the in-

sufficient information for the estimation, we propose to use oc-

cluding information of incoming light caused by an object in

that scene as well as the observed image brightness on an ob-

ject surface. More specifically, the proposed method recovers

the illumination distribution of the scene from image brightness

inside shadows cast by an object of known shape in the scene.

Shadows in a real scene are caused by the occlusion of in-

coming light, and thus contain various pieces of information

about the illumination of the scene. However, shadows have

been used for determining the 3D shapes and orientations of an

object which casts shadows onto the scene [19], [16], [32], [3],

while very few studies have focused on the the illuminant in-

formation which shadows could provide. In our method, image

brightness inside shadows is effectively used for providing dis-

tinct clues to estimate an illumination distribution.

The proposed approach estimates an illumination distribution

of a scene using the following procedures. The illumination dis-

tribution of a scene is first approximated by discrete sampling of

an extended light source; whole distribution is represented as a

set of point sources equally distributed in the scene. Then this

approximation leads each image pixel inside shadows to pro-

vide a linear equation with radiance of those light sources as

unknowns. Finally, the unknown radiance of each light source

is solved from the obtained set of equations. In this paper, we re-

fer to the image with shadows as the shadow image, to the object

which casts shadows onto the scene as the occluding object, and

to the surface onto which the occluding object casts shadows as

the shadow surface.

The assumptions that we made for the proposed approach are

as follows.

• Known geometry: the 3D shapes of both the occluding ob-

ject and the occluding surface are known as well as their

relative poses and locations.

• Distant illumination: we assume that light sources in the

scene are sufficiently distant from the objects, and thus all

light sources project parallel rays onto the object surface.

Namely, the distances from the objects to the light sources

are not considered in the proposed approach.

• No interreflection: the proposed method does not take into

account interreflection between the shadow surface and the

occluding object on the assumption that there is no severe

interreflection between them and no multiple scattering of

the interreflected rays from them to the scene. As a con-

sequence, objects with darker color and weaker specularity
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are preferred as occluding objects since they do not signif-

icantly act as secondary light sources, and the method can-

not handle a scene consisting of shiny occluding objects.

This study further concerns the following two issues that

need to be considered when we tackle this illumination-from-

brightness problem. The first issue is how to provide reflectance

properties of the shadow surface in cases where they are not

given a priori. Since it is a common situation that reflectance

properties of a surface are not known, a solution to this prob-

lem is required to enlarge the variety of images to which the

proposed method can be applied. In our approach, instead of

assuming any particular reflectance properties of the surface in-

side shadows, both the illumination distribution of the scene and

the reflectance properties of the surface are estimated simultane-

ously, based on an iterative optimization framework.

The second issue is how to efficiently estimate an illumina-

tion distribution of a scene without losing the accuracy of the

estimated illumination distribution. To capture the subtle char-

acteristics of the illumination distribution of a scene, the entire

distribution must be discretized densely, and this makes the so-

lution exceedingly expensive in terms of processing time and

storage requirements. To satisfy both the accuracy and the ef-

ficiency claims, we introduce an adaptive sampling framework

to sample the illumination distribution of a scene. Using this

adaptive sampling framework, we are able to avoid unnecessar-

ily dense sampling of the illumination and estimate overall illu-

mination more efficiently by using fewer sampling directions.

The rest of the paper is organized as follows. We describe

how we first obtain a formula which relates an illumination dis-

tribution of a scene with the image irradiance of the shadow im-

age in Section II and Section III. The formula will later be used

as a basis for estimating both the illumination distribution of a

real scene and the reflectance properties of the shadow surface.

Using this formula, we explain how to estimate an illumination

radiance distribution from the observed image irradiance of a

shadow image in Section IV. In this section, we consider the

following two cases separately: (1) where the reflectance prop-

erties of the shadow surface are known, (2) where those prop-

erties are not known. We also introduce an adaptive sampling

framework for efficient approximation of the entire illumination,

and show experimental results of the proposed method applied

to images taken in natural illumination conditions in Section V.

Finally, we discuss some of the related work proposed in the

field of computer graphics in Section VI, and present conclud-

ing remarks and future research directions in Section VII. This

paper is an expanded and more detailed version of the works we

presented in [27], [28].

II. RELATING ILLUMINATION RADIANCE WITH IMAGE

IRRADIANCE

In this section, we describe how we obtain a formula which

relates an illumination distribution of a real scene with the image

irradiance of a shadow image. The formula will later be used as

a basis for estimating the illumination distribution of a scene and

the reflectance properties of a shadow surface.

First, we find a relationship between the illumination distri-

bution of a real scene and the irradiance at a surface point in

Fig. 1. (a) the direction of incident and emitted light rays (b) infinitesimal patch

of an extended light source, (c) occlusion of incoming light

the scene. 1 To take illumination from all directions into ac-

count, let us consider an infinitesimal patch of the extended light

source, of a size δθi in polar angle and δφi in azimuth as shown

in Fig. 1.

Seen from the center point A, this patch subtends a solid angle

δω = sinθiδθiδφi. Let L0(θi, φi) be the illumination radiance

per unit solid angle coming from the direction (θi, φi); then the

radiance from the patch is L0(θi, φi)sinθiδθiδφi, and the total

irradiance of the surface point A is [9]

E =

∫ π

−π

∫ π
2

0

L0(θi, φi)cosθisinθidθidφi (1)

Then occlusion of the incoming light by the occluding object is

considered as

E =

∫ π

−π

∫ π
2

0

L0(θi, φi)S(θi, φi)cosθisinθidθidφi (2)

where S(θi, φi) are occlusion coefficients; S(θi, φi) = 0
if L0(θi, φi) is occluded by the occluding object; Otherwise

S(θi, φi) = 1 (Fig. 1 (c)).

Some of the incoming light at point A is reflected toward the

image plane. As a result, point A becomes a secondary light

source with scene radiance.

The bidirectional reflectance distribution function (BRDF)

f(θi, φi; θe, φe) is defined as a ratio of the radiance of a sur-

face as viewed from the direction (θe, φe) to the irradiance re-

sulting from illumination from the direction (θi, φi). Thus, by

integrating the product of the BRDF and the illumination radi-

ance over the entire hemisphere, the scene radiance Rs(θe, φe)
viewed from the direction (θe, φe) is computed as

Rs(θe, φe) =

∫ π

−π

∫ π
2

0

f(θi, φi; θe, φe)L0(θi, φi)

S(θi, φi)cosθisinθidθidφi (3)

Finally, the illumination radiance of the scene is related with

image irradiance on the image plane. Since what we actually

observe is not image irradiance on the image plane, but rather a

recorded pixel value in a shadow image, it is necessary to con-

sider the conversion of the image irradiance into a pixel value

of a corresponding point in the image. This conversion includes

1For a good reference of the radiometric properties of light in a space, see
[21].
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several factors such as D/A and A/D conversions in a CCD cam-

era and a frame grabber.

Other studies concluded that image irradiance was propor-

tional to scene radiance [9]. In our work, we calibrate a linearity

of the CCD camera by using a Macbeth color chart with known

reflectivity so that the recorded pixel values also become pro-

portional to the scene radiance of the surface. From (3) the pixel

value of the shadow image P (θe, φe) is thus computed as

P (θe, φe) = k

∫ π

−π

∫ π
2

0

f(θi, φi; θe, φe)L0(θi, φi)

S(θi, φi)cosθisinθidθidφi (4)

where k is a scaling factor between scene radiance and a pixel

value. Due to the scaling factor k, we are able to estimate un-

known L0(θi, φi)(i = 1, 2, · · · ·, n) up to scale. To obtain the scale

factor k, we need to perform photometric calibration between

pixel intensity and the physical unit (watt/m2) for the irradi-

ance.

III. APPROXIMATION OF ILLUMINATION DISTRIBUTION

WITH DISCRETE SAMPLING

In our implementation of the proposed method, to solve for

the unknown radiance L0(θi, φi) which is continuously dis-

tributed on the surface of the extended light source from the

recorded pixel values of the shadow surface, the illumination

distribution is approximated by discrete sampling of radiance

over the entire surface of the extended light source. This can be

considered as representing the illumination distribution of the

scene by using a collection of light sources with an equal solid

angle. As a result, the double integral in (4) is approximated as

P (θe, φe) =

n∑
i=1

f(θi, φi; θe, φe)L(θi, φi)S(θi, φi)cosθiωi

(5)

where n is the number of sampling directions, L(θi, φi) is the il-

lumination radiance per unit solid angle coming from the direc-

tion (θi, φi), which also includes the scaling factor k between

scene radiance and a pixel value, and ωi is a solid angle for the

sampling direction (θi, φi).
For instance, node directions of a geodesic dome can be used

for uniform sampling of the illumination distribution. By us-

ing n nodes of a geodesic dome in a northern hemisphere as

a sampling direction, the illumination distribution of the scene

is approximated as a collection of directional light sources dis-

tributed with an equal solid angle ω = 2π/n.

IV. ESTIMATION OF RADIANCE DISTRIBUTION BASED ON

REFLECTANCE PROPERTIES OF SHADOW SURFACE

After obtaining the formula that relates the illumination ra-

diance of the scene with the pixel values of the shadow image,

illumination radiance is estimated based on the recorded pixel

values of the shadow image.

In (5), the recorded pixel value P (θe, φe) is computed as a

function of the illumination radiance L(θi, φi) and the BRDF

f(θi, φi; θe, φi). Accordingly, in the following sections, we take

different approaches, depending on whether BRDF of the sur-

face is given.

Fig. 2. Each pixel provides a linear equation.

A. Known Reflectance Properties

A.1 Lambertian

Let us start with the simplest case where the shadow surface

is a Lambertian surface whose reflectance properties are given.

BRDF f(θi, φi; θe, φe) for a Lambertian surface is known to

be a constant. From (5), an equation for a Lambertian surface is

obtained as

P (θe, φe) =

n∑
i=1

KdL(θi, φi)S(θi, φi)cosθiωi (6)

where Kd is a diffuse reflection parameter of the surface.

From (6), the recorded pixel value P for an image pixel is given

as

P =

n∑
i=1

aiLi (7)

where Li (i = 1, 2, · · · ·, n) are n unknown illumination radi-

ance specified by n node directions of a geodesic dome. As

shown in Fig. 2, the coefficients ai(i = 1, 2, · · · ·, n) represent

KdS(θi, φi) cos θiωi in (6); we can compute these coefficients

from the 3D geometry of a surface point, the occluding object

and the illuminant direction. In our examples, we use a model-

ing tool called the 3D Builder from 3D Construction Company

[37] to recover the shape of an occluding object and also the

camera parameters from a shadow image. At the same time, the

plane of z = 0 is defined on the shadow surface. 2

If we select a number of pixels, say m pixels, a set of linear

equations is obtained as

Pj =
n∑

i=1

ajiLi (j = 1, 2, · · · ·, m) (8)

Therefore, by selecting a sufficiently large number of image

pixels, we are able to solve for a solution set of unknown Li’s. 3

For our current implementation, we solve the problem by using

the linear least square algorithm with non-negativity constraints

(using a standard MATLAB function) to obtain an optimal solu-

tion with no negative components.

2It is worth noting that, as long as the 3D shape of the shadow surface is pro-
vided in some manner, e.g., by using a range sensor, the shadow surface need
not be a planar surface. It is rather reasonable to think that a curved shadow sur-
face has the potential for providing more variation in aji in (8) than an ordinary
planar surface would since cosθi term of ai in (7) also slightly changes from
image pixel to pixel. Unless severe interreflection occurs within the surface, our
method can be applied to a curved shadow surface.

3More details of the pixel selection are found in the Appendix.
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It should be noted that each pixel P (θe, φe) consists of 3 color

bands (R, G, and B) and likewise the diffuse parameter Kd con-

sists of 3 parameters (Kd,R, Kd,G, Kd,B). Each color band of

L(θi, φi) is thus estimated separately from the corresponding

band of the image pixel and that of the diffuse parameter Kd.

For the sake of simplicity in our discussion, we explain the pro-

posed method by using L(θi, φi), P (θe, φe), Kd and do not refer

to each of their color bands in the following sections.

We must also draw attention to the importance of shadow

coefficients for recovering illumination distribution of a scene

from the observed brightness on an object surface. For instance,

consider the case described above where the given shadow sur-

face is a Lambertian surface. If we do not take into account

the occlusion of including light, the variation of aji in (8) is

caused only by the cosine factor of incoming light direction and

the surface normal direction of the corresponding point on the

shadow surface (cosθji). As a result, the estimation of illumi-

nation distribution by solving the equation (8) for a solution set

of unknown Li’s tends to become numerically unstable.

In contrast, taking into account the occlusion of incoming

light tells us that the variation of aji becomes much larger since

the shadow coefficient S(θi, φi) in (6) changes significantly, i.e.,

either 0 or 1, from point to point on the shadow surface de-

pending on the spatial relationships among the location of the

point, the occluding object, and the sampling direction of the il-

lumination distribution, as is well illustrated in Lambert’s work

described in [5]. This characteristics of shadows enables us to

reliably recover the illumination distribution of the scene from

brightness changes inside shadows.

A.2 Non-Lambertian surface

The proposed approach may be extended to other reflection

models as well. The only condition for a model to satisfy is that

it enables us to analytically solve for a solution set of unknown

illumination radiance from image brightness.

Take a simplified Torrance-Sparrow reflection model [22],

[34] for example; the pixel value of a shadow image P (θe, φe)
is computed as

P (θe, φe) =
∑n

i=1 KdL(θi, φi)S(θi, φi)cosθiωi +

∑n

i=1 KsL(θi, φi)S(θi, φi)ωi

1

cosθe

e
−γ(θi,φi)

2

2σ2

=
∑n

i=1 (Kdcosθi + Ks

1

cosθe

e
−γ(θi,φi)

2

2σ2 )

S(θi, φi)ωiL(θi, φi) (9)

where γ(θi, φi) is the angle between the surface normal and

the bisector of the light source direction and the viewing direc-

tion, Kd and Ks are constants for the diffuse and specular re-

flection components, and σ is the standard deviation of a facet

slope of the Torrance-Sparrow reflection model.

From (9), we obtain a linear equation for each image pixel

where L(θi, φi)(i = 1, 2, · · · ·, n) are unknown illumination ra-

diance, and (Kdcosθi + Ks
1

cosθe
e

−γ(θi,φi)
2

2σ2 )S(θi, φi)ωi (i =

1, 2, · · · ·, n) are known coefficients.

Again, if we use a sufficiently large number of pixels for the

estimation, we are able to solve for a solution set of unknown

illumination radiance L(θi, φi)(i = 1, 2, · · · ·, n) in this case.

A.3 Experimental Results for Known Lambertian Surface

We have tested the proposed approach using an image with an

occluding object, i.e., shadow image, taken under usual illumi-

nation environmental conditions, including direct light sources

such as fluorescent lamps, as well as indirect illumination such

as reflections from a ceiling and a wall (Fig. 3 (b)).

First, an illumination distribution of the scene was estimated

using the image irradiance inside shadows in the shadow im-

age. Then a synthetic object with the same shape as that of the

occluding object was superimposed onto an image of the scene

taken without the occluding object, which is referred as a sur-

face image, using the rendering method described in [29]. Note

that our algorithm does not require this surface image in the pro-

cess of illumination estimation in the case where the reflectance

properties of the shadow surface are given. This surface im-

age is used here as a background image for superimposing the

synthetic occluding object onto the scene.

Synthesized results are shown in Fig. 4 (a), (b), and (c). Also,

we superimposed another synthetic object of a different shape

onto the scene in Fig. 4 (d). The number of nodes of a geodesic

dome used for the estimation is shown under the resulting im-

age.

As we see in Fig. 4, the larger the number of nodes we used,

the more the shadows of the synthetic object resembled those of

the occluding object in the shadow image. Especially in the case

of 520 nodes, the shadows of the synthetic object are nearly in-

distinguishable from those of the occluding object in the shadow

image; this shows that the estimated illumination distribution

gives a good presentation of that of the real scene. 4

Fig. 5 numerically shows the improvement of the accuracy

obtained by increasing the number of samplings. Here, the es-

timated illumination distribution was evaluated in a different

scene condition where the occluding object was rotated 45 de-

grees on its z axis. The vertical axis represents the average error

in pixel values (0 to 255) inside the shadow regions in the syn-

thesized images compared with those in the shadow image. The

horizontal axis represents the number of nodes of a geodesic

dome used for the estimation. The small pictures right next to

the plot show error distributions inside shadow regions in the

synthesized images. Darker color represents larger error in a

pixel value. The average error at the zero sampling of illumina-

tion radiance represents, for reference, the average pixel value

inside the shadow regions of the shadow image.

In this plot, we see that flattening of the error curve before

convergence to the exact solutions occurs. This is likely caused

by the following factors. The first of these is the errors in the

measurements of the 3D shapes of the occluding object and the

shadow surface. The second factor is the errors in the given

reflectance properties of the shadow surface; there is some pos-

sibility that the shadow surface is not a perfect Lambertian sur-

face. The third factor is related to our lighting model that ap-

proximates the illumination distribution of a scene by discrete

sampling of an extended light source on the assumption that

4We see some “stair-casting” artifacts inside the synthesized shadows that re-
sult from our approximation of continuous illumination distribution by discrete
sampling of its radiance. One approach to reduce this artifact is to increase the
number of point light sources used for rendering, whose radiance is given by
interpolating the estimated radiance Li of the neighboring light sources.
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Fig. 3. Input images : (a) surface image (b) shadow image

Fig. 4. Synthesized images: known reflectance property

light sources in the scene are sufficiently distant from the ob-

jects. The input image used in this experiment was taken in an

indoor environment, this assumption might not perfectly hold.

The last factor concerns our assumption that there is no inter-

reflection between the occluding object and the shadow surface.

B. Unknown Reflectance Properties

B.1 Uniform Surface Material

There certainly may be a situation where reflectance proper-

ties of a surface are not known a priori, and we need to somehow

provide those properties in advance. To cope with this situation,

we combine the illumination analysis with an estimation of the

reflectance properties of the shadow surface. More specifically,

we estimate both the illumination distribution of the scene and

the reflectance properties of the surface simultaneously, based

on an iterative optimization framework. We will later explain

details of this iterative optimization framework in conjunction

with the adaptive sampling method described in SectionV. This

approach is based on the assumption that the shadow surface

has uniform reflectance properties over the entire surface.

Fig. 5. Error Analysis: The vertical axis represents the average error in pixel

values (0 to 255) inside the shadow regions in the synthesized images compared

with those in the shadow image. The horizontal axis represents the number of

nodes of a geodesic dome used for the estimation. The small pictures right next

to the plot show error distributions inside shadow regions in the synthesized

images. Darker color represents larger error in a pixel value.

B.2 Non-Uniform Surface Material

The last case is where the BRDF is not given, and the shadow

surface does not have uniform reflectance properties, e.g., sur-

faces with some textures. Even in this case, we are still able

to estimate an illumination distribution of a scene from shad-

ows if it is conceivable that the shadow surface is a Lambertian

surface.

The question we have to consider here is how to cancel the

additional unknown number Kd in (6). An additional image of

the scene taken without the occluding object, called the surface

image, is used for this purpose. The image irradiance of a sur-

face image represents the surface color in the case where none

of the incoming light is occluded. Accordingly, in the case of

the surface image, the shadow coefficients S(θi, φi) always be-

come S(θi, φi) = 1. Therefore, the image irradiance P ′(θe, φe)
of the surface image is computed from (6) as

P ′(θe, φe) = Kd

n∑
j=1

L(θj , φj)cosθjωj (10)

From (6) and (10), the unknown Kd is canceled.

P (θe, φe)

P ′(θe, φe)
=

Kd

∑n

i=1 L(θi, φi)cosθiS(θi, φi)ωi

Kd

∑n

j=1 L(θj, φj)cosθjωj

=

n∑
i=1

L(θi, φi)∑n

j=1 L(θj , φj)cosθjωj

cosθiS(θi, φi)ωi

(11)

Finally, we obtain a linear equation for each image pixel

where
L(θi,φi)∑

n

j=1
L(θj ,φj)cosθjωj

are unknowns, cosθiS(θi, φi)ωi are

computable coefficients, and P (θe,φe)
P ′(θe,φe)

is a right-hand side quan-

tity. Again, if we use a sufficiently large number of pixels for the
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Fig. 6. Input images : (a) surface image (b) shadow image

Fig. 7. Synthesized images: unknown reflectance property

estimation, we are able to solve the set of linear equations for a

solution set of unknown
L(θi,φi)∑

n

j=1
L(θj,φj)cosθj

(i = 1, 2, · · · ·, n).

We should point out that the estimated radiance from these

equations is a ratio of the illumination radiance in one di-

rection L(θi, φi) to scene irradiance at the surface point∑n

j=1 L(θj, φj)cosθjωj . As a result, we cannot relate the esti-

mated radiance over the color bands unless the ratio of the scene

irradiance among color bands is provided. It is, however, not so

difficult to obtain this ratio. For instance, if there is a surface

with a white color in the scene, the recorded color of the sur-

face directly indicates the ratio of the scene irradiance among

color bands. Otherwise, an assumption regarding total radiance

is required.

B.3 Experimental Results for Non-Uniform Surface Material

The input images used in this experiment are shown in Fig. 6.

The illumination distribution of the scene was estimated using

the image irradiance of both the shadow image and the surface

image, and a synthetic occluding object was superimposed onto

the surface image using the estimated illumination distribution.

Synthesized results are shown in Fig. 7. Again, in the case of

520 nodes, the shadows in the resulting image resemble those of

Fig. 8. Error Analysis: unknown reflectance property

the occluding object in the shadow image. This shows that the

estimated illumination distribution gives a good representation

of the characteristics of the real scene.

Fig. 8 numerically shows the improvement of the accuracy by

increasing the number of samplings. The estimated illumination

distribution was evaluated using a new occluding object with a

different shape. From the plot in the figure, we can clearly see

that the accuracy improves as we use more sampling directions

of the illumination distribution. It is likely that the flattening

of the error curve before convergence to the exact solutions is

caused by the same factors described in Section IV-A.3.

V. ADAPTIVE ESTIMATION OF ILLUMINATION

DISTRIBUTION WITH UNKNOWN REFLECTANCE

PROPERTIES OF SHADOW SURFACE

This section further concerns the following two issues that

further generalize the proposed approach. The first issue is how

to provide reflectance properties of a surface inside shadows in

cases where they are not given a priori, and the shadow surface

is not conceivable as a Lambertian surface.

The second issue is how to efficiently estimate an illumina-

tion distribution of a scene without losing the accuracy of the

estimated illumination distribution. In Section IV, we have es-

timated an illumination distribution of a real scene by sampling

the distribution at an equal solid angle given as node directions

of a geodesic dome. For more efficiently estimating the illumi-

nation distribution of a scene using fewer sampling directions

of illumination radiance, we propose to increase sampling di-

rections adaptively based on the estimation at the previous itera-

tion, rather than by using a uniform discretization of the overall

illumination distribution in this section.

A. Basic Steps of the Proposed Approach

To take both diffuse and specular reflections of the shadow

surface into consideration, a simplified Torrance-Sparrow re-

flection model (9) described in Section IV-A.2 is reused. Based

on this reflection model, both the illumination distribution of the
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scene and the reflectance properties of the shadow surface are

estimated from image brightness inside shadows as described in

the following steps.

1. Initialize the reflectance parameters of the shadow surface.

Typically, we assume the shadow surface to be Lambertian,

and the diffuse parameter Kd is set to be the pixel value of

the brightest point on the shadow surface. The specular

parameters are set to be zero (Ks = 0, σ = 0). 5

2. Select image pixels whose brightness is used for estimat-

ing both the illumination distribution of a scene and the

reflectance properties of the shadow surface. This selec-

tion is done by examining the coefficients ai in (7) in the

manner described in the Appendix.

3. Estimate illumination radiance L(θi, φi). Using the re-

flectance parameters (Kd, Ks, σ) and image brightness in-

side shadows in the shadow image, the radiance distribu-

tion L(θi, φi) is estimated as described in Section IV-A.2.

4. Estimate the reflectance parameters of the shadow surface

(Kd, Ks, σ) from the obtained radiance distribution of the

scene L(θi, φi) by using an optimization technique. (Sec-

tion V-B)

5. Proceed to the next step if there is no significant change in

the estimated values L(θi, φi),Kd, Ks, and σ. Otherwise,

go back to Step 3. By estimating both the radiance distri-

bution of the scene and the reflectance parameters of the

shadow surface iteratively, we can obtain the best estima-

tion of those values for a given set of sampling directions

of the illumination radiance distribution of the scene.

6. Terminate the estimation process if the obtained illumi-

nation radiance distribution approximates the real radiance

distribution with sufficient accuracy. Otherwise, proceed to

the next step.

7. Increase the sampling directions of the illumination distri-

bution adaptively based on the obtained illumination radi-

ance distribution L(θi, φi). (Section V-C)

Then go back to Step 2.

In the following sections, each step of the proposed approach

will be explained in more detail.

B. Estimation of Reflectance Parameters of Shadow Surface

based on Radiance Distribution

In this section, we describe how to estimate the reflectance

parameters of the shadow surface (Kd, Ks, σ) by using the esti-

mated radiance distribution of the scene L(θi, φi).
Unlike the estimation of the radiance distribution of the scene

L(θi, φi), which can be done by solving a set of linear equa-

tions, we estimate the reflectance parameters of the shadow sur-

face by minimizing the sum of the squared difference between

the observed pixel intensities in the shadow image and the pixel

values computed for the corresponding surface points. Hence,

the function to be minimized is defined as

f =

m∑
j=1

(Pj
′
− Pj)

2 (12)

5Note that the initial value of Kd is not so important since there is a scaling
factor between the reflectance parameters and illumination radiance values in
any case. To fix the scaling factor, we need to perform photometric calibration
of our imaging system with a calibration target whose reflectance is given a
priori.

where Pj
′ is the observed pixel intensity in shadows cast by the

occluding object, Pj is the pixel value of the corresponding sur-

face points computed by using the given radiance distribution of

the scene L(θi, φi) in (9), m is the number of pixels used for

minimization. In our method, the error function in (12) is min-

imized with respect to the reflectance parameters Kd, Ks, and

σ by the Powell method to obtain the best estimation of those

reflectance parameters [25]. As has been noted, this approach

is based on the assumption that the shadow surface has uniform

reflectance properties over the entire surface.

C. Adaptive Sampling of Radiance Distribution

If the estimated radiance distribution for a set of sampling di-

rections does not approximate the illumination distribution of

the scene with sufficient accuracy, we increase the sampling di-

rections adaptively based on the current estimation of the illu-

mination radiance distribution.

Radiance distribution changes very rapidly around a direct

light source such as a fluorescent light. Therefore, the radiance

distribution has to be approximated by using a large number

of samplings so that the rapid change of radiance distribution

around the direct light source is captured. Also, to correctly

reproduce soft shadows cast by extended light sources, radi-

ance distribution inside a direct light source has to be sampled

densely.

On the other hand, coarse sampling of radiance distribution is

enough for an indirect light source such as a wall whose amount

of radiance remains small. As a result, the number of sampling

directions required for accurately estimating an illumination dis-

tribution of a real scene becomes exceedingly large.

To overcome this problem, we increase sampling directions

adaptively based on the estimation at the previous iteration,

rather than by using a uniform discretization of the overall il-

lumination distribution. In particular, we increase sampling di-

rections around and within direct light sources. 6

Based on the estimated radiance distribution L(θi, φi) for the

sampling directions at the previous step, additional sampling di-

rections are determined as follows.

Suppose three sampling directions with radiance values

L1, L2, and L3 are placed to form a triangle M1 as illustrated

in Fig. 9. To determine whether a new sampling direction needs

to be added between L1 and L2, we consider the following cost

function.

Fig. 9. Subdivision of sampling directions

6A similar sampling method has been employed in radiosity computation to
efficiently simulate the brightness distribution of a room [4].
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U(L1, L2) = diff(L1, L2) + αmin(L1, L2)angle(L1, L2)
(13)

where diff(L1, L2) is the radiance difference between L1 and

L2, min(L1, L2) gives the smaller radiance of L1 and L2,

angle(L1, L2) is the angle between directions to L1 and L2,

and α is the manually specified parameter which determines the

relative weights of those two factors. The first term is required

to capture the rapid change of radiance distribution around di-

rect light sources, while the second term leads to fine sampling

of the radiance distribution inside direct light sources. The ad-

ditional term angle(L1, L2) is used for avoiding unnecessarily

dense sampling inside direct light sources. In our experiments,

α is set to 0.5.

If the cost U is large, a new sampling direction is added be-

tween L1 and L2. In our experiments, we computed the cost

function values U for all pairs of neighboring sampling direc-

tions, then added additional sampling directions for the first 50%
of all the pairs in the order of the cost function values U .

D. Experimental Results for Adaptive Sampling Method

We have tested the proposed adaptive sampling method by us-

ing real images taken in both indoor and outdoor environments.

In the following experiment, the adaptive sampling technique

was applied to a uniform unknown reflectance properties case.

The shadow image shown in Fig. 10 was used here as an input

of a indoor scene.

Starting from a small number of uniform sampling directions

of the illumination distribution, the estimation of the radiance

distribution of the scene was iteratively refined. At the same

time, the reflectance parameters (Kd, Ks, and σ) of the shadow

surface were estimated as explained in Section V-B. Then an

appearance of the shadow surface around the occluding object

was synthesized using the estimated radiance distribution of the

scene and the estimated reflectance parameters of the shadow

surface.

The region inside the red rectangle in Fig. 10 (b) was replaced

with the synthesized appearances in the left column in Fig. 11.

The number of sampling directions of the radiance distribution

used for the estimation is shown under the resulting images.

Here, the resulting shadows of the synthetic occluding object re-

semble more closely those of the occluding object in the shadow

image as we increase the number of sampling directions based

on the proposed adaptive sampling technique. Finally, in the

case of 140 sampling directions, the synthesized shadows of the

occluding object blend into the input shadow image well, and

few distinct boundaries in the shadows are seen in the resulting

composite image.

To see how well the adaptive sampling of radiance distribu-

tion works in this example, we took an omni-directional image

of the office scene as a ground truth. The middle column of

Fig. 11 shows the omni-directional image of the scene taken

by placing a camera with a fisheye lens looking upward on

the shadow surface in Fig. 10 (a). The omni-directional im-

age shows both direct light sources, i.e., the fluorescent lamps

in our office, and indirect light sources such as the ceiling and

Fig. 10. Input image : (a) shadow image taken of an indoor scene (b) the

region which synthesized images with the estimated radiance distribution and

reflectance parameters are superimposed.

Fig. 11. Adaptive refinement of illumination distribution estimation: (a) synthe-

sized images with the estimated radiance distribution and reflectance parameters

(b) adaptive refinement of sampling directions with a ground truth of an omni-

directional image of the scene (c) the estimated radiance values visualized for

comparison with the ground truth
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Fig. 12. Error Analysis

walls. The right column of Fig. 11 shows the estimated radiance

values visualized for comparison with the ground truth. In those

images in Fig. 11 (b) and (c), we can see that sampling directions

of the radiance distribution were nicely added only around the

direct light sources at each step by the proposed adaptive sam-

pling framework, starting from the coarse sampling directions at

the top row.

Fig. 12 numerically shows the improvement of the accuracy

by adaptive refinement of sampling directions and the estimation

of reflectance properties of the shadow surface. From the plot in

the figure, we can clearly see that the accuracy improves rapidly

as we adaptively increase the sampling directions of the radiance

distribution.

To confirm the merit of the adaptive sampling framework, we

also estimated the illumination radiance distribution with uni-

form sampling. In that case, even 300 uniformly sampled direc-

tions could not achieve the same level of accuracy as the estima-

tion result obtained by 80 sampling directions with the proposed

framework.

Fig. 13 (a) shows another example image taken outside the en-

trance lobby of our building in the late afternoon. In this image,

we used the rectangular pole with two colors as an occluding

object casting shadows. In the same way as the previous exam-

ple, an appearance of the shadow surface around the occluding

object, illustrated with a red rectangle in Fig. 13 (b), was synthe-

sized by using the estimated radiance distribution of the scene

and the estimated reflectance parameters of the shadow surface.

Fig. 14 shows the resulting images obtained by the use of our

method. Although the grid pattern on the shadow surface is

missing in those synthesized images due to the assumption of

uniform reflectance on the shadow image, the appearance of the

shadow around the occluding objects is virtually indistinguish-

able in the case of 140 sampling directions. This shows that the

estimated illumination distribution well represents the charac-

teristics of the real scene.

Fig. 13. Input image : (a) shadow image taken in an outdoor scene (b) the

region where synthesized images with the estimated radiance distribution and

reflectance parameters are superimposed in Figure 14

Fig. 14. Adaptive refinement of illumination distribution estimation: synthe-

sized images with the estimated radiance distribution and reflectance parameters

VI. DISCUSSION

In the field of computer graphics, there have also been sev-

eral methods proposed for recovering an illumination distribu-

tion of a real scene from appearance changes observed on ob-

ject surfaces in the scene. Most of them have been conducted in

fully computer-generated environments where a designer speci-

fied the geometry and reflectance of whole scenes and the loca-

tions of all light sources [31], [14]; those methods were mainly

developed for assisting designers in achieving desirable effects

such as highlights and shadows in the synthesized image.

Some researchers extended similar approaches for real im-

ages and estimated radiance of real light sources in the scene.

Fournier et al. [6] estimated radiance of the light sources with

users’ defined fix locations on the assumption that all surfaces

were Lambertian surfaces. Later, Marschner and Greenberg [20]

introduced to approximate the entire illumination with a set of

basis lights located in the scene. Although this method has an

advantage over the previous methods of not requiring knowl-
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edge about the light locations of the scene, the estimation de-

pends entirely on the appearance changes observed on an object

surface assumed to be Lambertian, and therefore some restric-

tions are imposed on the shape of the object, e.g., the object must

have a large amount of curvature. Recently, Ramamoorthi and

Hanrahan [26] introduced a signal-processing framework that

described the reflected light field as a convolution of the light-

ing and BRDF, and showed under which condition lighting and

BRDF recovery could be done robustly. Simultaneously, Basri

and Jacobs [2] reported that the images of a convex Lamber-

tian object obtained under a wide variety of lighting conditions

could be approximated with a low-dimensional linear subspace

by using a similar signal-processing approach.

We are currently investigating the analysis of the problem of

illumination estimation from shadows in their signal-processing

framework. It was found through our preliminary experiments

that high frequency components of the appearance of an object

surface could retain significant energy by taking the shadow co-

efficients on the object surface as well as its BRDF into account.

This indicates that the use of shadows for the illumination esti-

mation has the significant advantage of providing more clues to

the high frequency components of illumination distribution of a

scene.

VII. CONCLUSIONS

In this study, we have presented a method for recovering an

illumination distribution of a scene from image brightness ob-

served on a real object surface. In a natural illumination condi-

tion, it is hard to recover an illumination distribution from image

brightness observed on a real object surface. The main reason

for this difficulty is that there is usually not adequate variation in

the image brightness observed on the surface to reflect the subtle

characteristics of the entire illumination.

One of the main contributions of our work is to demonstrate

the effectiveness of using occluding information of incoming

light in estimating the illumination distribution of a scene. An-

alyzing the relationships between the image brightness and the

occlusions of incoming light enabled us to reliably estimate the

illumination distribution of a scene even in a complex illumina-

tion environment. In addition, the question of how to provide

the reflectance properties of a surface to be used for the estima-

tion still remains from the previously proposed methods. Since

it is a common situation that reflectance properties of a surface

are not known, solutions to this problem are required. Another

contribution of our work is that we have combined the illumi-

nation analysis with an estimation of the reflectance properties

of a surface in the scene. This makes the method applicable to

the case where reflectance properties of a surface are not known,

and it enlarges the variety of images to which the method can be

applied.

We also introduced an adaptive sampling of the illumination

distribution of a scene as a solution to the question of how we

could efficiently estimate the entire illumination with a smaller

number of sampling directions of the entire distribution in this

paper. Using the proposed adaptive sampling framework, we

were able to avoid unnecessarily dense sampling of the illumi-

nation and to estimate overall illumination more efficiently by

using fewer sampling directions.

While the effectiveness of the proposed method in estimat-

ing illumination distributions of usual scenes was demonstrated

in this paper, the estimation was based on the assumptions that

light sources in the scene were sufficiently distant from the ob-

jects, and that there was no severe interreflection between a

shadow region and an occluding object. The future directions

of this study include extending the method for: (1) considering

the interreflection between a shadow region and an occluding

object; and (2) taking distances from the occluding object to

light sources into account.
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APPENDIX

The proposed method estimates radiance value of the light

sources based on the variations in the computed coefficients ai

in (7); we obtain n coefficients ai (i = 1, 2, · · · ·, n) per image pixel

where n is the number of the light sources. For reliable estima-

tion, it is essential that we select image pixels from a shadow

image to maximize variation in the combinations of ai.

In our approach, the shadow surface is first partitioned into

clusters based on combinations of the coefficients ai. In other

words, pixels that have the same combination of ai are clustered

into the same group. Fig. 15 shows several examples of parti-

tioning based on the coefficients ai with pseudo colors. Here

each color represents an individual class with a different combi-

nation of coefficients of the light sources, and the block region

corresponds to the occluding objects.

After the shadow surface are partitioned into clusters, one

pixel is selected from each of those clusters. From this clus-

tering process, we are able to avoid selecting redundant pixels

that provide the same information about the illumination of the

scene. This results in significant speedup of the entire estimation

process as well.

Fig. 15. Clustering results
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