
Lehrstuhl für Bildverarbeitung

Institute of Imaging & Computer Vision

Illumination-Invariant Change Detection
Daniel Toth and Til Aach and Volker Metzler

Institute of Imaging and Computer Vision
RWTH Aachen University, 52056 Aachen, Germany

tel: +49 241 80 27860, fax: +49 241 80 22200
web: www.lfb.rwth-aachen.de

in: 4th IEEE Southwest Symposium on Image Analysis and Interpretation. See also BIBTEX
entry below.

BIBTEX:

@inproceedings{TOT00a,
author = {Daniel Toth and Til Aach and Volker Metzler},
title = {Illumination-Invariant Change Detection},
booktitle = {4th IEEE Southwest Symposium on Image Analysis and Interpretation},
publisher = {IEEE},
address = {Austin, TX},
month = {April 2 - 4},
year = {2000},
pages = {3--7}}

Copyright (c) 2000 IEEE. Personal use of this material is permitted. However, permission to use
this material for any other purposes must be obtained from the IEEE by sending an email to
pubs-permissions@ieee.org.

document created on: December 13, 2006
created from file: ssiai00cover.tex
cover page automatically created with CoverPage.sty
(available at your favourite CTAN mirror)
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Abstract

Moving objects in image sequences acquired by a static
camera can be detected by analyzing the grey–level differ-
ence between successive frames. Direct motion detection,
however, will also detect fast variations of scene illumina-
tion. This paper describes a method for motion detection
that is considerably less sensitive to time–varying illumina-
tion. It is based on combining a motion detection algorithm
with a homomorphic filter which effectively suppresses vari-
able scene illumination. To this end, the acquired image se-
quence is modelled as being generated by an illumination
and a reflectance component that are approximately sepa-
rated by the filter. Detection of changes in the reflectance
component is directly related to scene changes, i.e. object
motion. Real video data are used to illustrate the system’s
performance.

1. Introduction

The detection of moving objects in image sequences
recorded with a static camera is often based on evaluating
temporal changes in intensity [2, 3, 4, 13]. Assuming that
such temporal changes are caused by motion or noise, the
purpose of change detection is to identify and label those
changes which are due to motion. Ideally, the resulting
change mask corresponds to the projection of moving ob-
jects and shadows onto the image plane, plus uncovered
background. Two error classes occur: on the one hand,
noise causes false positives in static regions (class 1 errors).
On the other hand, object motion does not always generate
distinct grey level changes, leading to “holes” in the change
mask (class 2 errors). This is typically the case when object
motion is small or spatial grey level gradients are small (cf.
[12]). In section 2 we review a context-adaptive change de-
tection algorithm which almost completely avoids errors of
both classes.

Temporal changes are often detected by comparing con-
secutive frames of the sequence in question [7, 9], for in-

stance by calculating the grey level difference image. This
corresponds to a temporal highpass filter, which more or
less eliminates slow changes in illumination. Potential
faster changes in illumination, however, are not sufficiently
attenuated by this operation.

To eliminate the unwanted influence of a varying illumi-
nation component we use a model well known in homomor-
phic image filtering [11]. In this model the image intensity
is considered to be generated by an incoming illumination,
which is reflected by the surfaces of the objects in the ob-
served scene. For Lambertian surfaces, the relation between
observed intensity y, illumination i and reflectance r is mul-
tiplicative. Assuming the scene illumination to vary slowly
over space and the reflectance component to contain mainly
medium and high spatial-frequency details [10, 11], an ap-
proximate elimination of illumination is possible by taking
the logarithm of the image before applying a linear highpass
filter. After exponentiation, change detection is carried out
on the remaining reflectance component.

In the following we first summarize our method for
context-adaptive change detection; a more detailed descrip-
tion can be found in [1, 3]. This is followed by a description
of our illumination–invariant change detection system.

2. The change detection algorithm

The goal of a change detection system is to generate a
change mask q consisting of binary labels q(k) for each
pixel k on the image grid. The labels either take the value
”u” (’unchanged’) or ”c” (’changed’). In order to determine
the label q(k = i) for pixel i we start with the grey–level
difference image d(k) between two successive frames, and
compare the sum of absolute differences ∆i within a sliding
window wi of size N pixels and center i to a threshold T :

∆i =
2
√

2
σu

∑
k∈wi

|d(k)|
c
>
<
u

T. (1)

Here, σu is the noise standard deviation of the grey level
differences in stationary areas, which is assumed to be con-
stant over space. Normalization by σu — which is known



for a given camera or easily estimated — adapts T to differ-
ent noise levels. Given the null hypothesis H0 (grey–level
differences d(k) in wi are due only to noise), and modelling
the grey level differences d(k) as independent and Lapla-
cian distributed [5], ∆i obeys a χ2-distribution with 2N
degrees of freedom [4] 1. Change detection can then be for-
mulated as a significance test, where the threshold value is
determined in terms of an acceptable false alarm rate α [4].
The “significance” α is equivalent to the probability that ∆i

exceeds the threshold T , given H0:

α = Prob (∆i > T |H0) . (2)

For a given false alarm rate α, the threshold T is determined
from tables of the χ2-distribution. The decision rule then is

∆i

c
>
<
u

T . (3)

Whenever ∆i exceeds T , we decide q(i) = c, otherwise
q(i) = u.

As mentioned above, this global-threshold-based deci-
sion procedure is prone to two kinds of errors, false pos-
tives and false negatives. The basic idea to reduce these
errors is to decrease the decision threshold inside changed
areas, and to increase it outside. This exploits the prior
knowledge that changed and unchanged regions correspond
to objects or background, respectively, which usually are
of compact shape. Formally, this prior knowledge can be
expressed by modelling the change masks as realizations
of Gibbs/Markov-random fields [1]. This leads to a vari-
able threshold t, which adapts to the label constellation
within a pixel’s neighbourhood. The higher the number ni

of ”changed” pixels found in this neighbourhood, the lower
the threshold is [1]:

t(ni) = T + (4− ni) ·B, (4)

with 0 ≤ ni ≤ 8 when using a 3×3 neighbourhood. The pa-
rameter B is a positive–valued potential, which determines
the range of t(ni). If ni = 0, the threshold t reaches its
maximum value of T +4B. The minimum value of T −4B
results if ni = 8, i.e. all neighbours of pixel i are labelled as
”changed”. If there are as many “changed” as “unchanged”
labels, we have ni = 4, and t = T . Clearly, the threshold
t(ni) favours the emergence of compact, smoothly shaped
object masks, and reduces scattered decision errors caused
by noise.

The labels q(k) necessary to calculate t(ni) can be ob-
tained as follows: assuming a raster scan from the upper left
to the lower right image corner, the labels in the causal part

1Instead of taking the sum of absolute values, the local sum of squared
grey level differences may similarly be used [4]. The former sum is, how-
ever, more robust against outliers.

of the 3 × 3-neighbourhood of pixel i are already known.
The labels in the noncausal part of the neighbourhood are
approximated by keeping labels from the previous change
mask (see Figure 1). Note that overwriting the previous
change mask during the raster scan generates this constella-
tion automatically.

i

Figure 1. Label constellation in the neigh-
bourhood of pixel i. The causal part of the
neighbourhood is shown shaded.

3. Homomorphic change detection

3.1. Homomorphic filtering

The intensity of an image is generated by an incoming il-
lumination, which is reflected by the surfaces of the objects
in the observed scene. For Lambertian object surfaces we
model the intensity of the τ–th frame in an image sequence
by

yτ (k) = iτ (k) · rτ (k), (5)

with k being the pixel–index, i the illumination and r the
reflectance component [11]. The structure of the depicted
scene is captured in the reflectance component r. Conse-
quently, we try to separate i from r and use only the latter
for change detection. In many realistic cases the scene illu-
mination can be assumed to change only slowly over space,
whereas the reflectance component contains also medium
high–frequency details, i.e. object information [11]. There-
fore we extract the reflectance component by first applying
the logarithm and then a linear highpass filter. The loga-
rithm transforms the multiplicative relation between y, i and
r into an additive one, i.e.

log(yτ (k)) = log(iτ (k)) + log(rτ (k)). (6)

Although the log-nonlinearity modifies the spectral content
of illumination and reflectance components, it is in practice
often justified to assume the log-illumination to be still con-
sisting of low spatial-frequencies [11].

Equation 6 holds even if we have to deal with a cam-
era nonlinearity which is often described by the following
exponential law (gamma correction):

yτ (k) = yγ
in(k) (7)



where yin(k) is the detected intensity, and γ the gamma-
value. The purpose of gamma-correction is to make better
use of the dynamic range, with a typical γ of about 0.4 [8,
p. 38]. The multiplicative relation between y, i and r is
not distorted because in the log–domain the gamma value is
transformed to a gain factor.
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Figure 2. Homomorphic filter for multiplied
signals.

The homomorphic filter is shown in Figure 2: After ap-
plying the logarithm, the image is lowpass filtered using
a Gaussian-like filter–kernel and then subtracted from the
logarithmic original, yielding a highpass component. Ex-
ponentiation of both highpass and lowpass components ap-
proximately separates the image into illumination and re-
flectance components. For our purpose, we could omit the
exponentiation. However, as the non–linear log–operation
makes the camera noise variance σ2

u signal–dependent it
would be more difficult to handle the parameter σu in equa-
tion 1.

Figure 3 illustrates the effect of homomorphic filtering.
The top image is taken from of a sequence with two moving
toy engines. Each frame is of size 320× 240 pixels. In ad-
dition, a spot of light crosses the scene quickly from left to
right. In the depicted image it is approximately in the cen-
tre of the scene. The middle and bottom images show the
reflectance and the illumination components respectively.
An approximate Gaussian lowpass kernel of “variance” 13
was used in the homomorphic filter. It is clearly visible that
in the reflectance image r illumination effects are strongly
suppressed while object information is preserved. In the
illumination image i, however, the light–spot is very promi-
nent whereas object details are blurred.

Of course, the illumination image still contains low–
frequency components of the reflectance and thus separa-
tion of the two components is only approximate. But in
practice the separation works efficiently, as the example in
Figure 3 shows.

3.2. Illumination–invariant change detection

To obtain a change detection system which is indepen-
dent of illumination variations the algorithm described in

i

r

y

Figure 3. Homomorphic filtering of the image
y (top) yields the reflectance r (middle) and
the illumination component i (bottom).

section 2 is applied to the reflectance components of two
successive frames. The full algorithm is depicted in Fig-
ure 4. After calculating the reflectance components rτ and
rτ+1 of the corresponding input images yτ and yτ+1 the
change detection is carried out. The sum over the window
wi in equation 1 is implemented by using a moving average
lowpass filter (LP) of size 5× 5 pixels.

abs t(n )iLP
τd

r τ+1

τr

q τ
∆-

+

Figure 4. Illumination–invariant change de-
tection.



4. Results

Figure 5 shows two successive frames taken from the se-
quence with two moving toy engines (top row), where illu-
mination from a panning lamp crosses the scene from left
to right. With direct change detection this variation of the
scene illumination shows up in the ∆–image (middle left).
Therefore, direct application of change detection clearly in-
termingles illumination effects and the object motion (mid-
dle right). In the bottom row images, the moving light–
spot is not visible in the ∆–image (left), which is now cal-
culated for reflectance images. Consequently, the change
mask is almost unaffected by illumination changes (right).
Hence, the presented illumination insensitive system reacts
only to the object motion (plus moving shadows and uncov-
ered backgrounds), as desired. The significance level was
set to α = 0.0005 and the cost parameter B to 3.75 (cf.
the values used in [1]). For the reflectance images, σ2

u was
estimated to σ2

u = 8.

Figure 5. With plain change detection the vari-
ation of illumination (top) shows up in the
∆–image and in the change mask (middle
row). The images in the bottom row show
that the homomorphic system reacts almost
exclusively to object motion.

Figure 6 compares the grey level profiles for identical

rows in the ∆-images with and without homomorphic pre-
filtering. The selected row is marked in white in both pic-
tures, and does not cross a moving object. The observations
are hence caused by noise or by the moving light–spot. As
the line profiles show, there is a relatively strong ”response”
to the moving light–spot (top right) when no homomorphic
filter is applied, whereas the ∆-image computed from the
reflectance images shows no such response.

Figure 6. The grey–level values taken from a
line in the ∆–images without (top row) and
with homomorphic filtering (bottom row).

5. Discussion

In this paper we have developed a new illumination–
invariant change detection algorithm by combining the
change detection algorithm described in [1] with the homo-
morphic filter for multiplied signals [10, 11]. Clearly, the
image model underlying the homomorphic reduction of il-
lumination is only a first-order approximation, which has,
however, also been used for other purposes like image en-
hancement [11] and shadow detection [14]. In our appli-
cation, results obtained for test image sequences with gen-
uinely varying illumination confirm that homomorphic mo-
tion detection is insensitive even to fast variations in illumi-
nation, without noticeably affecting the detection of moving
objects. As homomorphic filtering requires only point oper-
ations and a separable FIR filter, its computational expense
is relatively low.

So far, the linear lowpass in the homomorphic filter was
determined experimentally. A better separation between
illumination and reflectance may be obtained by using a



stochastic homomorphic filter [6], which determines the fil-
ter parameters based on statistical signal models.

A limitation of our approach is the assumption of spa-
tially slowly-varying illumination. Depending on the na-
ture of the light source, this assumption is often but not al-
ways justified. If this assumption is violated, more elaborate
models for illumination identification are necessary.
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