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Abstract—Most current face recognition systems are designed for indoor, cooperative-user applications. However, even in thus-

constrained applications, most existing systems, academic and commercial, are compromised in accuracy by changes in environmental

illumination. In this paper, we present a novel solution for illumination invariant face recognition for indoor, cooperative-user applications.

First, we present an active near infrared (NIR) imaging system that is able to produce face images of good condition regardless of visible

lights in the environment. Second, we show that the resulting face images encode intrinsic information of the face, subject only to a

monotonic transform in the gray tone; based on this, we use local binary pattern (LBP) features to compensate for the monotonic

transform, thus deriving an illumination invariant face representation. Then, we present methods for face recognition using NIR images;

statistical learning algorithms are used to extract most discriminative features from a large pool of invariant LBP features and construct a

highly accurate face matching engine. Finally, we present a system that is able to achieve accurate and fast face recognition in practice,

in which a method is provided to deal with specular reflections of active NIR lights on eyeglasses, a critical issue in active NIR image-

based face recognition. Extensive, comparative results are provided to evaluate the imaging hardware, the face and eye detection

algorithms, and the face recognition algorithms and systems, with respect to various factors, including illumination, eyeglasses, time

lapse, and ethnic groups.

Index Terms—Biometrics, face recognition, near infrared (NIR), illumination invariant, local binary pattern (LBP), statistical learning.
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1 INTRODUCTION

1.1 Motivations

FACE recognition as a primary modality for biometric
authentication has received increasing interest in the

recent years. This is partly due to recent technology
advances [1], [2] initially made by the work on eigenfaces
[3], [4] and partly due to increased concerns in security.

Existing biometric systems are developed for cooperative
user applications, such as access control, machine readable
traveling document (MRTD), computer logon, and ATM. In
such applications, a user is required to cooperate with the
camera to have his/her face image captured properly in
order to be permitted some access; this is in contrast to more
general scenarios, such as face recognition under surveil-
lance, where a person should be recognized without
intentional, cooperative effort. Another aspect is that most
of the current systems are designed for indoor use.

To achieve reliable results, face recognition should be
performed based on intrinsic factors of the face only, mainly
related to 3D shape and reflectance of the facial surface.
Extrinsic factors, including eyeglasses, hairstyle, expression,
posture, and environmental lighting, which make distribu-
tions of face data highly complex [5], [6], [7], should be
minimized for reliable face recognition. Among several

extrinsic factors, problems with uncontrolled environmental
lighting is the topmost issue to solve for reliable face-based
biometric applications in practice. From the end-user point of
view, a biometric system should adapt to the environment,
not vice versa.

However, most current face recognition systems, aca-
demic and commercial, are based on face images captured in
the visible light (VL) spectrum; they are compromised in
accuracy by changes in environmental illumination, even for
cooperative user applications indoors. In an in-depth study
on the influence of illumination changes on face recognition
[8], Adini et al. examined several distance measures and
several local image operators, including Gabor filters, local
directive filters, and edgemaps, whichwere considered to be
relatively insensitive to illumination changes for face recog-
nition. Several conclusions are made there: 1) Lighting
conditions, and especially light angle, drastically change the
appearance of a face. 2) When comparing unprocessed
images, the changes between the images of a person under
different illumination conditions are larger than those
between the images of two people under the same illumina-
tion. 3) All of the local filters under study are insufficient by
themselves to overcome variations due to changes in
illumination direction. The influence of illumination is also
shown in the recent Face Recognition Vendor Test [9].

1.2 Contributions of This Work

In this paper, we present a novel solution for achieving
illumination invariant face recognition for indoor, coopera-
tive-user applications, using active near infrared (active NIR)
imaging techniques, and for building accurate and fast face
recognition systems. The solution consists of NIR imaging
hardware [10], [11], [12] and NIR-based face recognition
algorithms [13], [14], [15]. The main contributions are
summarized in the following.
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The first contribution is an imaging hardware system for
producing face images of a good illumination condition
(Section 2). Active NIR lights are used to illuminate the face
from the frontal direction during image acquisition. We use
powerful enough activeNIR lighting to prevail overVL in the
indoor environment, and further reduce VL by using an
optical filter. As such, the face in the image is illuminated
from the frontal direction, with the unwanted effect of
uncontrollable VL minimized. Such an imaging system
provides an excellent basis for subsequent face recognition.

There could be two approaches to illumination invariant
face recognition: by a highly nonlinear face matching engine
with an illumination variant representation or by an illumina-
tion invariant face representationwith a less complicated face
matching engine. We adopt the latter approach by taking
advantage of active NIR imaging.

As the second contribution, we derive an illumination
invariant face representation on the basis of active NIR
images in Section 3. We show that the active NIR imaging is
mainly subject to an approximately monotonic transform in
the gray tone due to variation in the distance between the
face and the NIR lights and camera lens. Noting that the
ordering relationship between pixels is not changed by any
monotonic transform, we use local binary pattern (LBP)
features [16], [17], [18] to compensate for the monotonic
transform in the NIR images. Therefore, LBP filtering of an
active NIR image generates an illumination invariant
representation of faces. This provides a different approach
from those of existing works (cf. Section 1.4) for illumination
invariant face recognition.

The third contribution is methods for building a highly
accurate face recognition engineusingLBP features fromNIR
images (Section 4). While there are a large number of LBP
features, not all are useful or equally useful for face
recognition.We useAdaBoost learning to learn from training
examples to select a small subset of the most discriminative
LBP features and thereby construct a strong classifier.Wealso
present another method that uses LDA, building a discrimi-
native classifier from LBP features. Both perform better than
the state-of-the-art LBP method of [17], [18].

The fourth contribution is a method for reliable eye
detection in active NIR images (Section 5). The frontal active
NIR lighting can cause unwanted specular reflections on
eyeglasses. This makes accurate eye localization more
difficult in active NIR than normal VL images, which cannot
be easily tackled by a simple eye detector. We provide a
simple-to-complex architecture to give a satisfactory solution
to overcome this critical issue of face recognition using active
NIR images.

The fifth contribution is a highly accurate and fast face
recognition system for cooperative face recognition applica-
tions indoor (Section 5). The system has been employed in
machine readable traveling documents (MRTD) systems at
the China-Hong Kong border, the largest border crossing
point in the world, since June 2005. It was also demonstrated
at the Second Summer School for Advanced Studies on
Biometrics for SecureAuthentication [19] and ICCV2005 [13].

1.3 Summary of Main Results

Extensive experimental results are provided in and before
Section 6 to demonstrate the reliability of the present solution
and contrast to existing methods. First, we demonstrate by
case studies advantages of the active NIR imaging system
over conventional visible light (VL) imaging systems in face

recognition under different VL directions. Whereas VL
images of the same face under different lighting directions
are negatively correlated, NIR imaging produces closely
correlated images of faces of the same individual.However, it
is also shown that, even with the good basis offered by the
NIR imaging system, a straightforward matching engine,
such as correlation or PCA-based or LDA-based, is insuffi-
cient to achieve high accuracy;more advanced techniques are
required to deal with the complexity in the pattern recogni-
tion problems therein, which also motivated the work of
usingAdaBoost learningwith LBP features for constructing a
nonlinear classifier for face recognition.

Second, we provide technology evaluation to evaluate
different methods, including the present AdaBoost method,
andPCAandLDAmethodsperformedon the rawNIR image
data and on LBP feature data. It is shown that the
LBP+AdaBoost method produces better results than the
other methods: At the false alarm rate (FAR) of 10�3, it
achieves the recognition rate of 91.8 percent, as opposed to
that of 32.0 percent for the Image+PCAmethod, 62.4 percent
for Image+LDA method, and 69.9 percent for the LBP+LDA
method. The comparisons justify that the learning-based
method indeed offers a good solution for achieving highly
accurate face recognition.Moreover, results are alsoprovided
to demonstrate the reliability of the LBP+AdaBoost method
with respect to factors of illumination, eyeglasses, time lapse,
and ethnic groups.

Third, we provide scenario evaluation results to evaluate
an active NIR-based face recognition system for time
attendance and access control (a scenario evaluation meant
for evaluating face recognition systems is considered harder
and more comprehensive than a technology evaluation of
algorithms [20]). The results show that the system has
excellent accuracy, speed, and usability.

1.4 Review of Related Works

Muchefforthasbeenmade tomodel illuminationonfacesand
correct illumination directions in order to achieve illumina-
tion invariant face recognition. Georghiades et al. [21] proved
that face imageswith the samepose under different illumina-
tion conditions form a convex cone, called the illumination
cone. Ramamoorthi [22] and Basri and Jacobs [23] indepen-
dently used the spherical harmonic representation to explain
the low dimensionality of face images under different
illumination. Nayar and Bolle [24] and Jacobs et al. [25]
proposed algorithms for face image intrinsic property
extraction by Lambertian model without shadow. Shashua
and Raviv [26] proposed a simple yet practical algorithm,
called the quotient image, for extracting illumination invar-
iant representation. Gross and Brajovic [27] and Wang et al.
[28] developed reflectance estimation methods by using the
idea of the ratio of the original image and its smooth version
from Retinex [29] and center-surround filters [30]. These
works are shown to improve recognition performance, but
have not led to a face recognition method that is illumination
invariant.

Other directions have also been explored to overcome
problems caused by illumination changes. One direction is to
use 3D (in many case, 2.5D) data obtained from a laser range
scanner or 3D vision method (cf. papers [31], [1]). Because
suchdata captures geometric shapes of face, such systems are
less affectedby environmental lighting.Moreover, it can cope
with rotated faces because of the availability of 3D (2.5D)
information for visible surfaces. The disadvantages are the
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increased cost and slowed speed as well as specular
reflections.More importantly, it is shown that the 3Dmethod
may not necessarily produce better recognition results:
recognition performances achieved by using a single
2D image and by a single 3D image are similar [32]. A
commercial development is A4Vision [33]. It is basically a 3D
(or 2.5D) face recognition system, but it creates 3D mesh of
the face by means of triangulation based on an NIR light
pattern projected onto the face.While not affected by lighting
conditions, background colors, facial hair, or make-up, it has
problems in working under conditions when the user is
wearingglassesor opening themouth,due to limitationsof its
3D reconstruction algorithm.

Imaging and vision beyond the visible spectrum has
recently received much attention in the computer vision
community, as seen from the IEEE workshop series [34],
[35]. Thermal or far infrared imagery has been used for face
recognition (cf. a survey paper [36]). This class of techniques
is advantageous for identifying faces under uncontrolled
illumination or for detecting disguised faces. Its perfor-
mance can be enhanced by the fusion of coregistered visible
and thermal IR images using a fusion of experts’ meth-
odologies [37], [38]. Their disadvantages include instability
due to environmental temperature, emotional and health
conditions, and poor eye localization accuracy [39], [40]. A
large-scale study [39] showed that they did not perform as
well as visible light image-based systems, in a scenario
involving time lapse between gallery and probe and with
relatively controlled lighting.

The use of near infrared (NIR) imaging brings a new
dimension for face detection and recognition [41], [42], [43].
Dowdall et al. [41] presented an NIR-based face detection
method; faces are detected by analyzing horizontal projec-
tions of the face area and by using the fact that eyes and
eyebrows regions have different responses in the lower and
upper bands of NIR. Li and Liao [42] presented a homo-
morphic-filtering preprocessing to reduce inhomogeneous
NIR lighting and a facial feature detection method by
analyzing the horizontal and vertical projections of the face
area. Pan et al. [43] presented an NIR-based face recognition
method in which hyperspectral images are captured in
31bandsover awavelength rangeof 0:7�m-1:0�m;multiband
spectral measurements of facial skin sampled at some facial
points are used for face recognition; they are shown to differ
significantly from person to person.

Further investigations of using NIR images for face
localization and recognition are found in [10], [44], [45]. All
of thoseworks use the “bright pupil” effect, namely, specular
reflection of active NIR lights on pupils to detect eyes in NIR
images. In addition, Zhao and Grigat’s system [44] uses DCT
coefficientsas featuresandanSVMastheclassifier.Zouetal.’s
work [45] derives their matching methods based on an LDA
transformand shows that theNIR illuminated faces are better
separable than faces under varying ambient illumination.

Themethodofusing the “brightpupil” effect todetect eyes
has a serious drawback that limits its applications. It assumes
that the “bright pupils” are present in the eyes and can be
detected using an algorithm. However, the assumption can
be invalidated, for example, when there are specular
reflections of NIR lights on the eyeglasses, with “narrow
eyes” where eyelids may occlude “bright pupils,” when an
eye is closed, orwhen theeyesare lookingaside (see examples
in Fig. 7). These happen for most of the face images with

eyeglasses andalso for a significant percentage of face images
without eyeglasses. Therefore, we have considered eye
detection a main problem to be solved in face recognition
using active NIR images.

2 ACTIVE NIR IMAGING SYSTEM

The goal of making this special-purpose hardware is to
overcome the problem arising from uncontrolled environ-
mental lights so as to produce face images of a good
illumination condition for face recognition. By “a good
illumination condition,” we mean that the lighting is from
the frontal direction and the image has suitable pixel
intensities, i.e., having good contrast and not saturated.

2.1 Hardware Design

We propose two strategies to control the light direction:
1) Mount active lights on the camera to provide frontal
lighting and 2) minimize environmental lighting. We set two
requirements on the active lighting: 1) The lights should be
strong enough to produce a clear frontal-lighted face image
without causing disturbance to human eyes and 2) the
minimization of the environmental lighting should have
minimum reduction of the intended active lighting.

Radiation spectrum ranges are shown in Fig. 1. While far
(thermal) infrared imaging reflects heat radiation, NIR
imaging is more like normal visible light imaging, though
NIR is invisible to the naked eyes. Ultraviolet radiation is
harmful to the human body and cannot be used for face
recognition applications.

Our solution for requirement 1, is to choose the active
lights in the near infrared (NIR) spectrum between 780-
1,100 nm and mount them on the camera. We use NIR light-
emitting diodes (LEDs) as active radiation sources, which are
strong enough for indoor use and are power-effective. A
convenient wavelength is 850 nm. SuchNIR lights are almost
invisible to the human eye, yet most CCD andCMOS sensors
have sufficient response at this spectrum point.

When mounted on the camera, the LEDs are approxi-
mately coaxial to the camera direction and, thus, provide
the best possible straight frontal lighting, better than
mounting anywhere else; moreover, when the LEDs and
camera are together, control of the lights can be easier using
a circuit in the box. The geometric layout of the LEDs on the
camera panel may be carefully designed such that the
illumination on the face is as homogeneous as possible.

The strength of the total LED lighting shouldbe such that it
results in the NIR face images with good S/N ratio when the
camera-face distance is between 50-100 cm, a convenient
range for the user. A guideline is that it should be as strong as
possible, at least stronger than expected environmental
illumination, yet not cause sensor saturation. A concern is
the safety of human eyes. When the sensor working in the
normal mode is not saturated, the safety is guaranteed.
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Our solution for requirement 2, above is to use a long
pass optical filter to cut off visible light while allowing NIR
light to pass. We choose a filter such that ray passing rates
are 0, 50, 88, and 99 percent at the wavelength points of 720,
800, 850, and 880 nm, respectively. The filter cuts off visible
environmental lights (< 700 nm) while allowing most of the
850nm NIR light to pass.

Fig. 2 illustrates a design of the hardware device and its
relationship with the face. The device consists of 18 NIR
LEDs, an NIR camera, a color camera, and the box. The NIR
LEDs and camera are for NIR face image acquisition. The
color camera capture color face imagesmaybeused for fusion
with theNIR images or for other purposes. Thehardware and
the face are relatively positioned in such a way that the
lighting is frontal and NIR rays provide nearly homogenous
illumination on face. The imaging hardware works at a rate
of 30 frames per second with the USB 2.0 protocol for
640� 480 images and costs less than 20 US dollars.

Fig. 3 shows example images of a face illuminated by NIR
LED lights from the front, a lamp aside and environmental
lights.Wecan see the following: 1) The lighting conditions are
likely to cause problems for face recognition with the color
images. 2) TheNIR images, with the visible light composition
cut off by the filter, are mostly frontal-lighted by the NIR
lights, with minimum influence from the side lighting, and
provide a good basis for face recognition.

2.2 Active NIR versus Visible Light Images

In visible light images, an intrapersonal change due to
different lighting directions could be larger than an extra-
personal change under similar lighting conditions. This can
be illustrated by an analysis on correlation coefficients and
matching scores, shown in Fig. 4. There are seven pairs of face
images; each pair is taken of the same person’s face but

illuminated by a visible light lamp from left and right,
respectively. The correlation table shows intrapersonal and
extrapersonal correlation coefficients. There, the diagonal
entries (in bold font) are for the intrapersonal pairs (e.g., entry
ði; iÞ is the correlation between the two images in column i);
the upper triangles are for the extrapersonal right-right pairs
(e.g., entry ði; jÞ is the correlation between the two images in
column i and j in the first row); the lower triangle entries are
for the extrapersonal left-left pairs (e.g., entry ði; jÞ is the
correlation between the two images in column i and j in the
second row).We see that the correlation coefficients between
two images of faces illuminated from left and right are all
negative numbers regardless of the face identity; those
between two images under similar lighting directions can
be either positive or negative. The mean and variance are
-0.4738 and 0.1015 for the intrapersonal pairs and 0.0327 and
0.5932 for the extrapersonal pairs. Therefore, it is not a
surprise that a PCAmatching enginehasno chanceofmaking
correct matches in this case.

The score table is produced by an advanced matching
engine trained using AdaBoost with LBP features on a
visible light face image training set (the AdaBoost-trained
matching engine produces better results than trained using
LDA). The mean and variance of the scores are 0.4808 and
0.0238 for intrapersonal pairs and 0.5694 and 0.0359 for
extrapersonal pairs. We see that the scores for intrapersonal
pairs under different lighting directions are generally lower
than those for extrapersonal pairs under similar lighting
directions. This means that reliable recognition cannot be
achieved with visible light images, even using the advanced
matching engine.
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Fig. 2. Active NIR imaging system (upper) and its geometric relationship

with the face (lower).

Fig. 3. Color images taken by a color camera versus NIR images taken

by the present NIR imaging system. While unfavorable lighting is

obvious in the color face images, it is almost unseen in the NIR face

images. Fig. 4. Correlation coefficients and matching scores between visible light
face images with lamp lights from the right (row 1) and the left (row 2)
directions. Top: Face images, each column belonging to the same
person. Middle: Correlation coefficients. Bottom: LBP+AdaBoost match-
ing scores.



The impact of environmental lighting is much reduced by
thepresentNIR imaging system, as shownby the correlations
andscores inFig. 5.There, the correspondingNIR face images
are taken in the same visible light conditions as in Fig. 4 and
the explanations of the two tables are similar to those for
Fig. 4. The correlation coefficients betweenNIR images are all
positive, regardless of the visible light conditions and person
identity. They have mean and variance of 0.8785 and 0.1502
for intrapersonal pairs and 0.6806 and 0.0830 for extraperso-
nal pairs. However, the intrapersonal correlation coefficients
may not necessarily be higher than the extrapersonal ones,
meaning possible recognition errors, even with the NIR
images. Therefore, a better matching engine than correlation
or PCA is still needed for highly accurate face recognition,
even with NIR face images.

The score table shows the matching score produced by
an LBP+AdaBoost classifier trained on active NIR images.
The mean and variance of the scores are 0.6750 and 0.0296
for intrapersonal pairs and 0.3113 and 0.0358 for extra-
personal pairs. By examining all of the entries, we can see
that the intrapersonal scores are consistently much higher
than the extrapersonal ones. The above case studies suggest
that the proposed active NIR imaging system with an
advanced LBP+AdaBoost recognition engine can yield the
highest recognition performance of all of the schemes.

3 ILLUMINATION INVARIANT FACE REPRESENTATION

In this section, we first provide an analysis from the
Lambertian imagingmodel to show that such images contain
the most relevant, intrinsic information about a face, subject
only to a multiplying constant or a monotonic transform due

to lighting intensity changes. We then present an LBP-based
representation to amend the degree of freedom of the
monotonic transform to achieve an illumination invariant
representation of faces for indoor face recognition
applications.

3.1 Modeling of Active NIR Images

According to the Lambertian model, an image Iðx; yÞ under
a point light source is formed according to the following:

Iðx; yÞ ¼ �ðx; yÞnðx; yÞs; ð1Þ

where �ðx; yÞ is the albedo of the facial surface material at
point ðx; yÞ, n ¼ ðnx; ny; nzÞ is the surface normal (a unit row
vector) in the 3D space, and s ¼ ðsx; sy; szÞ is the lighting
direction (a column vector, with magnitude). Here, albedo
�ðx; yÞ reflects the photometric properties of facial skin and
hairs; nðx; yÞ is the geometric shape of the face.

The topmost factor that affects the face recognition
performance is the direction of the incident lighting
relative to the face surface normal. The product of
�ðx; yÞnðx; yÞ is the intrinsic property of the face at a fixed
pose and is the only thing needed for face detection and
recognition and, therefore, s is the extrinsic property that
should be removed. Assume s ¼ �s0, where � is a
multiplying constant due to possible changes in the
strength of the lighting caused by changes in the distance
between the face and the LED lights, and s

0 ¼ ðs0x; s
0
y; s

0
zÞ is

a unit column vector of the lighting direction. Let �ðx; yÞ be
the incident angle between the lighting and the face
surface normal at point ðx; yÞ, cos �ðx; yÞ ¼ nðx; yÞs0. Equa-
tion (1) can be expressed as

Iðx; yÞ / ��ðx; yÞ cos �ðx; yÞ: ð2Þ

A less restrictive modeling of constant � would be a
monotonic transform instead of a constant. We see that the
face image �ðx; yÞ cos �ðx; yÞ changes as the lighting direction
changes, given albedo �ðx; yÞ and 3D shape nðx; yÞ fixed.

The present hardware design is aimed at preserving the
intrinsic property while minimizing variation due to the
extrinsic factor of environmental lights. When the active
NIR lighting is from the (nearly) frontal direction (cf. Fig. 2),
i.e., s0 ¼ ð0; 0; 1Þ, the image can be approximated by

Iðx; yÞ ¼ ��ðx; yÞnzðx; yÞ; ð3Þ

In the above, nzðx; yÞ is the z component of the surface
normal that can be acquired by a range imaging system. An
active NIR image Iðx; yÞ combines information about both
surface normal component nzðx; yÞ and albedo map �ðx; yÞ
and, therefore, provides the wanted intrinsic property about
a face for face recognition.

3.2 Compensation for Monotonic Transform

We use an LBP representation to compensate for the degree
of freedom in � or in a monotonic transform to achieve an
illumination invariant representation of faces for indoor face
recognition applications. The basic form of the LBP operator
is illustrated in Fig. 6. The binary bits describing a local
3� 3 subwindow are generated by thresholding the 8 pixels
in the surrounding locations by the gray value of its center;
the feature vector is formed by concatenating the
thresholded binary bits anticlockwise. There are a total of
256 possible values and, hence, 256 LBP patterns denoted by
such an LBP code; each value represents a type of LBP local
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Fig. 5. Analysis on properties of active NIR light face images with lamp

lights from the right (row 1) and the left (row 2) directions. Top: The
images, each column belonging to the same person. Middle: Correlation

coefficients. Bottom: LBP+AdaBoost Matching scores.



pattern. Such a basic form of LBP can be extended to
multiscale LBP, LBPðP;RÞ, where R is the radius of the circle
surrounding the center and P is the number of pixels on the
circle. An LBPðP;RÞ string is called uniform, denoted by
LBPu2

ðP;RÞ, if the neighboring bits (the circular sense) contain
at most two bitwise transitions from 0 to 1 or vice versa (see
[46] for details).

As discussed in the above, the pixel intensities in an NIR
image are subject to a multiplying constant � due to
changes in the distance between the face and the LED lights.
This degree of freedom can be fixed by using an LBP-based
representation. To be less restrictive and more realistic, let
us relax the effect of the multiplying constant to a monotonic
transform, T . Then, active NIR images can be modeled by

Iðx; yÞ ¼ T ð�ðx; yÞnzðx; yÞÞ: ð4Þ

Let us be given an image I 0ðx; yÞ ¼ �ðx; yÞnzðx; yÞ and a
transformed image I 00ðx; yÞ¼T ðI 0ðx; yÞÞ ¼ T ð�ðx; yÞnzðx; yÞÞ.
The ordering relationship between pixels in an image is not
changed by anymonotonic transform, namely, if I 0ðx1; y1Þ >
I 0ðx2; y2Þ, then I 00ðx1; y1Þ > I 00ðx2; y2Þ. Therefore, the LBP
codes generated from I 00 are exactly the same as the ones
generated from I 0.

From the analysis, we see that the NIR imaging and LBP
features together lead to an illumination invariant repre-
sentation of faces for indoor face recognition applications.
In other words, applying the LBP operator to an active NIR
image generates illumination invariant features for faces.
The illumination invariant face representation provides
great convenience for face recognition.

The vision group at Oulu University developed a method
of LBP-based matching [17], [18]. There the image is divided
into 7� 7 ¼ 49 blocks. An LBP histogram is calculated for
each block. A �2 distance is calculated between two
histograms for matching and a weighted sum of the
�2 distance is then used for matching between two face
images. Themethod is shown to achieve very good results on
the FERET database. However, such a method still lacks
optimality in terms of the block division and the weights.

4 STATISTICAL LEARNING OF BEST FEATURES AND

CLASSIFIERS

In this section, we present two statistical learning methods,
one based on LDA and one on AdaBoost, for building face
recognition classifiers. Given a training set of LBP features
of faces subject to image noise, slight pose changes, and
alignment errors, such a learning method performs a
transform to the find most discriminative features and
thereby build a strong classifier. We assume and ensure that
a large set of training examples is available to sufficiently

represent differences between individual faces such that,
once trained, the classifier is able to recognize faces without
need to be retrained when a new individual client is added.

The LBP features are derived from LBP histogram
statistics as follows:

1. Base LBP Operator.

a. LBPu2
8;1 is used. The LBP codes are computed for

every pixel location over the image.
2. Histogramming of LBP Codes.

a. A histogram of the base LBP codes is computed
over a local region centered at each pixel, each
histogram bin being the number of occurrences
of the corresponding LBP code in the local
region. There are 59 bins for LBPu2

8;1.
b. An LBP histogram is considered as a set of

59 individual features.
3. Feature Set of LBP Histograms.

a. Assuming a face image of size W �H, with the
interior area of size W 0 �H 0, the total number of
LBP histogram features is D ¼ W 0 �H 0 � 59

(number of valid pixel locations times the
number of LBP histogram bins).

b. In our case, W �H ¼ 120� 142, a local region
for histogramming is a rectangle of size 16� 20,
and, therefore, the interior area is of size W 0 �
H 0 ¼ 104� 122 pixels, and there are a total of
104� 122� 59 ¼ 748; 592 elements in the LBP
histogram feature set of a face image.

While the initial LBP histogram feature set is of high
cardinality, 748,592 in this work, the intrinsic dimension of
the face pattern may not be so high. The present LBP + LDA
and LBP+AdaBoost methods are developed for reducing
the dimensionality and construct classifiers in the reduces
feature space, in an optimal sense.

4.1 LBP+LDA Classifier

LDA reduces the dimensionality by linearly projecting the
original feature vector in high dimensional space to a lower
dimensional subspace. The projection matrix is calculated
from intraclass and extraclass scatter matrices. For memory
reasons, the 748,592-dimensional LBP histogram features
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Fig. 6. LBP code for 3� 3 window.

Fig. 7. Face examples (upper) and eye examples (lower) with and

without eyeglasses, with eyes open and closed, with “bright pupils”

present and absent.



are down-sampled to 10,000 by uniformly sampling. The
10,000-dimensional data is preprocessed using the PCA
transform to make the within-class scatter matrix nonsin-
gular. The LDA projection matrix P, composed of so-called
Fisherfaces [47], are then computed. Of course, other more
advanced forms of LDA, such as direct LDA or regularized
LDA, could be used to obtain P.

Given two input vectors x1 and x2, their LDA projections
are calculated as v1 ¼ Px1 and v2 ¼ Px2 and the following
cosine score (or called “cosine distance” in some of the
literature) is used for the matching:

Hðv1;v2Þ ¼ ðv1 � v2Þ=kv1k kv2k: ð5Þ

In the test phase, the projections v1 and v2 are computed
from two input vectors x1 and x2, one for the input face
image and one for an enrolled face image. By comparing the
score Hðv1;v2Þ with a threshold, a decision can be made
whether x1 and x1 belong to the same person.

4.2 LBP+AdaBoost Classifier

While an AdaBoost procedure essentially learns a two-class
classifier, we convert the multiclass problem into a two-
class one using the idea of intra and extraclass difference
[48]. However, here the difference data are derived from the
LBP Histogram features rather than from the images. A
difference is taken between two LBP histogram feature sets
(748,592-dimensional), which is intraclass if the two face
images are of the same person, or extraclass if not.

A training set of N labeled examples is given for two
classes, S ¼ ðx1; y1Þ; . . . ; ðxN ; yNÞ, where xi is a training
example (which is the difference between two LBP
histogram feature sets in this case) and yi 2 fþ1;�1g is
the class label. The procedure learns a sequence of T weak
classifiers, htðxÞ 2 f�1;þ1g, and linearly combines it in an
optimal way into a stronger classifier,

HðxÞ ¼ sign
X

T

t¼1

�thtðxÞ

 !

; ð6Þ

where �t 2 IR are the combining weights. We can consider
the real-valued number

PT
t¼1 �thtðxÞ as the score and make

a decision by comparing the score with a threshold.
An AdaBoost learning procedure is aimed at deriving �t

and htðxÞ so that an upper error bound is minimized [49].
The procedure keeps a distribution wt ¼ ðwt;1; . . . ; wt;NÞ for
the training examples. The distribution is updated after
each learning iteration t. The AdaBoost procedure adjusts
the distribution in such a way that more difficult examples
will receive higher weights. The subsequent weak classifier
is designed according to the weighted distribution of the
training examples. We train a cascade of strong classifiers
[50] to handle complicated data distributions. The cascade
strategy is also used in face/eye detection.

AdaBoost assumes that a procedure is available for
learning a weak classifier htðxÞ from the training examples
weightedby the currentdistributionwt. In our system, aweak
classifier is based on a single scalar feature, i.e., an LBP
histogram bin value; a weak classification decision, repre-
sented by +1 or -1, is made comparing the scalar feature with
an appropriate threshold, the threshold being computed to
minimize the weighted error on the training set.

In the test phase, two sets of selected LBP features are
compared, one for the input face image and one for an
enrolled face image. The difference is taken between the

two sets. Each element in the difference set is compared
with a threshold to give a weak decision ht. The weak
decisions for a strong classifier are linearly combined with
the weights �t to give the predict value HðxÞ. When a
cascade is used, a cascade of strong classifiers is evaluated
and a final decision is made.

5 BUILDING THE SYSTEM

Highly accurate and fast face recognition systems can be
built using the present hardware and recognition engine.
Such a system includes three main software modules, as
usual: face detection, eye localization, and face matching.
Each of these performs a two-class classification, i.e.,
classifying the input into the positive or negative class:

. Face Detection classifies each scanned subwindow
into either face or nonface.

. Eye Localization classifies each scanned subwindow
into either eye or noneye.

. Face Recognition evaluates the similarity between
the input face and each enrolled face and compares
the similarity to decide whether the two faces belong
to the same person.

The fundamental learning problem here is to learn a
generally nonlinear classifier to classify between face and
nonface classes for face detection, between eye and noneye
classes for eye localization, and between intrapersonal and
extrapersonal classes for face recognition. These are done in
a unified framework of local features with AdaBoost
learning. A learned classifier is a nonlinear mapping from
the input subwindow to a confidence score. The final
classification decision can be done by comparing the score
with a confidence threshold. While how to build the face
matching engine has been described in the previous section,
here we include how to build the face detector and eye
localizer and how to integrate the modules into a system.

In this paper, AdaBoost classifiers [50], with the
extended Haar features proposed in [51], are used for face
and eye detection. This design meets the requirement on the
accuracy and is faster than LBP-based detectors because of
the simpler form of Haar filters. Our face detection module
is a rather standard AdaBoost face detector, trained using
50,000 NIR face examples, including difficult ones shown in
Fig. 7. However, accurate eye localization in active NIR
images is a difficult task when the active NIR lighting
causes specular reflections on eyeglasses. This critical issue
will be solved in the following.

5.1 Eye Detection

Detection of eyes in active NIR images is more challenging
than in normal visible light images due to likely specular
reflections on eyeglasses. On the right of Fig. 7 shows some
examples of eyes. At the upper-left corner is an ideal
example of eyes which can be easily detected, with a “bright
pupil” detector [10], [44], [45] or an appearance-based
detector. The other examples are difficult ones. Specular
reflection on eyeglasses is the most serious problem. Eyelid
occlusion, which happens among people in some ethnic
groups and senior people and eye closing due to blinking
are among other problems. Eye detection in these situations
cannot be done by using a simple eye detector.

To tackle thedifficulties,weproposea coarse-to-fine, easy-
to-complex architecture to overcome the problem, as in Fig. 8.
The motivation for designing such an architecture is the
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following: By an observation on characteristics ofNIR images
of eyeswith glasses,we see 1) that the images of eyeswith and
without glasses appear quite different and 2) that an image of
an eye with glasses is not left-right symmetric because the
specular reflections tend to be more in the inner part of the
face rather than around the centers of the eyes. A mixture of
left and right eye images, with and without glasses, would
contain a large variation. However, our detector for eyes
without glasses can perform very accurately and fast and
have a priori knowledge of the positions of the left and right
eyes in the face area for more effective applications of the left
and right eye detectors. Based on these, we manually group
the eye images into three subsets, 1) eyes without glasses,
2) left eyes with glasses, and 3) right eyes with glasses, and
train an effective eye detector for each case. The resulting
detectors can be very accurate because the variation in each
subset is reduced considerably.

The architecture includes a sequence of increasingly
complex eye detectors, trained with specific eye data. After
a face is detected, the left and right eyes are detected,
respectively, by applying a coarse eye detector, trained using
all eye examples, including left and right eyes, with and
without glasses. This detects all possible eye subwindows,
andrejectsmore than95percentnoneyesubwindows.Then, a
fine eye-without-glassdetector is applied to eachof the coarse
eye subwindows to verify if there is an eye-without-glass
pattern. If successful, an eye is detected; otherwise, the
subwindow is passed to a fine eye-with-glass detector to
verify if there is an eye-with-glass pattern. A final decision is
made after merging multiple detects. This design enables
accurateandfastdetectionof facesandeyes,withandwithout
glasses.

5.2 Implementation

The active NIR imaging hardware and the trained face
detector, eye detectors, and face matching engine are
integrated onto a P4 3.0 GHz PC. The camera interface uses
the USB 2.0 protocol and runs at 30 frames per second. The
total processing time for face/eye detection and face

matching in a 640� 480 image is, on average, about 78 ms,
in which the face and eye detection consumes 43 ms, and the
matching engine does 35 ms for a database of 1,000 people.

With such a speed, we are able to build a highly accurate
and fast face recognition system, even if the detection and
recognition engines do not achieve 100 percent accuracies.
The system keeps processing incoming images from the
video camera until a match is found with a sufficient
confidence. Usually, an enrolled person can be successfully
identified within 1-2 seconds. When a person cannot be
identified after a timeout period, say 5 seconds from the
first attempt, the system gives a “sorry” message; this
usually happens when the user is not in the database or is
not cooperative enough to look into the camera.

Fig. 9 shows two application systems that use the present
NIR face recognition technology for biometric authentication.
On the left is a system for access control and time attendance,1

where the NIR face biometric is used for one to many
identification. The access control of office and lab rooms is
done via intranet. On the right is an MRTD system in which
theNIR face biometric is used for one-to-one verification. The
NIR face biometric module has been deployed at ShenZhen
(China)-HongKongborder, theworld largest border crossing
point, as a biometric option for Hong Kong passengers and
vehicle drivers since June 2005 and at ZhuHai (China)-Macau
border since March 2006.

6 PERFORMANCE EVALUATIONS

A biometric system may be evaluated in three major steps: a
technology evaluation, a scenario evaluation, and an
operational evaluation [20], [52]. In a technology evaluation,
the testing is performed in laboratories using a prepared set
of data. A scenario evaluation aims to evaluate the overall
capabilities of the entire system in a specific scenario. An
operational evaluation is very similar to a scenario evalua-
tion except that it is performed at the actual site using the
actual subjects/areas. So far, most available reports are on
technology evaluation and few reports are available on
scenario or operational evaluations.

In the following, we evaluate the performance of our NIR
face and eye detection modules, and LBP+AdaBoost and
LBP+LDA facematching engines in comparisonwith several
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1. See a video demo at http://www.cbsr.ia.ac.cn/demos/index-en.htm.

Fig. 8. Architecture for face and eye detection in NIR Images, with or
without glasses.

Fig. 9. Application systems. (a) An access control and time attendance

system in operation. (b) A prototype machine readable travel document

(MRTD) system.



existing baseline and state-of-the-art face matching engines.
We then present case studies regarding the effects of eye-
glasses, time lapse, andweak illumination, and report on the
ability of the LBP+AdaBoost method to generalize to unseen
ethnic faces.Finally,wepresentscenarioevaluationof theNIR
face biometric system for access control and time attendance.

6.1 Face and Eye Detection

The face detection cascadewas trained using 178,000 positive
examples of all types of faces (Fig. 7), of size 20� 20 pixels. A
cascade of seven strong classifiers was trained for face
detection, composed of a total of only 436 weak classifiers.
With NIR images, the Haar+AdaBoost detector could easily
detect faces with orwithout glasses, and eyeswithout glasses,
open or closed, and with slight pose variation. Fig. 10 shows
the face and nonface distributions and the ROC curve for a
test set. The test set is composed of 8,600 positive examples
and about 20,000,000 negative examples (subwindows)
derived from 8,600 NIR images, none of which were in the
training set. We can see the two classes were well separated
for NIR images. At the FAR of 10�6, the detection rate was
98.7percent; at theFARof10�7, itwas98percent. Thespeedof
the face detector was about 18 ms per frame.

For training the eye detectors, the eye training set (of size
24� 12 pixels) was composed of original eye images and
slightly rotatedversionsof theoriginalonesand theirmirrors.
Among this, 60 percent were without glasses and 40 percent
were with glasses and 15 percent wwere of closed eyes. The
noneye examples were collected mainly from the upperpart
of faces. The trainingmethod is the following: First, the coarse
eye detector was trained using 170,000 positive examples of
all types of eyes and about 30,000,000 negative examples of
noneyes. The resulting detector consisted of a cascade of four
strong classifiers, with a total of only 56 weak classifiers. It
detected all possible eye subwindows, and rejected more
than 95 percent of the noneye subwindows (i.e., with FAR of
about 5 percent).

Next, the eye-without-glass detector was trained using
271,000 of positive examples of eye-without-glasses and
about 20,000,000 negative examples of noneyes. A cascade
of seven strong classifiers were trained, with a total of
326 weak classifiers. This achieved a detection rate of nearly
98 percent with an FAR of 10�2 (see Fig. 11). The test set is
composed of 10,000 eye-without-glasses positive examples
and 10,000,000 negative examples derived from5,000 images.
Finally, the eye-with-glass detector was trained using 91,000
positive examples of eye-with-glasses and about
20,000,000 negative examples of noneyes. A cascade of four
strong classifiers was trained, with a total of 225 weak
classifiers. This achieved a detection rate of 87 percent, with
the FAR of 10�2 (see Fig. 11). The test set is composed of
7,200 eye-with-glasses positive examples and 10,000,000 ne-
gative examples derived from 3,600 images, none of which

were in the training set. The speed of eye detectors was about
25 ms per frame.

Note that the FARs for the eye detectors were condi-
tioned on the face detection. Considering that the FAR is
10�6 for the face detection (and 5 percent for the coarse eye
detection), the chance that a noneye subwindow would be
classified as eyes would be below 10�7, which is low
enough for applications. On the other hand, given the FAR
= 1 percent, the detection rate for eyes without glasses was
98 percent, a very good number. However, the detection of
eye-with-glasses was more difficult: The detection rate was
87 percent. Nonetheless, the tradeoff was that it took a bit
longer time (at most 20 percent of increase) for a successful
detection of eyes with glasses.

6.2 Face Recognition—Basic Evaluation

In the trainingphase, the training setofpositiveexampleswas
derived from intrapersonal pairs of LBP histogram features,
thenegative set fromextrapersonal pairs, each example being
a 748,592-dimensional vector. There were 104 face images of
about 1,000 people, 10 images each person, all Chinese. A
training set of about 45� 103 positive and 5� 107 negative
examples were collected from the training images. A cascade
of five strong classifiers were trained, with about 1,500 weak
classifiers. TheROCcurves for the training set is shownon the
left of Fig. 12,where the FAR is reduced to below 10�7 with an
accuracy of 94.4 percent.

A technology evaluation was done with a test set of
3,237 images. The test set contained 35 people, with 80 to
100 images per person. None of the test images were in the
training set. This generated 149,217 intraclass (positive) and
5,088,249 extraclass (negative) pairs. Several other methods
were included in the evaluation for comparison, using the
same set of training and test images. They were:

1. PCA on the NIR images (withMahalanobis distance),
2. LDA on the NIR images (with cosine distance),
3. the LBP + LDA method,
4. the original LBP method developed by Ahonen et al.

[17] and Hadid et al. [18] (�2 distances between LBP
histograms in 7� 7 image blocks) with three
operators: LBPu2

ð8;1Þ, LBP
u2
ð8;2Þ, and LBPu2

ð16;2Þ.
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Fig. 10. Distributions of faces and nonfaces (left) and ROC curve (right)

for face detection, on the test set.

Fig. 11. Training performances for detection of eyes without glasses
(first row) and with glasses (second row) on the test set. Shown are the
distributions of positive and negative examples (left) and the ROC
curves (right).



The bottom of Fig. 12 shows the ROC curves (1-1 verification

rate (VR)versusFAR)derivedfromthescores for the intraand

extraclass pairs. By the VR values at FAR = 0.1 percent, the

compared methods can be ranked in order of decreasing VR

as: LBP+AdaBoost (VR = 91.8 percent), LBP+LDA (69.9 per-

cent), LBPu2
ð8;2Þ (65.29 percent), LBPu2

ð16;2Þ (65.29 percent) Im-

age+LDA (62.4 percent), LBPu2
ð8;1Þ (60.7 percent), and

Image+PCA (32.0 percent). See later for explanations of the

“LBP+AdaBoost (eyeglass test)” and “LBP+AdaBoost (one

year lapse)” curves.

6.3 Face Recognition—Eyeglasses versus
No-Eyeglasses

The following presents a case analysis of influence of eye
glasses on face matching, as shown by the images and the
score table inFig. 13. In the tables, thediagonal entries (inbold
font) are for the intrapersonal pairs without (W/O) and with
glasses (i.e., between the two images in the same column), the
lower triangle entries for theextrapersonal no-glasspairs (i.e.,
between two different images in the first row), and the upper
triangle for the extrapersonal glass pairs (i.e., between two
different images in the secondrow).Themeanandvarianceof
correlations (not shownhere due to page limit) are 0.9306 and
0.0419 for intrapersonal pairs and 0.7985 and 0.0761 for
extrapersonal pairs of either wearing no glasses or wearing
glasses. However, the intrapersonal correlations may not
necessarily be higher than the extrapersonal ones, which
means recognition errors. However, the LBP+AdaBoost
matching engine can separate between the two classes

well—the intrapersonal scores are consistently higher than
than extrapersonal scores. Also, we can find that the statistics
(mean and variance) of LBP+AdaBoost scores for this case
study and for the case in Fig. 5 are quite consistent.

Statistics were also obtained using 1,500 images of
30 people, 50 images per person, of which 25 are with glasses
and 25 without. The no-eyeglass images were used as the
gallery set and the eyeglass images as the probe set. The ROC
curve is labeled “LBP+AdaBoost (eyeglass test)” in the
bottom of Fig. 12 (the portion for FAR smaller than 10�5 is
unavailable because of the limited data points). At FAR = 0.1
percent, theVRwas87.1percent, as opposed to91.8percent of
the “LBP+AdaBoost” curve for the no-eyeglasses versus no-
eyeglasses and eyeglasses versus eyeglasses comparisons.

6.4 Face Recognition—Time Lapse

Tests were performed to evaluate the effect of time lapse on
NIR face recognition. Fig. 14 presents a case analysis of the
time lapse effect on the matching scores. The NIR images of
seven individuals were acquired in Spring 2005 and Spring
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Fig. 12. Top: ROC Curve of LBP+AdaBoost method for face verification
on the training set. Bottom: ROC curves for various compared methods,
an ROC curve for testing the eyeglass effect, and an ROC for testing the
time lapse effect.

Fig. 13. Analysis on effects of glasses. Top: Images without glasses
(row 1) and with glasses (row 2), each column belonging to the same
person. Bottom: LBP+AdaBoost matching scores.

Fig. 14. Analysis on effects of time lapse. Top: NIR face images of spring
2005 (row 1) and spring 2006 (row 2), each column belonging to the
same person. Bottom: LBP+AdaBoost matching scores where Y05 and
Y06 denote Spring 2005 and Spring 2006, respectively.



2006, respectively. The table shows the matching scores
produced by the LBP+AdaBoost classifier trained on active
NIR images. The mean and variance of the scores are 0.6421
and 0.0198 for intrapersonal pairs (in bold font) and 0.3045
and 0.0462 for extrapersonal pairs. The LBP+AdaBoost
matching engine separates between the two classes well;
the intrapersonal scores are consistently higher than the
extrapersonal ones.

Statisticswere alsoobtainedusing750 images of 30people,
25 images per person; of the 25 images, 10 were captured one
year ago and used as the gallery set, and 15 were current
images used as the probe set. The ROC curve is labeled
“LBP+AdaBoost (one year lapse)” in the bottomof Fig. 12 (the
portion for FAR smaller than 10�4 is unavailable because of
the limited data points). At FAR=0.1 percent, the VR was
83.24 percent, as opposed to 91.8 percent for images of no
significant time lapse (the “LBP+AdaBoost” curve).

6.5 Face Recognition—Weak Illumination

Figs. 15 and 16 present case studies to compare the
performance of visible light (VL) and NIR image-based face
matching methods under weak illumination. The LBP+Ada-
Boost classifier for VL images was trained using VL images,
whereas the one forNIR imageswas the one using other tests.
In the tables, the diagonal entries (in bold font) are for the
intrapersonal pairs between controlled and weak illumina-
tion. For the VL case, the mean and variance are 0.4970
and 0.0201 for intrapersonal pairs and 0.4747 and 0.0154
for extrapersonal pairs and there are several mismatches
because the intrapersonal scores are not necessarily higher
than the extrapersonal ones. In contrast, the NIR solution
separates the two classes well, with themean and variance of
0.6675 and 0.0377 for intrapersonal pairs and 0.3492 and
0.0403 for extrapersonal pairs, producing correct matches for
all pairs.

6.6 Scenario Evaluation

The scenario evaluation was associated with an access
control and time attendance application in the CASIA office
building. The system configured for this purpose consisted
of one server and three clients. The server was used for
enrollment, template generation, database and log informa-
tion management, and communication with the clients. A

client was used to do online face recognition and commu-
nication with the server to log recognition results and times.
The tests lasted over a period of a month.

The tests were done in the form of one-to-manymatching,
with the following protocol: 870 people were enrolled, with
five templatesperperson recorded.Of these, 30wereworkers
in the building and 840 were collected from other sources
unrelated to the building environment. The 30 workers were
used as the client people while the other 840 were used as
background people. Images of the 870 participating people
were not included in the training set. The enrolledpopulation
was mostly composed of Chinese people with a few
Caucasians. The enrollment was done at sites different from
the sites of the client systems. The tests with the client people
were aimed at collecting statistics of the correct recognition
rate and false rejection rate. On the other hand, 10 workers
participated as the regular imposters (not enrolled) and some
visitors were requested to participate as irregular imposters.
This provided statistics of correct rejection rate and false
acceptance rate.

The 30 clients and 10 imposters were required to report to
the system four times a day to take time attendance, twice in
the morning and twice in the evening when they started
working and left the office for lunch and for home. Not all
workers followed this rule strictly, whereas some did more
than four times a day. Some client people deliberately
challenged the system by exaggerated expressions or occlud-
ing part of the face with a hand so that the system did not
recognize them. We counted these as invalid sessions. Only
those client sessions which were reported having problems
getting recognized were counted as false rejections. On the
other hand, the imposters were encouraged to challenge the
system to get false acceptances.

The tests were also extended by moving an additional
client on a laptop at various sites in the building. A further
extension was to test in complete darkness. These were to
test the reliability of the system with changing illumination
and environments. Both regular and irregular clients and
imposters participated in the extended tests.

After a period of one month evaluation, the system has
demonstrated excellent accuracy, speed, usability, and
stability under varying indoor illumination, even in the
complete darkness. The statistics of the scenario evaluation is
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Fig. 15. Top: Images captured under controlled illumination (row 1) and
under weak light conditions (row 2), each column belonging to the same
person. Bottom: LBP+AdaBoost matching scores.

Fig. 16. Top: Images captured under controlled illumination (row 1) and
under weak light conditions (row 2), each column belonging to the same
person. Bottom: LBP+AdaBoost matching scores.



summarized in Table 1 where the “Success Rate” means
correct acceptance rate for clients and correct rejection rate for
imposters. From the statistics, we can see that the equal error
rate was below 0.3 percent. Hence, we conclude that the
system has achieved high performance for cooperative face
recognition.

6.7 Face Recognition—Unseen Ethnic Faces

The present NIR face recognition engine was trained with
Chinese facesonly. The systemhasbeen tested inwith facesof
other ethnic groups, including Caucasian and African faces.
The recognition accuracy appeared not affected by ethnic
groups and the system gave perfect performance in face/eye
localization, enrollment, and identification in all cases. This
suggests that the system is unaffected by different ethic
groups even unseen in training data.

7 SUMMARY AND CONCLUSIONS

We have presented a novel solution, including active NIR
imaging hardware, algorithms, and system design, to
overcome the problem of illumination variation that every
face recognition system has to deal with. An illumination
invariant face representation is obtained by extracting LBP
features NIR images. The AdaBoost procedure is used to
learn a powerful face recognition engine based on the
invariant representation. Highly accurate and fast face
recognition systems can thereby be built. Extensive experi-
ments show the robustness of the present solution in terms
of image properties, illumination changes, ethnic groups,
and advantages over existing methods.

The current solution is developed for cooperative user
applications indoor. It is not yet suitable for uncooperative
user applications such as face recognition in video
surveillance. Nor is it suitable for outdoor use due to
strong NIR component in the sunlight. Future works will be
enhancing solutions to overcome these limitations.
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