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Abstract

We occasionally misinterpret ambiguous sensory input or report a stimulus when none is

presented. It is unknown whether such errors have a sensory origin and reflect true percep-

tual illusions, or whether they have a more cognitive origin (e.g., are due to guessing), or

both. When participants performed an error-prone and challenging face/house discrimina-

tion task, multivariate electroencephalography (EEG) analyses revealed that during deci-

sion errors (e.g., mistaking a face for a house), sensory stages of visual information

processing initially represent the presented stimulus category. Crucially however, when par-

ticipants were confident in their erroneous decision, so when the illusion was strongest, this

neural representation flipped later in time and reflected the incorrectly reported percept.

This flip in neural pattern was absent for decisions that were made with low confidence. This

work demonstrates that decision confidence arbitrates between perceptual decision errors,

which reflect true illusions of perception, and cognitive decision errors, which do not.

Introduction

Our perceptual experience can deviate substantially from the actual input that reaches our

senses. Misperceiving or misinterpreting sensory input is a common characteristic of several

neurological and psychiatric disorders, such as schizophrenia, but also during drug-induced

hallucinatory states [1,2]. However, even in healthy people and under common circumstances,

illusory perceptual experiences may occur, as illustrated by famous illusions such as the

Müller-Lyer and the Kanizsa illusion [3]. Further, context and stimulus frequency can act as

top-down priors that bias the interpretation of ambiguous visual information [4–6]. Yet, even

in conditions without strong perceptual priors, perception can spontaneously differ from the

veridical sensory input. In particular, when perceptual information is sparse or ambiguous,

interpretation of the visual input is challenged, resulting occasionally in incorrect perceptual

decisions [7,8]. The experiential aspect of such incorrect decisions is often inferred based on

participants’ behavioral report. However, even when one trust such introspective reports, the

source of these decision errors remains unclear. Most importantly, with behavioral measures it
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is hard to disentangle whether decision errors originate from true illusions in perception (mis-

perceptions) or stem from guessing behavior (misreports), although procedures to do so have

made rapid progress [9–14]. Here, we investigated this issue and examined if misreported

visual stimuli (e.g., face presented, house reported) were misrepresented at the sensory stage or

the decision stage.

To determine the nature of misreports, we dissociate sensory from post-sensory or deci-

sion-related processes during human perceptual decision-making using electroencephalogra-

phy (EEG) in combination with multivariate pattern analyses (MVPA). Forty participants

performed a challenging perceptual discrimination task in which faces and houses were briefly

presented, preceded, and followed by pattern masks, strongly reducing stimulus visibility. Par-

ticipants discriminated which of the 2 object categories was presented and indicated how con-

fident they were in this decision (high/low confidence) [15,16]. Discrimination correctness

was titrated by individually adjusting stimulus duration to reach approximately 70% correct

decisions, thereby inducing a large number of decision errors for our analyses (approximately

30%). Multivariate pattern classifiers were then used to characterize the time course of cate-

gory-specific neural representations of correct and incorrect decisions, at different levels of

confidence. Confidence measures served as a proxy for the vividness of perceptual experience

[17], which allowed us to separate strong perceptual illusions (incorrect decision with high

confidence) from weak perceptual illusions or mere guessing behavior (incorrect decision with

low confidence) [7].

We experimentally dissociated perceptual from decision-related neural processes by

employing 2 separate category localizer tasks: one uniquely tuned to sensory features of the

images and the other sensitive to both sensory features and decision processes. Using a

between-task MVPA generalization approach, we could track perceptual and decisional neural

processes [18–20], while they evolved across time and how these processes differed for correct

and incorrect perceptual decisions as a factor of confidence, and thus strength of perceptual

experience. This strategy has a similar goal as recent approaches in the field of consciousness

science, in which no-report paradigms have been introduced. In studies employing such no-

report paradigms, neural processing is typically compared between experimental conditions in

which participants are aware of specific stimuli, but do not have a task to do and thus merely

passively perceive these stimuli, versus a condition where active report is required. Contrasting

these conditions, usually also including an unaware condition is thought to separate neural sig-

nals associated with perceptual experience per se versus neural signals of post-perceptual pro-

cesses (or task-relevance in the broader sense) [21–26]. We found that decision errors made

with high confidence were associated with neural representations reflecting the misperceived

object (e.g., a house could be decoded while a face was presented). This was the case even

when the classifier was trained on a localizer task in which these objects were task-irrelevant

and unattended, showing that such decision errors stem from perceptual illusions that are sen-

sory in nature.

Results

There were 2 experimental sessions. In the first, participants performed 2 category localizer

tasks, while their brain activity was measured using EEG. The localizer tasks were used to train

our pattern classifiers (LDA, linear discriminant analysis) [27]. In the sensory localizer task

(S1A Fig), participants reported an infrequent contrast change of the central fixation dot (20%

of trials). At the same time, streams of house and face images were shown at the center of the

screen, which were fully task-irrelevant. In the decision localizer task (S1B Fig), a masked

image of a face or of a house was presented and at the end of each trial participants indicated
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which stimulus category they had perceived. The images were therefore task-relevant and

attended. In the sensory localizer, the classifiers’ sensitivity was thus tuned mainly to sensory

features of the 2 stimulus categories due to the absence of attention/task-relevance of the face/

house images [26,28,29]. Therefore, the sensory localizer is reminiscent of a so-called no-

report paradigm [30,31], but then used to train localizers instead of being used as the main

task of interest [22–24,32]. The decision localizer was, besides sensitive to sensory features,

also sensitive to post-perceptual decision processes. Stimulus-response mappings were coun-

terbalanced across blocks in the localizer tasks to prevent motor response preparation from

systematically biasing stimulus category decoding. The orientation of the presented images

was either left tilting or right tilting, with 50/50 likelihood. This feature of the stimulus was

always task irrelevant and was used to test for differences in decoding between task-relevant

(category) and task-irrelevant features (orientation) in the main discrimination task, as a func-

tion of decision correctness and confidence (see Fig 1A for an illustration of the main task).

In the second session of the experiment, EEG recordings were obtained during the main

perceptual discrimination task, which was similar to the decision localizer task of the first ses-

sion [33], but now images were presented shorter (20 or 30 ms) and performance was stair-

cased during practice blocks in order to achieve approximately 65% to 70% discrimination

accuracy. After each decision, participants also provided a confidence rating regarding their

estimated accuracy of their face/house discrimination response. Discrimination performance

was kept low to elicit many incorrect perceptual decisions and hence to induce enough misre-

ports for subsequent analyses.

Participants correctly discriminated faces and houses in 69.47% of all images (SD = 7.48) in

the perceptual discrimination task. There was a slight tendency to respond house more often

than face (58% versus 42%), similarly to our previous study [33]. As expected, signal detection

Fig 1. Task and behavior. (A) Each trial started with a central red fixation dot after which a forward mask was shown,

followed by an image of a face or a house and a backward mask. Images were either tilted to the right or to the left

(task-irrelevant feature, 5˚ or 355˚ angle). Note that in the example trial, only a left-tilted house image is shown.

Participants reported whether they perceived a house or a face and indicated their confidence in this decision. (B)

Perceptual sensitivity (d’) as a function of decision confidence. The underlying data and scripts supporting this figure

can be found on FigShare (https://doi.org/10.21942/uva.c.6265233.v1).

https://doi.org/10.1371/journal.pbio.3002009.g001

PLOS BIOLOGY The perceptual nature of illusory object recognition

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002009 March 2, 2023 3 / 26

https://doi.org/10.21942/uva.c.6265233.v1
https://doi.org/10.1371/journal.pbio.3002009.g001
https://doi.org/10.1371/journal.pbio.3002009


theory (SDT)-based perceptual sensitivity (d’) increased with reported confidence level (main

effect of confidence: F3,117 = 116.69, p< 0.001, η2 = 0.54, Fig 1B) and ranged from d’ = 0.11 at

confidence level 1 (least confidence) to a d’ of 2.07 at confidence level 4 (most confidence).

The time course of category representations: Decision localizer

To investigate the time course of category-specific neural representations, we trained classifiers

on EEG data recorded during the 2 localizer tasks and applied them to the main perceptual dis-

crimination task data. We will first report the classification when classifiers were trained on

the decision localizer (Fig 2A) and then the cross-classification to the main task (Fig 2B). Cate-

gory-specific neural representations could be decoded based on the decision localizer (10-fold

validation scheme, i.e., within-task decoding, Fig 2A). The generalization across time (GAT)

matrix, time-locked to stimulus onset, exhibited the expected mixture of transient and stable

on-diagonal decoding as well as persistent off-diagonal decoding profiles observed previously

[33–37]. Following the analysis approach by Weaver and colleagues [33], who used a similar

face/house discrimination task, we used matching time-windows for statistical analysis as used

in that earlier study. For these analyses, based on Weaver and colleagues [33], decoding was

examined on several stages, first of which a transient peak in an early time-window between

150 and 200 ms (Fig 2A, inset 2) [11,13–15]. The timing (150 to 200 ms; the decoding peak

was found at approximately 166 ms) and scalp topography of the early peak is probably related

to the N170 ERP component, often related to face processing [36,38–40], although also

observed for letters, words, and biological motion [41,42]. Peaks of N170-like decoding have

been associated with neural processes in the occipital face area, superior temporal sulcus, and/

or the fusiform face area (FFA) in ventral-temporal cortex [43–49]. Previous work has also

shown that the strength of this early face-selective component is proportional to the strength

(e.g., phase coherence of the stimulus) of the presented stimulus [18,40].

We also focused on a more stable square-shaped decoding profile between 350 and 500 ms

(on-diagonal), capturing late category-specific processes (Fig 2A, inset 3), with a central-parietal

Fig 2. (A) GAT matrix for the decision localizer (all electrodes) and ROI marked by inset black boxes (numbers 1–4). On the right, covariance/class

separability maps for each diagonal ROI, indicating the underlying data contributing to the classification performance. Highlighted channels significantly

contributed to the classification performance after cluster-based permutation testing over channels (corrected for multiple comparisons). Covariance/class

separability maps 2 and 4 are the same because decoding scores within insets 2 and 4 were obtained using the same training time-window. (B) Classifiers

trained on the decision localizer applied to the main discrimination task (cross-task validation procedure, all electrodes), revealing a high degree of

generalizability between the 2 tasks. The underlying data and scripts supporting this figure can be found on FigShare (https://doi.org/10.21942/uva.c.6265233.

v1). AUC, area under the curve; GAT, generalization across time; ROI, regions of interest.

https://doi.org/10.1371/journal.pbio.3002009.g002
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topography (late-stage topography). This decoding profile has previously been suggested to reflect

global ignition, large-scale feedback processes allowing information to be broadcasted throughout

the entire brain, making information explicit for report and decision-making [8,34,37,50].

Additionally, we examined decoding accuracy in a late time-window from 350 to 500 ms,

based on training on early 150 to 200 ms classifiers (i.e., off-diagonal decoding, (Fig 2A, inset

4)). Given that decoding is in this case based on early classifiers tuned to sensory features, this

stage is thought to reflect longer lasting sensory processes of categorical information across

time [33,34,51]. This late-latency off-diagonal decoding pattern, referred to as the “perceptual

maintenance” stage, has been suggested to reflect reactivation of early sensory stages through

feedback processes [33–35].

Finally, although decoding was pronounced during 3 time-windows observed previously by

Weaver and colleagues [33] (insets 2, 3, and 4), it was also observed at an even earlier time-

window (80 to 130 ms) with a prominent occipital–parietal topography (Fig 2A, inset 1, early-

stage topography). Because this early effect was absent in the same task when images where

presented vertically [33], this early peak likely reflects differences in the orientations of the

images presented, which we varied systematically across trials (note that training and testing

was performed on balanced set of left and right oriented images). Although we follow a confir-

matory approach by selecting time-windows of interest (TOI) beforehand [33], we will always

in addition use across time permutation tests with multiple comparisons corrections to test for

(unexpected) effects observed at other time-windows and to further specify the approximate

onset and/or duration of our significant effects (see Materials and methods for details).

Cross validation between the decision localizer and the main discrimination task (Fig 2B for

all channels; see S2 Fig for occipital–parietal channels) revealed a highly similar decoding pro-

file for the 2 tasks. Classifiers’ performance in differentiating between face and house images

were highest on occipital–parietal electrodes, particularly during early latencies (S2 Fig). Since

our aim was to examine whether decision errors have a perceptual origin, we report the decod-

ing results based on data from occipital–parietal channels here to maximize sensitivity to neural

signals that distinguish between the 2 categories. In the S1 Text, S4 Fig, and S5 Fig, we also

report the critical decoding analyses using all channels, which yielded similar results.

Diagonal decoding based on decision localizer

Next, we examined decoding scores as a function of decision correctness (correct/incorrect)

and confidence (low confidence (LC): level 1 and 2 versus high confidence (HC): level 3 and 4,

as in [33]). This created 4 conditions: HC correct, LC correct, HC incorrect, and LC incorrect

trials. GAT matrices and on/off-diagonal time courses for these 4 conditions are shown in Fig

3A–3D. Note that the “testing labels” for classification were based on the decision of the sub-

ject in the main task (deciding face or house), not the presented stimulus. For correct trials,

the presented stimulus and the decision are by definition the same. For incorrect trials how-

ever, the stimulus and the decision are of different categories. This means that if decoding

scores are observed that are higher than chance level, the underlying data pattern correlates

with the category of the reported stimulus, the decision. We will refer to this situation as posi-

tive decoding (with respect to chance level). In contrast, when below chance level decoding is

observed, this would reveal that the underlying data pattern correlates with the presented stim-

ulus, not with the reported stimulus (stimulus and response are different on incorrect trials,

see Methods for details). The classifier thus finds negative evidence for the decision, and there-

fore we will refer to this situation as negative decoding (with respect to chance level).

Statistical analyses were performed on the diagonal and off-diagonal time courses (late sensory

traces) (Fig 3C and 3D). We first report the analyses for the diagonal time courses using a 3-way
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repeated measures ANOVA with the factors Latency, Correctness, and Confidence. As antici-

pated, category decoding was better for correct than incorrect trials (F1,39 = 135.05, p< 0.001, ηp
2

= 0.78) as well as for HC versus LC trials (F1,39 = 27.75, p< 0.001, ηp
2 = 0.42). Category decoding

differed across the 3 (early, mid, late) diagonal decoding time-windows (F2,78 = 32.16, p< 0.001,

ηp
2 = 0.45), with differences being modulated by the level of confidence (Latency × Confidence:

Fig 3. Face/house classification in the main task while training on the decision localizer. (A) GAT matrices for correct trials and (B) incorrect trials in

the main discrimination task (occipital–parietal channels). Trials are separated by confidence—HC and LC—in the decision. (C) On-diagonal and (D) off-

diagonal (perceptual maintenance) time courses of correct and incorrect decisions, separated by confidence. Black boxes indicate the time-windows (early,

mid, late) used for averaging the AUC scores. Colored horizontal lines indicate periods of significant decoding with respect to chance. Longer-lasting

sensory traces are derived by training a classifier on the time-window 150–200 ms and testing it across the entire time-window (panel D). Classification

performance was evaluated at each time point using cluster-based permutation testing (two-tailed cluster-permutation, alpha p< 0.05, cluster alpha

p< 0.05, N permutations = 1,000). (E) Bar plots show average AUC values for the TOI highlighted in panels (C) and (D). The underlying data and scripts

supporting this figure can be found on FigShare (https://doi.org/10.21942/uva.c.6265233.v1). AUC, area under the curve; GAT, generalization across time;

HC, high confidence; LC, low confidence; TOI, time-windows of interest.

https://doi.org/10.1371/journal.pbio.3002009.g003
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F2,78 = 6.88, p = 0.002, ηp
2 = 0.15; no evidence for an interaction between confidence and correct-

ness: F2,78 = 0.022, p = 0.88, ηp
2 = 0.001). As hypothesized, the characteristic pattern of decoding

across 3 diagonal time-windows differed between correct and incorrect trials

(Correctness × Latency interaction: F2,78 = 36.57, p< 0.001, ηp
2 = 0.48), independent of confi-

dence (Correctness × Latency × Confidence interaction: F2,78 = 1.12, p = 0.33, ηp
2 = 0.03). As

shown in Fig 3C, diagonal decoding profiles were very different for correct and incorrect deci-

sions, especially for the early and mid-processing stages. Most prominently, it can be observed

that for correct trials, all processing stages show positive decoding, whereas in sharp contrast the 2

early stages for the incorrect trials showed negative decoding. This negative decoding pattern on

incorrect decisions illustrates that early EEG data patterns look more similar to the presented

stimulus category than to the reported stimulus category (note again that the decisions were used

as the classifier labels). The fact that the late stage decoding flips to positive decoding illustrates

that later EEG data patterns are more similar to the reported category than the presented category

(Fig 3C). We will come back to these effects later in the Results section.

For correct trials, decoding strength differed across the 3 TOI’s (F1,39 = 47.01, p< 0.001, η2

= 0.55) and was overall better for HC trials than for LC trials (F1,39 = 31.91, p< 0.001, η2 =

0.45). Confidence interacted with latency (TOI’s) (F2,78 = 10.28, p< 0.001, η2 = 0.21), indicated

by better decoding in the mid/late processing stage for HC versus LC trials (mid-stage: t39 =

−6.92, p< 0.001, d = −1.09; late stage: t39 = −3.06, p = 0.004, d = −0.48; Fig 3C), while we did

not find evidence for this confidence modulation for the early processing stage (t39 = −1.25,

p = 0.22, d = −0.2). These results are summarized in the bar plots of Fig 3E.

On incorrect decisions, decoding scores across 3 diagonal time-windows differed (F2,78 =

18.84, p< 0.001, ηp
2 = 0.33) and while decoding was also higher for HC than for LC trials

(F1,39 = 11.64, p = 0.002, ηp
2 = 0.23, Fig 3C), the interaction between these 2 factors was not

robust, although numerically, decoding was higher in HC compared to LC trials, in particular

at the later versus early stage (F2,78 = 2.81, p = 0.07, ηp
2 = 0.07, BFexcl = 1.96). A series of

planned simple comparisons showed that the flip from negative to positive decoding was

stronger for high confidence decisions (results are summarized in Fig 3E). The below-chance

decoding during the 2 early diagonal decoding time-windows on incorrect decisions indicated

that the classifiers were picking up the presented stimulus category during sensory stages of

visual information processing. At the earliest time-windows (80 to 130 ms), we did not find

evidence that decoding was modulated by confidence (HC versus LC; t39 = −0.28, p = 0.78, d =

−0.05, BF01 = 5.64) and indeed, decoding was below chance-level for both confidence levels

(LC: t39 = −5.83, p< 0.001, d = −0.92; HC: t39 = −3.38, p = 0.002, d = −0.53). During the fol-

lowing mid-stage (150 to 200 ms), classifiers also mainly decoded the veridical stimulus cate-

gory, but interestingly in particular when participants reported low confidence in their

decision (LC: t39 = −5.05, p< 0.001, d = −0.8; HC: t39 = −0.35, p = 0.73, d = −0.06, BF01 = 5.54;

LC versus HC: t39 = −2.95, p = 0.005, d = −0.47). Then finally, during the late processing stage

(350 to 500 ms), patterns of neural activity represented the incorrectly reported stimulus cate-

gory, but in particular when participants where highly confident in their decision, so when the

illusion was strongest (HC: t39 = 3.53, p< 0.001, d = 0.56; LC: t39 = 0.44, p = 0.67, d = −0.07,

BF01 = 5.36, LC versus HC: t39 = −3.28, p = 0.002, d = −0.52). These results show a reversal

from the presented stimulus category to the reported category for incorrect decisions, espe-

cially for high confidence decisions.

Off-diagonal decoding based on the decision localizer

Next, we examined decoding of the reported stimulus category off-diagonally, training on the

N170 time-window (150 to 200 ms) using the decision localizer task data, separately for correct
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and incorrect decisions (only 1 stage). First, on correct decisions, decoding of the reported

stimulus category was robust for both confidence levels (all p’s < 0.001), although decoding

was higher for HC than LC decisions (t39 = −3.98, p =<0.001, d = −0.63; Fig 3D and 3E, right

panel), suggesting that the veridical/perceived stimulus category was maintained perceptually.

On incorrect decisions, however, what was perceptually represented off-diagonally was not the

presented stimulus, but the misreported stimulus category, and this effect was stronger for

high confident than low confident incorrect decisions (HC: t39 = 3.86, p< 0.001, d = 0.61; LC:

t39 = 1.41, p = 0.17, d = 0.22, BF01 = 2.35; LC versus HC: t39 = −3.06, p = 0.004, d = −0.48; Fig

3E). Thus, based on the transient decoding peak observed at early processing stages (150 to

200 ms in the decision localizer), the erroneous and misreported stimulus category was repre-

sented in a persistent perceptual format later in time, despite never being presented on the

screen and never being neurally represented at earlier time points (Fig 3D). Statistical tests

across time revealed that the incorrect off-diagonal decoding trace emerged relatively early,

starting at approximately 213 ms and peaking at 236 ms after stimulus presentation (Fig 3D,

horizontal blue colored bars reflect significant time points after cluster-based permutation test-

ing). Although we observed a perceptual representation of an incorrectly reported category,

concluding that errors in decision-making in this task have a true perceptual origin (in the

case confidence is high), based on the current results may be premature, because the decoded

signal could reflect a combination of perceptual and decision-related processes [20,52]. There-

fore, we further examined this issue when training our classifiers on the sensory tuned

localizer.

The time course of category representations: Sensory localizer

To explore to what extent errors in decision-making have a true perceptual origin, we per-

formed the same set of analysis, but now while training the classifier on the sensory localizer

task (Fig 4A). In this task, participants performed a simple change detection task on the color of

the fixation cross making the face/house images fully task irrelevant. Because the sensory locali-

zer task does not have a decision component to the face/house images, it is uniquely sensitive to

sensory features. Therefore, we expected that the late square-shaped on-diagonal decoding pat-

tern, possibly related to global ignition [34,37,50], would be strongly reduced or even disappear

when cross classifying between the sensory localizer and the main perceptual decision task (Fig

4B). Previous studies have shown that this late square-shaped decoding pattern is likely related

to decision processes arising after perceptual analysis, which disappear when visual input is task

irrelevant [18–20,53]. On the other hand, because decoding is still performed on the face/house

images, the sensory stages should be relatively unaffected by this task relevance manipulation

[18,49]. In this Results section, we focus on those aspects of decoding that are informative for

addressing the question whether decision errors have a perceptual origin, but note that all other

effects were similar to the analyses reported in the “decision localizer” section and the details

thereof can be found in the Supporting information (including all the ANOVA’s).

For correct decisions, decoding was above chance for both confidence levels (all

p’s< 0.001, see Fig 4C) in the early and mid-stage, but we did not find evidence for decoding

at the late diagonal stage (LC: t39 = 1.104, p = 0.28, d = 0.18, BF01 = 3.33; HC: t39 = 1.34,

p = 0.19, d = 0.21, BF01 = 2.55). Thus, as anticipated, the late on-diagonal 350 to 500 ms stage

was not robust when training on the sensory localizer and classifying on the main discrimina-

tion task, whereas all other stages of visual processing remained relatively intact (Fig 4C). Dur-

ing the perceptual maintenance stage, the activity patterns reflected the veridical/reported

stimulus category (both p’s< 0.001, LC versus HC: t39 = −0.98, p = 0.34, d = −0.15, BF01 =

3.76, Fig 4D).
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For incorrect decisions, the early and mid-stage were also similar as compared to when the

classifiers were trained on the decision localizer (early stage: LC: t39 = −3.4, p = 0.002, d =

−0.54; HC: t39 = −3.91, p< 0.001, d = −0.62; mid-stage: LC: t39 = −3.04, p = 0.004, d = −0.48;

HC: t39 = −0.11, p = 0.91, d = −0.02, BF01 = 5.83). Specifically, we observed negative decoding

Fig 4. Face/house classification based on the sensory localizer. (A) GAT matrix for the sensory localizer (all electrodes) and ROI marked by inset black

boxes (numbers 1–4). On the right, covariance/class separability maps for each diagonal ROI, indicating the underlying data contributing to the classification

performance. Highlighted channels significantly contributed to the classification performance after cluster-based permutation testing over channels

(corrected for multiple comparisons). Covariance/class separability maps 2 and 4 are the same because decoding scores within insets 2 and 4 were obtained

using the same training time-window. (B) Classifiers trained on the sensory localizer applied to the main discrimination task (cross-task validation

procedure, all electrodes). (C) On-diagonal and (D) off-diagonal time courses of correct and incorrect decisions, separated by confidence. Black boxes

indicate the time-windows (early, mid, late) used for averaging the AUC scores. Colored horizontal lines indicate periods of significant decoding with respect

to chance. Longer-lasting sensory traces are derived by training a classifier on the time-window 150–200 ms and testing it across the entire time-window

(panel D). Classification performance was evaluated at each time point using cluster-based permutation testing (two-tailed cluster-permutation, alpha

p< 0.05, cluster alpha p< 0.05, N permutations = 1,000). (E) Bar plots show average AUC values for the TOI highlighted in panels (C) and (D). The

underlying data and scripts supporting this figure can be found on FigShare (https://doi.org/10.21942/uva.c.6265233.v1). AUC, area under the curve; GAT,

generalization across time; HC, high confidence; LC, low confidence; ROI, regions of interest; TOI, time-windows of interest.

https://doi.org/10.1371/journal.pbio.3002009.g004
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for both early stages (again, except for HC trials in the mid-stage), reflecting the processing of

the veridical stimulus input. Crucially, also here, the late-stage decoding disappeared (LC: t39 =

0.16, p = 0.88, d = −0.03, BF01 = 5.8; HC: t39 = 1.27, p = 0.21, d = 0.2, BF01 = 2.8, Fig 4C). How-

ever, most importantly, during the off-diagonal perceptual maintenance stage using the classi-

fier trained on the sensory localizer data, we could still decode the incorrectly reported

stimulus category, in particular when participants reported high confidence in their decision

(LC: t39 = 1.78, p = 0.08, d = 0.28; BF01 = 1.4; HC: t39 = 3.03, p = 0.004, d = 0.48, BF01 = 0.12;

LC versus HC: t39 = −1.94, p = 0.06, d = −0.31, BF01 = 1.07, Fig 4D and 4E). Again, here as

well, cluster-based testing across the entire time-window revealed that the perceptual represen-

tation of the incorrect stimulus spontaneously emerged right after the 150 to 200 ms time-win-

dow most strongly representing face/house differentiation (see Fig 4D). This finding shows

that misreported decisions may be due to true perceptual illusions.

Stimulus orientation decoding

Our results so far show that initial information processing stages are stimulus related, whereas

later off-diagonal decoding captures perceptual aspects of decision errors. To show that these

effects are specific for task-relevant features of the images (face/house category), we addition-

ally focused on stimulus orientation decoding as a function of correctness and confidence.

Stimulus orientation was a task-irrelevant feature of the stimuli and previous studies have

shown that it can be decoded already approximately 100 ms post-stimulus [50]. A single iso-

lated decoding peak within the 30 to 130 ms post-stimulus was observed both for within-task

decoding (Fig 5A, 10-fold decoding) as well as cross-task classification (decision classifiers➔
main discrimination task, Fig 5B and 5C). Decoding strength was similar for correct and

incorrect decisions (F1,39 = 0.06, p = 0.82, ηp
2 = 0.001, BF01 = 5.7) and more evidence was

observed for the absence of an effect. We also did not find evidence that confidence modulated

orientation decoding in any way (F1,39 = 0.54, p = 0.47, ηp
2 = 0.014, BF01 = 4.77; interaction

correctness × confidence: F1,39 = 0.18, p = 0.67, ηp
2 = 0.005, BFexcl = 4.22).

Fig 5. Tilt (right/left) classification based on decision localizer. (A) GAT matrix of the decision localizer data for arbitrating left/right tilted stimuli

(irrespective of face/house category, based on occipital–parietal channels). The black square-shaped inset indicates the time-window used for averaging AUC

decoding scores (30–130 ms). (B) On-diagonal time courses for correct and incorrect decisions separated by confidence. Colored horizontal lines indicate

periods of significant decoding with respect to chance. Classification performance was evaluated at each time point using cluster-based permutation testing

(two-tailed cluster-permutation, alpha p< 0.05, cluster alpha p< 0.05, N permutations = 1,000). (C) Bar plots show average AUC values for the time-window

of interest highlighted in panels (A) and (B). The underlying data and scripts supporting this figure can be found on FigShare (https://doi.org/10.21942/uva.c.

6265233.v1). AUC, area under the curve; GAT, generalization across time; HC, high confidence; LC, low confidence.

https://doi.org/10.1371/journal.pbio.3002009.g005
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Discussion

The goal of this study was to investigate whether errors during perceptual decision-making

have a sensory or a decisional origin. We isolated sensory versus decision-related neural pro-

cesses by using 2 distinct functional localizers, differently tuned to these processes [20]. Repli-

cating a wealth of previous studies, the earliest neural responses reflected the physical

properties of the presented stimulus [51–55]. The crucial finding reported here is however that

when participants made an incorrect perceptual decision with high confidence, early stages of

visual information processing (<~200 ms post-stimulus) still represented object features of the

presented stimulus (e.g., “faceness” in the case a face stimulus was presented), while later stages

represented the illusory perceptual properties of the reported stimulus category (e.g., “house-

ness” in case a face was presented, but a house response was given). More importantly, at least

3 findings reported here demonstrate the sensory and true illusory nature underlying such

high confident erroneous perceptual decisions and thereby go beyond traditional interpreta-

tions associating late neural processing with largely stimulus-driven perception.

First, persistent sensory-based decoding across time (perceptual maintenance, off-diagonal

decoding) on incorrect trials was observed when training a classifier on the N170-like process-

ing stage, a peak in the EEG signal highly associated with face perception [39,44,49–51,56–58].

Whereas low-level visual features, such as stimulus orientation and position, drive early-

latency decoding (<100 ms post-stimulus), slightly later in time decoding has been shown to

reflect the integration of sensory features into coherent objects and object categories (as early

as approximately 150 ms post-stimulus, [8,19,50,51,59]). Regarding face perception, a recent

MEG study showed that decoding of face representations peaked at approximately 160 ms

post-stimulus, and this signal correlated with subjective ratings of “faceness” of inanimate

objects [57]. By combining MEG and functional magnetic resonance imaging (fMRI) mea-

sures, it was shown that these face responses likely originated from the FFA in ventral temporal

cortex (see also [49,56]). This mid latency face-like component has been shown to be relatively

unchanged when object categories are task irrelevant [18]. Others have also provided evidence

for strong occipital contributions to the decoding of perceptually integrated objects and object

categories during similar early latencies [34,60]. These findings highlight that the mid latency

(150 to 200 ms) decoding stage indexes perceptually coherent category representations, likely

originating from (higher level) visual cortices. A novel line of evidence based on decoding and

generalization across time [61] has shown that these category representations are decodable

for much longer periods of time than originally anticipated, as reflected in off-diagonal decod-

ing patterns, focused on in this work [33–35,53]. Also in the data presented here, sensory rep-

resentations were decodable for relatively long periods of time (see Figs 3 and 4) [35].

A second reason why erroneous decisions in our task are likely caused by true perceptual

illusions is that long-lasting late sensory representations were observed even when classifiers

were trained on the sensory-tuned localizer task (perceptual maintenance, Fig 4D). Sensory-

tuned classifiers were trained on a task in which face/house images were fully task irrelevant

and participants focused their attention on detecting small changes in the color of the fixation

cross. Therefore, this classifier was only able to pick up (unattended) sensory features of the

images that arbitrate between faces and houses, in the absence of most post-perceptual and

decision-related processes [18–20,26]. That we were successful in isolating sensory features

was evident in the strong decrease of the late on-diagonal “square-shaped” decoding profile

while training on the sensory localizer task. Another approach to isolate neural signals associ-

ated with perceptual experience from decision- and report-related processes is the develop-

ment of no-report paradigms. In such paradigms, observers may be aware or unaware of

presented stimuli, but in all cases do not make perceptual judgments about them. The resulting
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contrasts (aware versus unaware) is then supposed to isolate perceptual experience, limiting

the influence of post-perceptual processes. Also in this line of work, it has been shown that the

majority of the high-level activations in frontal and parietal cortex disappear (similar to our

late square-shaped decoding), and hence, that such activation patterns are mostly associated

with post-perceptual processes and much less so with perceptual experience itself [21–26].

Third and finally, the flip from veridical stimulus-related processing relatively early in time

towards illusion-based (or report-based) processing later in time was only observed for high

confidence decisions and not for low confidence decisions. In other words, the emergence of

these perceptual representations in the EEG signal depends on the strength of the perceptual

illusion, assuming that the perceptual illusion was strong for high confidence (inaccurate)

decisions and weak for low confidence decisions (see [62] for a way to explore “partial errors”

by inspecting the electromyography signal on correct responses). Low confidence decision

errors were likely the result of guessing [7]. In a related fMRI study, Summerfield and col-

leagues have shown that misreporting a house for a face in a challenging discrimination task

similar to ours, is accompanied by increased fMRI BOLD activity in the FFA, but not in other

face responsive regions such as the occipital face area (OFA) [7]. This suggests that the FFA is

associated with illusory perception of faces, whereas earlier face processing regions in the corti-

cal hierarchy are not, and reflect the presented or veridical stimulus category [7,63,64].

Although in this fMRI study, discrimination responses were also given with high or low confi-

dence, unfortunately too few high confidence error trials could be obtained to perform the cru-

cial analyses that test for confidence modulations on decision errors. Furthermore, in this

study, image contrast varied across trials, and therefore correctness, confidence, and image

contrast co-varied, which complicated the separation between perceptual effects and effects of

bottom-up input strength (e.g., decision errors were also often low contrast trials). However,

together these results highlight that relatively early stages in object processing, both in time as

well as in the cortical hierarchy, are linked to the image input, whereas later stages are more

internally driven or perceptual in nature. Intriguingly, our results also show that emerging per-

ceptual representations do not necessarily have to follow from bottom-up sensory processes.

When participants misreported the presented stimulus category (on incorrect trials), we found

no N170-like decoding pattern for high confidence decisions, but we did observe the emer-

gence of perceptual representations of the reported category later in time (Fig 3B). Thus, illu-

sory category-specific perceptual signatures emerged without any clear bottom-up sensory

evidence for this percept.

Although these results reveal that high confidence errors are associated with neural repre-

sentations indicative of true perceptual illusions, they leave open the question what drives

these reversals in representations from the veridical to the misreported stimulus category.

There are several likely candidate mechanisms, which future studies should aim to arbitrate

between. One intuitive candidate may be decision-related feedback to visual cortex. The fron-

toparietal network involved in perceptual decision-making has strong feedback connections to

sensory regions and can continuously inform sensory regions about the unfolding decision

variables through feedback connections [65,66]. In general, activity observed in sensory

regions can thus be a mixture of both feedforward and feedback processes, especially at longer

latencies (>~100 ms) ([39], but see [40]), making it difficult to disentangle sensory and post-

sensory or decision processes even at the level of single sensory neurons [67–74]. fMRI studies

in humans have for example shown that early visual cortex activity may reflect a combination

of stimulus-related feedforward activity and post-sensory decision-related feedback [75] or

top-down processes such as task set and expectations [76]. The observation that we only

observed the flip form veridical to the reported perceptual representations in high confidence

trials runs contrary to the interpretation that decision-related feedback may be the best
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explanation of the observed data patterns. If these effects were purely decision-driven, we

should have observed similar decoding patterns for low confidence decisions, although we

cannot fully rule out the possibility that these sensory effects were caused by decision-related

feedback.

Another possibility is that, because the bottom-up visual input is impoverished due to

strong masking, higher-order areas may incorrectly explain the noisy bottom-up signals. Pre-

vious evidence suggests that sensory templates can be implemented in a top-down manner

even in anticipation of sensory stimulation [77–79] and a body of work shows that the FFA is

sensitive to top-down factors, such as task-relevance, expectations, and context [76]. For exam-

ple, seeing a face in ambiguous Mooney images [80] or face-like inanimate objects, the phe-

nomenon know as pareidolia [57], leads to stronger FFA responses than when no face is

perceived, despite very similar bottom-up input. That the FFA is sensitive to context is also

illustrated by the observation that the FFA activates to simple oval shapes when the context

suggests this shape might be a face [81]. Furthermore, Summerfield and colleagues showed

effects of task set on object processing [82]. They administered a task in which in 1 block of tri-

als participants had to detect faces among faces, houses, and cars, and in another block, they

had to detect houses, among the same 3 categories of stimuli. Thereby the authors manipulated

the top-down “perceptual set” while keeping the bottom-up input the same across blocks.

When comparing the overall activity in the FFA on blocks in which faces had to be detected

versus houses had to be detected, increased FFA activity was observed. The authors concluded

that top-down signals from frontal cortices could sensitize visual regions responsible for col-

lecting evidence about the presence of faces. Although we did not directly manipulate context

or expectations in our design (faces and house were equiprobable), participants may have

developed expectancies about image likelihood over time, which may have then led to explain-

ing the noisy sensory input, probably at the level of object-selective cortex, in an erroneous

way [7]. Another related and interesting finding has been reported by Tu and colleagues [8].

In their task, participants had to discriminate faces from houses or cars while EEG and fMRI

were measured simultaneously. As the authors have observed in different task contexts

[18,83], there were both early (approximately 200 ms after stimulus) and late (approximately

500 ms after stimulus) EEG components that discriminated between stimulus categories.

Interestingly, in behavior, participants had an overall face bias: they often misreported non-

faces as faces. By combining EEG with fMRI, the authors showed that individual differences in

the strength of this face-bias correlated across participants with the strength of the interaction

between “early” (e.g., FFA, parahipocampal place area, parietal regions) and “late” neural net-

works (primarily frontal regions, e.g., anterior cingulate cortex). Therefore, the strength of a

face decision bias may depend on the degree of top-down predictive modulations from frontal

to sensory cortices. Because no single trial confidence reports were obtained in that study, the

authors could not relate their neural data and categorical responses to introspective confidence

in the observers’ decisions. Our study therefore extends this previous work by showing that (at

least) high confidence decision errors have a perceptual origin. In general, together these stud-

ies suggest that both perceptual biases and decision biases depend on interactions between

top-down and bottom-up processes (see also [9,12,14,84] for ways aiming to behaviorally dis-

entangle sensory from decision biases).

Predictions, however, do not have to be strategic or conscious, but may fluctuate naturally

over time in neural activity, e.g., in object selective cortex [85]. It has been argued that ongoing

fluctuations of neural activity are not random (i.e., stochastic noise), but may contain content-

specific information, for example, associated with previously experienced stimuli and (percep-

tual) learning [86–93]. It has, for example, been shown recently that when patterns of pre-stim-

ulus neural activity measured with magnetoencephalography matched the stimulus category
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that was later presented, which had to be discriminated from other object categories by human

participants, perceptual sensitivity was improved [85]. Thus, another possibility is that, in the

face of uncertainty, when sensory input is weak or ambiguous, the system may settle on the

most likely interpretation of the sensory input, integrating the sensory evidence and the ongo-

ing activity present at the moment the stimulus travels through the cortical hierarchy. In our

study, when perceptual decisions were incorrect, but made with high confidence, the percep-

tual system may have settled in a state coding for the specific stimulus category that was per-

ceived, leading to a true illusion in perception. Yet, in low confidence decision error trials, the

perceptual system may have not settled on any of the 2 stimulus categories, as strikingly

reflected in the absence of significant decoding for either the presented or the reported object

category.

To conclude, we find that object categorization errors are associated with a quick reversal

in sensory representation from the veridical, presented stimulus category to the reported stim-

ulus category, but only for decision made with high confidence. This finding shows that high-

confidence decision errors are caused by true illusions in perception.

Methods

Ethics statement

Participants provided written informed consent prior to the start of the experiment and were

tested following a protocol approved by the ethical committee of the Department of Psychol-

ogy of the University of Amsterdam (project number: 2019-BC-10724).

Participants

A total of 44 participants (33 female, mean age = 23.34; SD = 5.68) from the University of

Amsterdam, all right-handed, with reported normal or corrected-to-normal vision and no his-

tory of a psychiatric or neurological disorder, were tested in this study. Participants received

research credits or money (10 euros per hour) for compensation. Forty participants, all

between the age of 18 and 35, completed 2 experimental sessions of this study and comprised

the final sample included in all reported analyses (30 female, mean age = 22.83; SD = 3.31).

The remaining 4 participants were identified based on their data from session 1, after which

they were excluded from further participation/analyses. One participant was excluded from

the final analysis because of surpassing the age criterion (age > 35), while the other 3 partici-

pants were excluded due to the around-chance performance in 1 or both localizer tasks in the

first session.

Materials

All tasks used in the current study were developed and executed using Matlab 8 and Psychtool-

box-3 software within a Matlab environment (Mathworks, RRID:SCR_001622). Stimuli were

presented on 1,920 × 1,080 pixels BenQ XL2420Z LED monitor at a 120-Hz refresh rate on a

black (RGB: [0 0 0], ± 3 cd/m2) background and were viewed with a distance of 90 cm from

the monitor using a chin rest.

Procedure and stimuli

The experiment consisted of 2 sessions, each approximately 3 h long and scheduled on 2 differ-

ent days for each participant. In the first session, participants completed a change detection

task and a discrimination task while we measured their brain activity using EEG. In the change

detection task, participants focused on the central fixation cross and reported its color change
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whenever it changed from red to light red, while a stream of brief house and face images was

shown simultaneously on the screen (S1A Fig). In the discrimination task, in every trial, par-

ticipants saw a masked image of a face or a house (S1A Fig). At the end of each trial, they were

asked to indicate which stimulus category they perceived. The discrimination task adminis-

tered in the second session was highly similar (see the details of the design below), but in addi-

tion to reporting which stimulus category they perceived, participants also provided

confidence ratings regarding their decision.

MVPA classifiers were trained on EEG data recorded during the first session, separately for

the change detection task (“sensory” localizer) and the discrimination task (“decision” locali-

zer), which were then applied to the discrimination task EEG data recorded in the second

session.

Session 1: Change detection task (sensory localizer). In this task, participants focused their

attention on a centrally presented fixation cross, which was superimposed on a rapidly changing

sequence of house and face images (S1A Fig). The fixation cross remained present on the screen

throughout a block of trials. Participants’ task was to monitor the fixation cross and report its

brief color change, from red (RBG: [255 0 0]) to a lighter shade of red (RBG: [125 0 0]) for 100

ms on 20% of randomly chosen trials. Participants were instructed to press the spacebar when-

ever they noticed the color change of the fixation cross. Note that this change detection task

adds an orienting response to the fixation cross on some trials, which was however unrelated to,

and not predictive of, the occurrence of the task-irrelevant face or house stimuli.

Stimuli set consisted of 180 unique houses and 180 unique faces (90 male and 90 female).

Face and house images were gray scale stimuli, obtained from [33]. Face and house stimuli

were equated for spatial frequency and luminance (for details, see [33]). All stimuli subtended

16 × 20˚ visual angle, were presented centrally on a black background, and were tilted to the

right or left at a 5˚ or 355˚ angle, respectively. Each image was shown for 100 ms with the ISI

that was jittered between 1,200 and 1,400 ms. The task-relevant color change of the fixation

cross could occur only in the ISI, at a randomly determined moment 15 ms after the start of

the ISI and 130 ms before its end. Participants were instructed not to pay attention to images

of houses and faces while maintaining their fixation at the center of the screen. Images of

houses and faces were thus task irrelevant, although they were concurrently processed visually.

By ensuring that participants’ attention was focused on the centrally presented task, the aim

was to minimize the possibility that MVPA classifiers were impacted by systematic eye move-

ments that could be strategically deployed to discriminate between stimuli classes [94]. For

example, a consistent eye movement towards the top of the stimulus to detect face-defining

features (e.g., eyes) could alone drive multivariate differences between houses and faces

stimuli.

In total, 200 images of houses and faces (100 of each category, half tilted to the right and

half tilted to the left) were shown in each of 6 experimental blocks. Before the start of the first

experimental block, each participant completed 1 practice block of 100 trials in order to get

familiar with the task.

Session 1: Discrimination task (decision localizer). The task design was highly similar to the

task developed by Weaver and colleagues [33]. An overview of the trial procedure can be

found in Fig 1A (and S1B Fig). Each trial started with a fixation dot that remained on the

screen throughout the duration of the trial. After a fixation-only interval that was jittered

between 600 and 1,000 ms, a scrambled mask stimulus appeared on the screen for 50 ms, fol-

lowed by a target face or a house stimulus, shown for 80 ms. The target image was followed by

another 50 ms-long scrambled mask stimulus. A response screen was presented for 1,000 ms

immediately after the offset of the second mask stimulus, during which participants needed to

give a speeded response indicating whether they saw a house or a face, using a left-handed
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(“z”) or right-handed (“m”) keyboard response. Stimulus-response mappings were random-

ized across blocks of trials to prevent motor response preparation before the response screen

was shown. The correct stimulus-response mapping (e.g., a left button press for a face and a

right button press for a house stimulus) was presented at the beginning of each block. Further-

more, letters F and H (approximate size 4 × 4˚), for faces and houses, respectively, were shown

during the entire trial in the right and left upper corner (centered approximately 20 × 24˚ from

fixation), or vice versa, depending on the block, as a reminder of the response mapping to the

button press.

Face, house, and mask stimuli were obtained from the study by Weaver and colleagues [33].

Stimuli set consisted of 180 unique houses and 180 unique faces of which 90 faces were male

and 90 were female. Face and house stimuli were equated for spatial frequency and luminance

(for details see [33]). Visual masks were selected from 900 scrambled face and house images

(parsed into 12 × 15 tiles and randomly shuffled) that had been made transparent and super-

imposed. All stimuli were gray scale, subtended 16 × 20˚ visual angle, and were presented cen-

trally on a black background. Target stimuli and masks were shown tilted to the right or left, at

a 5˚ or 355˚ angle, respectively.

Participants completed 14 experimental blocks containing 64 trials each, 896 trials in total.

In each block, an equal number of faces and houses were shown, half of which were tilted to

the right and half to the left. Before the first experimental block, each participant completed 1

practice block of 64 trials to get familiar with the task.

Session 2: Discrimination task. The task and procedure of the second session discrimination

task was highly similar to the discrimination task administered in the first session (cf. [33]).

Here, participants again viewed a rapid stream of house and face images and their task was to

report at the end of the trial whether they had seen a house or a face. Right (5˚) or left (355˚)

tilted house and face images were preceded and followed by visual masks, which were also

tilted in the same direction. The trial procedure was identical to the discrimination task of ses-

sion 1, except that the target face or house was presented for 20 ms or 30 ms. The duration of

target stimuli was determined per participant depending on the discrimination performance

during practice blocks, with the aim of achieving approximately 65% discrimination accuracy.

Specifically, if a participant scored 60% or higher in correctly discriminating target stimuli

when they were shown for 20 ms, this timing was used as the target duration for the remaining

experimental blocks. Otherwise, target stimuli were shown for 30 ms.

After a 50 ms-long post-mask, a response screen was presented for 1,300 ms, during which

participants needed to give a speeded response indicating whether they saw a house or a face

using a left-handed (“z”) or right-handed (“m”) keyboard response. Additionally, following

the discrimination response, participants needed to indicate their confidence in the accuracy

of their discrimination response using a 4-point scale (1 –unsure, 4 –sure). The next trial

began after the response had been given or after a 3-s timeout if no response was recorded. An

equal number of right- and left-tilted faces and houses were shown in each block.

The discrimination task started with 4 practice blocks of 84 trials each, administered to

familiarize participants with the task and to get an indication of target presentation time for

the remainder of the task. This was done to ensure that the stimulus presentation time was suf-

ficiently long, so that accuracy scores during the practice averaged to around 65%. Following

the practice, each participant completed 16 experimental blocks of 84 trials each.

EEG measurements and preprocessing

The electroencephalogram (EEG) and electrooculogram (EOG) were recorded using the Bio-

semi Functional Two system (Biosemi.com). A total of 64 sintered AG/AgCl electrodes were
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positioned according to the 64 standard international 10/20 system, 6 external electrodes were

placed on the earlobes and around the eye. The vertical EOG (VEOG) was recorded from 2

external electrodes located above and below the right eye. The horizontal EOG (HEOG) was

recorded from 2 external electrodes located next to the external canthi of the eyes. The VEOG

was used to detect eyeblinks and the HEOG was used to detect horizontal eye movements.

Electrophysiological signals were digitized at a sampling rate of 512 Hz.

EEG data was preprocessed and cleaned before further analysis using custom scripts, the

EEGLAB toolbox (v2019_1), and the Amsterdam Decoding and Modeling toolbox (ADAM;

[95]). EEG data was re-referenced to the average of the earlobes, high-pass filtered at 0.5 Hz

and low-pass filtered at 40 Hz, in separate steps as recommended by EEGlab. Note that a high-

pass filter may distort the temporal estimates of the EEG signal [96,97], which was not the case

in our dataset (see S3 Fig illustrating this). The continuous data was then epoched from −500

ms to 2,000 ms around stimulus onset. Trials containing jump artifacts were removed from

the data using an adapted version of ft_artifact_zvalue muscle artifact detection function from

the FieldTrip toolbox. Eye blink artifacts were removed from the data using a standard regres-

sion-based algorithm. A baseline correction in the 200-ms pre-stimulus onset interval was per-

formed. Data were then downsampled to 128 Hz.

Statistical analyses

All analyses were done using custom scripts, the EEGLAB toolbox (v2019_1), the Amsterdam

Decoding and Modeling toolbox (ADAM; [95]), and JASP software. We took a frequentist sta-

tistical approach and chose an alpha of p< 0.05 as the threshold for significance as is typical,

to guard against false positives. Note, however, that this threshold is relatively arbitrary, and

that frequentist statistics cannot provide evidence for the null hypothesis (absence of an effect)

[98]. Therefore, we also report effect sizes, and in case of nonsignificant effects as indicated by

p> 0.05, followed up with a Bayesian equivalent of the same test in order to quantify the

strength of evidence for the null hypothesis (H0). By convention, Bayes factors from 1 to 3

were considered as anecdotal, 3 to 10 as substantial, and those above 10 as strong evidence in

favor of H0.

Behavior

Trials in which participants made a discrimination response <200 ms after the stimulus pre-

sentation (3.39%) or gave no response at all (1.86%) were discarded from the analysis. To eval-

uate participants’ behavioral performance, we computed d-prime (d’, Type-I sensitivity), a

measure of perceptual sensitivity to presented stimuli, separately for each confidence level and

analyzed using a one-way repeated measures ANOVA with reported confidence ratings [1–4]

as within-participant factor.

Decoding analyses

MVPA was applied to EEG data in order to decode patterns of neural activity specific to house

and face stimuli. First, to test if we could decode category-specific neural representations in

the localizer tasks, we used a 10-fold cross validation scheme. In this procedure, separately per

localizer task, after randomizing the order of trials, the dataset was split into 10 equally sized

folds. Equal number of house and face stimuli were present in each fold. We then trained a lin-

ear discriminant classifier (LDA) [27] to differentiate between house and face images using 9

folds and tested its performance on the remaining fold (using the standard Matlab function

fitcdiscr). This was repeated 10 times, until all data were tested exactly once. Classification per-

formance was evaluated for each participant separately by computing the area under the curve
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(AUC), which indicates the degree of separability between classes of the receiver operating

characteristic (ROC) curve. First, we computed the proportion of correct classifications for

each stimulus category, after which the scores were averaged across stimulus categories and

over the 10 folds. Prior to training and testing procedures, EEG data was downsampled to 128

Hz and epochs were shortened to −100 to 800 ms, centered on the target stimulus, in order to

decrease the computational time needed for MVPA.

Decoding analyses were carried out using EEG data recorded at all electrodes and a set of

occipital–parietal electrodes [33]. The occipital–parietal set of electrodes, chosen so that it cap-

tures early visual “N170-like” response to houses and faces, consisted of Iz, Oz, O1, O2, POz,

PO3, PO4, PO7, PO8, Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9, and P10 electrodes.

To test our specific research questions, we used the cross-task validation scheme to evaluate

the performance of each classifier (trained on either the sensory or the decision localizer task

data) in differentiating between stimulus classes in the main decision task. We applied the

same linear discriminant classifier to raw EEG data from the localizer task using voltages at

each time sample to train the classifier, which was then applied to the main discrimination

task data. This was done for separately for the sensory and decision localizer tasks. Following

this procedure, we could examine whether and when house- and face-specific neural represen-

tations were associated with participants’ confidence in their perceptual decision, and whether

perceptual decisions, in particular when incorrect, rely on the category-specific pattern of acti-

vation that is specific for the reported percept, or alternatively, representations are specific for

the presented category. Moreover, critically, we could isolate sensory versus decision-related

neural processes as the 2 localizers were differently tuned to these processes.

To examine the representational nature of decision errors, and to uncover how category-

specific representations evolve across time, and across distinct processing stages, we used the

GAT approach in applying the pattern classifiers [61]. Specifically, a classifier trained on a spe-

cific time point was tested on that time point as well as on all other time points. The resulting

GAT matrix (training time x testing time) thus reveals dynamic changes of neural representa-

tions across time. For example, a classifier trained to decode between house and face images at

170 ms can generalize to a wider time-window, e.g., 170 to 350 ms, in which case it would indi-

cate that the early neural representation was maintained in time. This approach is thus infor-

mative of how neural representations change across different stages of visual information

processing, also permitting us to examine when in time neural representations differ between

the perceived stimulus classes and depending on the correctness and confidence therein.

Decoding analyses were performed separately for correct and incorrect trials as a function

of 2 confidence levels. Trials in which participants reported confidence ratings 1 and 2 were

aggregated into “low” confidence trials, and those on which ratings 3 and 4 were given into

“high” confidence trials. To illustrate, when decoding was performed for incorrect high and

low confidence trials, classifiers were trained on the presented image category of the localizer

task but were tested using trials in which participants reported seeing incorrect stimulus cate-

gory, followed by high versus low confidence rating. Besides the stimulus category, we also

decoded its orientation, i.e., whether a stimulus was tilted to the right or to the left, separately

for correct and incorrect trials, as a function of confidence level. This analysis served 2 pur-

poses. First, we wanted to verify that stimulus processing from the very bottom-up input did

not differ between high versus low confidence trials. Low-level visual features such as orienta-

tion should be encoded in early brain activity in a bottom-up manner [50], but were not

expected to be modulated by confidence due to the early timing of that processing stage. Sec-

ond, the stimulus orientation was a task-irrelevant feature that participants did not need to do

anything with and was therefore useful to tests whether task-irrelevant features are processed

differently on high versus low confidence trials. To this end, classifiers were trained to
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distinguish between right versus left tilt of the stimulus using localizer data and then tested on

right versus left images orientations using trials in which the correct versus incorrect stimulus

category was reported.

Statistical analyses were performed on average classification scores (AUC) in time-windows

that we preselected based on previous empirical work. Typically, studies report 2 processing

stages using the GAT approach: an early (<250 to 300 ms) cluster of diagonal decoding reflect-

ing initial sensory processes and a late processing stage (>300 ms), which was found to associ-

ate with conscious report [33,34,37]. Additionally, some studies have reported a third stage of

visual information processing, starting at early latencies and generalizing off-diagonal, pre-

sumably reflecting maintenance of early sensory stimulus representations [33,34,53]. Follow-

ing this body of work, and the study by Weaver and colleagues [33], who used an almost

identical task design as in the present study, we focused our statistical analyses on 2 decoding

clusters on-diagonal (classifiers were trained and tested on the same time point) and 1 decod-

ing cluster off-diagonal (training and testing were done on different time points). The 2 on-

diagonal clusters were 150 to 200 ms and 350 to 550 ms. The off-diagonal time-window

spanned from 150 to 200 ms training time to 350 to 550 ms testing time (see below for more

details). Finally, although decoding was pronounced during 3 time-windows observed previ-

ously by Weaver and colleagues [33], it was also observed at an even earlier time-window (80

to 130 ms) with a prominent occipital–parietal topography (Fig 2A, inset 1, early-stage topog-

raphy). Because this early effect was absent in the same task when images where presented ver-

tically [33], this early peak likely reflects differences in the orientations of the images

presented, which we varied systematically across trials. This early window was also used as an

event of interest in this study.

To inspect the pattern of neural activity that drove classification performance, we computed

topographic maps for each classifier set (early, mid, late). Weights resulting from backward

decoding models are not interpretable as neural sources [99]. For that reason, we plotted topo-

graphic maps resulting from multiplying the data covariance matrix with the classifier weights,

yielding activity patterns that are interpretable as neural sources underlying decoding results

[95]. These covariance/class separability maps were then normalized across electrodes for each

participant (mean activity over electrodes was thus zero).

In order to statistically evaluate classifiers’ performance, we extracted diagonal and off-diag-

onal traces of GAT matrices. Average AUC values within specified clusters were analyzed

using repeated measures ANOVA with factors decoding latency (early, late) and confidence

(low, high). Specific hypotheses-driven comparisons between conditions were additionally

evaluated using paired-sample t tests on AUC values averaged within our TOI. To evaluate

decoding off-diagonal, specifically, when the training was done using 150 to 200 ms classifiers

that were then applied to the late 350 to 500 ms time-window, we compared average decoding

in this time-window between 2 confidence levels (low versus high) using a paired-sample t
tests as well. In cases where a specific hypotheses-driven comparison did not indicate a signifi-

cant result as indicated by an alpha of p< 0.05, we followed up that null-effect by a Bayesian

equivalent of the same test in order to quantify the strength of evidence for the null hypothesis

(H0). By convention, Bayes factors from 1 to 3 were considered as anecdotal, 3 to 10 as sub-

stantial, and those above 10 as strong evidence in favor of H0. Besides our hypothesis-driven

analyses based on our predefined selection of time-windows, we additionally statistically com-

pared each time point to chance (both for on- and off-diagonal decoding) by applying group-

level permutation testing with cluster correction for multiple comparisons [100]. We

employed two-tailed cluster-permutation testing with an alpha of p< 0.05 and cluster alpha

p< 0.05 (N permutations = 1,000, as implemeted in ADAM toolbox). These latter analyses

were mainly performed to evaluate whether our hypothesis-driven analyses may have missed
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potentially relevant effects, and if so, we recommend future studies to replicate these effects to

evaluate the robustness of them [98].

Supporting information

S1 Text. Additional results. BF, Bayes factor; HC, high confidence; LC, low confidence.

(DOCX)

S1 Fig. Trial sequence of the sensory and decision localizer task. (A) Each trial of the sensory

localizer task started with a central red fixation dot for 1,200–1,400 ms, during which an infre-

quent contrast change of the dot could happen (20% of trials). Participants needed to press the

spacebar as soon as they noticed the contrast change. In the same time interval, a house or a

face image was briefly shown on the screen, which needed to be ignored. Images were either

tilted to the right or to the left (task-irrelevant feature) at a 5˚ or 355˚ angle. Note that in the

example trial, only a left-tilted house image is shown. (B) Each trial of the decision localizer

task started with a central red fixation dot after which a forward mask was shown, followed by

an image of a face or a house and a backward mask. Images were either tilted to the right or to

the left (task-irrelevant feature) at a 5˚ or 355˚ angle. On every trial, participants reported

whether they perceived a house or a face and indicated their confidence in this decision.

(TIF)

S2 Fig. (A) GAT matrix for the decision localizer and regions of interest marked by inset

black boxes (numbers 1–4). (B) Classifiers trained on the decision localizer applied to the

main discrimination task (cross-task validation procedure). (C) GAT matrix for the sensory

localizer. (D) Classifiers trained on the sensory localizer applied to the main discrimination

task (cross-task validation procedure. (E) Classifiers trained on the sensory localizer applied to

the decision localizer (cross-task validation procedure). (F) Classifiers trained on the decision

localizer applied to the sensory localizer (cross-task validation procedure). All GAT matrices

are based on occipital–parietal electrodes. The underlying data and scripts supporting this fig-

ure can be found on FigShare (https://doi.org/10.21942/uva.c.6265233.v1).

(TIF)

S3 Fig. Filtering effects on the timing of ERP components. ERPs are time-locked to stimulus

onset in the passive localizer with 3 different high-pass filtering settings. The region of interest

plotted consists of the following electrodes: O1, O2, PO3, PO4, PO7, PO8. The underlying

data and scripts supporting this figure can be found on FigShare (https://doi.org/10.21942/

uva.c.6265233.v1).

(TIF)

S4 Fig. Face/house classification based on the decision localizer. (A) On-diagonal time

courses of correct and incorrect decisions, separated by confidence (LC, low confidence; HC,

high confidence). Black boxes indicate the time-windows (early, mid, late) used for averaging

the AUC scores. (B) Perceptual maintenance is derived by training a classifier on the time-

window 150–200 ms and testing it across the entire time-window. In (A) and (B), colored hori-

zontal lines indicate periods of significant decoding with respect to chance. Classification per-

formance was evaluated at each time point using cluster-based permutation testing (two-tailed

cluster-permutation, alpha p< 0.05, cluster alpha p< 0.05, N permutations = 1,000). (C) Bar

plots showing average AUC values for the time-windows of interest highlighted in panels (A)

and (B). The underlying data and scripts supporting this figure can be found on FigShare

(https://doi.org/10.21942/uva.c.6265233.v1).

(TIF)
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S5 Fig. Face/house classification based on the sensory localizer. (A) On-diagonal time

courses of correct and incorrect decisions, separated by confidence (LC, low confidence; HC,

high confidence). Black boxes indicate the time-windows (early, mid, late) used for averaging

the AUC scores. (B) Perceptual maintenance is derived by training a classifier on the time-

window 150–200 ms and testing it across the entire time-window. In (A) and (B), colored hori-

zontal lines indicate periods of significant decoding with respect to chance. Classification per-

formance was evaluated at each time point using cluster-based permutation testing (two-tailed

cluster-permutation, alpha p< 0.05, cluster alpha p< 0.05, N permutations = 1,000). (C) Bar

plots showing average AUC values for the time-windows of interest highlighted in panels (A)

and (B). The underlying data and scripts supporting this figure can be found on Fig Share

(https://doi.org/10.21942/uva.c.6265233.v1).

(TIF)
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