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ABSTRACT In this paper, we propose a new geomagnetic localization scheme, named ILoA, to address

error accumulation and global localization. Global localization is a fundamental problem that determines the

initial pose under global uncertainty. Moreover, error accumulation using inertial navigation systems (INS)

impacts robustness and drift error, making it challenging to achieve reliable estimation. The magnetic field

in indoor space generates a unique signature/anomaly, which can be used as a local feature. Earth’s magnetic

field can be easily influenced by ferromagnetic material from the indoor environment due to its weak

intensity. The magnetic field vector measured by a magnetometer depends on the orientation of the sensor,

which we term a direction variant. We devise a novel approach to identify location and heading through the

direction-variant augmented vector. Since a magnetic field vector under varying poses can produce many

different vectors, the geomagnetic map is trained with the transformation. We present experiments in two

testbeds, covering open space, showing that the proposed method using the magnetic field vector is efficient

for global localization and accuracy compared with a state-of-the-art approach.

INDEX TERMS heading estimation, indoor positioning, magnetic field anomaly, particle filter, pedestrian

dead reckoning

I. INTRODUCTION

Indoor positioning and tracking problems are receiving in-

creasing attention in the Internet of Things (IoT) era. RF

fingerprinting localization technique, such as a wireless local

area network (WLAN) fingerprinting [1]–[3], is one of most

well-known methods that use the received signal strength

(RSS). This system exploits existing wireless access points

(APs) installed in indoor spaces, and it simplifies the deploy-

ment process with no additional cost. The problem is that

WLAN-based techniques are insufficient to accurately local-

ize because RSS is prone to be affected by environmental

noise such as multipath fading. Moreover, a system with a

single sensor suffers from ambiguity of measurement.

The sensor fusion technique addresses single-sensor ambi-

guity by combining the measurements from multiple sensors.

In particular, the pedestrian dead reckoning (PDR) technique

with off-the-shelf inertial measurement units (IMUs) in a

smartphone is often combined with multiple sensors and

achieves high-precision results. PDR is an inertial naviga-

tion system (INS) for pedestrians using accelerometers and

gyroscope sensors to detect pedestrian steps and directional

change. PDR tracks the relative path based on the move-

ment change and estimates three factors [4]: heading direc-

tion, footstep, and stride. Stride estimation directly double-

integrates acceleration but requires the sensor to be mounted

on the body, such as on a shoe [5]. Therefore, it is common

to model the stride based on meta-information, such as a map

or a person’s height. The critical point is that since PDR

estimates the relative movement path, it is necessary to use

a method for determining the initial position. For example,

images [6] or wireless signals (e.g., WiFi) [7], [8] have been

used as landmarks for absolute coordinates with a priori

knowledge to estimate the initial probability distribution.

Geomagnetism is typically used in GPS/INS techniques

to estimate absolute heading. Earth’s magnetic field can

be expressed as a vector for the magnetic flux density to

determine the direction of the azimuth (magnetic north) using

an e-compass [9]. The challenge is that it is difficult to find

magnetic north due to ferromagnetic materials used in build-

ings. Although these materials cause local magnetic field

anomalies, they are sources of unique features to distinguish

different locations. The fingerprinting approach constructs
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FIGURE 1. Visualization of each axis of the 3D vector of the geomagnetic

field in a building

an indoor geomagnetic map, analogous to WLAN finger-

printing. Geomagnetic fingerprinting has distinct advantages,

namely, i) no infrastructure requirement, ii) low power con-

sumption, and iii) precise positioning resulting from reliable

measurements [10], [11]. Its sampling rate is also noteworthy.

The sampling rate of the magnetometer and accelerometer in

the category of micro-electro-mechanical systems (MEMS)

is at least dozens of times faster than WLAN.

The geomagnetic map is a dataset of fingerprints obtained

from learning with a priori knowledge of anomalies. The fin-

gerprint contains a magnetic vector, which is a relative value

from three orthogonal planes of the magnetometer sensor.

Many approaches use the magnitude (ℓ2-norm) of magnetic

vectors instead of using them directly. This magnitude can

be categorized as a direction-invariant feature from a three-

axis magnetometer. These approaches suffer from the global

localization problem. The direction-invariant features mean

that it is challenging to find the heading direction. Those

features usually require the initial distribution of positioning

from other sensors or techniques such as a map matching.

If we manually determine the initial state, a localization

system will not be practical since it would operate only in

the constrained start location. Furthermore, there remains the

problem of error accumulation because there is no measure

to compensate for the absolute heading’s drift.

In this paper, we propose a method named ILoA (’I’ndoor

’Lo’calization using ’A’ugmentated Vector of Geomagnetic

Field) that fully utilizes the three-dimensional magnetic

field illustrated in Fig. 1. We achieve direct-variant mag-

netic features that minimize the information loss by data

augmentation. Based on the particle filtering and Markov

chains, we obtain the solution of latent variables by recursive

Bayesian inference. We design the features encoded in the

direction of movement and the path stored in the training

phase and then restore them from the proposed augmented

feature framework. The proposed method successfully esti-

mates the direction by minimizing the discrepancy between

online measurements and offline data. We present a space-

division approach based on the alpha shape for optimization

of training, allowing optimal resampling for convergence of

the particle filter. The space division increases localization

performance by reducing the calibration cost and guiding the

interpolation area.

The contribution of this paper is as follows.

• This paper proposes a new model of the geomagnetic

map to address the global localization problem, namely,

finding the location at any starting location and head-

ing. The proposed model of the geomagnetic map is

designed to minimize information loss.

• This paper proposes a practical methodology to address

error accumulation with the direction-variant feature.

The direction-variant feature corrects the heading orien-

tation and the location. We validate that the direction-

variant feature is more effective in an environment

where there is with no structural objects, such as open

space.

• This paper proposes a new space-division approach to

reduce calibration costs and improve the geomagnetic

map quality. The approach provides a semi-automated

calibration procedure for creating the layout of naviga-

tion space on the map and for map matching to improve

localization performance.

II. RELATED WORK

The methods of utilizing a magnetic field for positioning can

be categorized into two distinct groups: i) a group that ex-

ploits additional hardware (such as permanent magnets [12]

or coils [13]–[15]) to induce magnetic fields as evidence

and ii) a group with no additional hardware using existing

infrastructure, such as fingerprinting. Fingerprinting-based

localization algorithms use magnetic anomalies caused by

ferromagnetic material in buildings. The methods require

an indoor environment database, i.e., a geomagnetic map,

instead of the special-purpose hardware deployment. To con-

struct a magnetic field map, Chung et al. [16], [17] used

specially designed equipment, and Qiu et al. [5] used feet-

attached sensors for precise PDR estimation.

Most research studies have utilized the magnitude of the

magnetic field, such as the ℓ2-norm [11], [18]–[22]. Gozick et

al. [19] demonstrated the room-level positioning application

of smartphones. They analyzed the anomalies and character-

istics [23] of the magnetic field in detail. The anomalies due

to distortions in an indoor environment are position-specific.

Since the magnetic field is affected by the indoor structure,

it is stable over time unless there is a structural change [11],

[19].

The others can be understood as extracting components

from the magnetic field, such as the magnetic inclination

angle [18], [24], [25]. Afzal et al. [18] focused on improving

the performance of heading estimation using magnetic fields.

In this regard, four multiple-input parameters were leveraged,

including the norm, two orthogonal planes, which are com-

posed of vertical and horizontal (VH) with an inclination

angle. Interestingly, they focused on heading estimation via

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3029281, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

high-dimensional feature space. The weight of the input

data based on the fuzzy reference was determined. Xie et

al. [24] focused on a robust and precise positioning system,

named MaLoc, in smartphone applications under different

conditions, such as shaking.

Most current studies have also applied three axis values

to represent a magnetic feature. Jang et al. [26] and Bae

et al. [27] set reference points on the grid of a testbed and

then collected magnetic field value vectors from Android

smartphones on those points to construct a geomagnetic

field map. They generated training and testing sequences

of magnetic vectors from the constructed map. They used

recursive neural networks (RNNs) for sequence matching

and achieved a mean accuracy of approximately 1 meter.

Wang et al. [28] also used three-axis geomagnetic vectors

with light intensity data. They achieved an accuracy of 1.08

m in the lab and 1.46 m in a corridor with long short-

term memory (LSTM). Ashraf et al. [29] proposed MINLOC

using a convolutional neural network (CNN) on magnetic

patterns (MPs), and they achieved a 1 m distance error. Those

studies all employed advanced pattern-matching algorithms

to obtain higher precision. However, they had the disadvan-

tage of learning various paths in a two-dimensional space due

to time-varying sequence learning. For example, unlearned

sequences such as diagonal or other arbitrary movements in

a two-dimensional space, such as an open space, cannot be

reflected.

In robotics, Kim et al. [25] designed an indoor mobile

robot to facilitate floor planning and survey for the geomag-

netic map. The mobile robot equipped six arrayed magne-

tometers, proximity sensors and odometries. They proposed

a direction information map, similar to Xie et al. [24] VH

components, as a feature integrated into simultaneous local-

ization and mapping (SLAM). The direction information map

represents the included angle (arctan), where [−π/2, π/2],
between the X and Y components of the magnetic field in

the horizontal plane. Because the sensor is mounted on the

robot with a calibrated odometer, they obtained localization

results with consistent accuracy.

The problem of the direction-invariant feature, such as

a VH or magnitude component, is missing information

caused by conversion to scalar, and it has the inherently

self-handicapped estimates. That is, the tradeoff reduces the

accuracy instead of improving adversarial robustness through

the invariant feature with varying orientations. The direct use

of a magnetic field vector is a challenging problem where

the measurements are taken in directional open form. This

means that the magnetic flux density in a sensor’s reference

frame can be generalized to describe a vector measurement

only after the sensor’s heading orientation is determined. We

suggest a novel method that allows user orientation to be

determined by an augmentation of the magnetic field vector.

The geomagnetic map is constructed with the orientation to

generate the candidates, the augmented magnetic vectors, and

we use the similarity measure for candidate pruning.

FIGURE 2. Vector augmentation to measure similarity using the magnetic

field map

III. METHOD

A. INDOOR GEOMAGNETIC MAP CONSTRUCTION

The geomagnetic map M, which represents the training data

on geomagnetic flux anomalies, is a set of geomagnetic

fingerprints. The magnetic flux is usually represented by a

vector field with the symbol ~B . The measured magnetic field

vector ~B is expressed by three parameters [mx,my,mz] in

Cartesian space. The fingerprint fl is an element of M as a

feature vector, where each feature describes local anomalies

ml = [mx
l ,m

y
l ,m

z
l ]

⊺ and specifies a coordinate cl = cxl , c
y
l ,

where l denotes the location index in the size range from 1 to

L with the total number L of reference points. The collecting

and labeling procedure for fingerprinting is usually called the

offline phase.

The proposed geomagnetic map is designed to augment

the feature vector by different orientations, which are es-

timated using an accelerometer and gyroscope. We define

the augmented vector that is produced by transforming a

vector to another coordinate frame. Fig. 2 depicts the concept

of the augmented vector with purple lines. In the offline

phase, we store the orientation using the accelerometer and

gyroscope to measure feature similarity at the localization

(online) phase.

The orientation is represented by (φ, θ, ψ), which denotes

roll, pitch, and yaw (azimuth) from the smartphone, respec-

tively. The fingerprint fl, therefore, learns an orientation and

the magnetic field:

fl∈[1,...,L] = [cxl , c
y
l ,m

x
l ,m

y
l ,m

z
l , φl, θl, ψl] ∀fl ∈ M.

(1)

After collecting training data, the calibration process is

decomposed into two steps to refine the geomagnetic map: i)

alignment of the magnetic field vector to unify the coordinate

basis into a world frame and ii) regularization of the training

data. The world frame is in this paper defined as a conceptual

reference, which is used to express the magnetic field vector

in a navigation space. The geomagnetic map is transformed,

in which

wml = Rz(ψ)Ry(θ)Rx(φ) αml ∀l ∈ [1,L], (2)
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reference point

No-calbrated Alpha shape Optimal interval

FIGURE 3. The reference points as training data for fingerprinting localization

are represented by blue (non-calibrated) and red dots.

where a prescript w,α denotes the world frame and the body

(local) frame. For example, the magnetic field vector wm is

a vector in the world frame.

The rotation matrixA performs the coordinate transforma-

tion using the following equation:

Rz(ψ)Ry(θ)Rx(φ) = A(φ, θ, ψ)

=



cosψ − sinψ 0

sinψ cosψ 0

0 0 1






cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ





1 0 0

0 cosφ − sinφ

0 sinφ cosφ


 ,

(3)

where the subscript (x, y, z) denotes rotation around the basis

axis.

To regularize the degree of resolution within the training

data, we propose an interpolation based on granularity ad-

justment. We divide an indoor space into two regions by the

layout. The inbound is the target area, where localization is

required. The rest of the map area is where it is outbound for

localization, and no training data are needed. This layout has

two aids. In the offline phase, the layout determines whether

to generate or filter out references in interpolation. Addition-

ally, to reduce the computation cost in the online phase, this

criterion facilitates calculating localization probability using

neighboring reference points.

To draw the layout of the indoor space, an alpha

shape [30]–[32] is used, and the planning cost is reduced

by generalization. Typically, the reference locations where

it is set on the floor plan are not always fixed because they

depend on the indoor structure and personal tendency, such

as expertise and experience. The alpha shape algorithm can

cluster a set of nodes as a polygon shape. We consider

reference points as the input node set, and a layout of the

target area can be achieved through the alpha shape algorithm

in Fig. 3.

Fig. 3 shows references (red dots) interpolated based on

the raster pattern in the alpha shapes (green polygons). In

the alpha shape, the solid lines represent the edges between

adjacent points.

Figure 4 in the offline phase represents the floor plan

process of how the target region is configured using the alpha

shape for a building environment.

1) Collect sensor data at reference points in the target area

with the floor plan.

2) Generate polygon nodes via the alpha shape algorithm

with the locations of reference points as input nodes.

3) Generate points for the references making a grid struc-

ture in the alpha shape polygon.

4) Generate sensor data by interpolation based on the

alpha shape polygon.

We propose a walking survey (WS) as a site survey to

construct the geomagnetic map (step 1 of the floor plan),

making it suitable for large-scale space. In mapping, the

indoor geomagnetic field map, the method of presetting the

start and endpoint of the walking path, aka IndoorAtlas [33]

or war walking, has inspired many related studies. The pro-

posed WS method is also based on the walking path. The

names of the survey method may vary, but many studies use

a mobile collection method that minimizes the calibration ef-

fort. Because of this, the conventional manual labeling (ML)

procedure for collecting training data is a straightforward

survey approach, but it is labor intensive and difficult to

deploy in a large-scale site.

We describe the process of resampling and interpolating

the WS dataset in pseudocode form Algorithm 1. The floor

plan and survey paths are designed before WS, and users col-

lect data while walking with smartphone sensors. The dataset

consists of raw data from the accelerometer, gyroscope, and

magnetometer. The dataset is resampled on the step rate,

tilting, and path direction in postprocessing.

We determine a granularity of interpolation for the fin-

gerprinting calibration as the smallest distance δ from each

reference in a grid structure. If we define the magnetometer

sampling rate as 20 ms, the sensor’s frequency is 50 Hz. If we

consider the human gait sampling rate to be approximately

1 s, we can obtain approximately 50 magnetometer samples

in a step. If the length of the step stride is 60-70 cm, the

magnetometer samples are aligned along with the path plan

as reference points spacing every 1.3 cm with a person

walking, and δm=1.3 cm denotes the distance interval of the

magnetometer samples. For example, a WiFi module with a

sensing frequency of 10 seconds can construct a δRSS=6.5 m

granularity RSS fingerprint. If we define the optimal granu-

larity solution δ̂ that performs best, the granularity solution δ̂
should be based on satisfying δm ≤ δ̂. This is because δm is

the maximum possible resolution when using WS.

B. LOCALIZATION WITH AUGMENTED FEATURE

VECTOR

ILoA’s schematic method of localization is shown in Fig-

ure 4. We use Madgwick’s attitude and heading reference

system (AHRS) [34] orientation algorithm to compensate for
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FIGURE 4. Proposed geomagnetic field-based localization scheme.

Algorithm 1: Pseudocode of walking survey

Data: S: measurement datasets, P: corresponding path

Result: M: geomagnetic map

Create paired dataset D = {(S1,P1), ...)};

for i := 1 to |D| do Iteration loop of path

Generate resampled D
′

i with a sampling rate λ ;

Estimate steps using an accelerometer with D
′

i ;

Compute timestamp t of step with D
′

i ;

Generate interpolated coordinates c with

‖si, ei‖, |t| ;

for j := 1 to |t| − 1 do Iteration loop of step
Generate interpolated coordinates c′ with

‖cj , cj+1‖, (tj+1 − tj)/δ) ;

Estimate tilting using an accelerometer and

gyroscope with D
′

i ;

Compute rotation matrix R with tilt and c′ ;

Generate transformed D̃
′

i using R⊺ ;

Generate Mj by label c′ and interpolation D̃
′

i ;

end for

Merge M1,M2, ... into M ;

end for

the noise from the user’s handheld device and estimate the

accurate tilt and yaw rate. To detect the pedestrian step, the

peak detection algorithm is involved in the PDR module. To

find the solution of the state, which contains the location

and heading, we estimate the rotation matrix as a factor to

compare the offline and online measurements. The rotation

matrix is composed of the tilt and yaw, which are estimated

from the accelerometer and gyroscope.

We present the particle filter for sensor fusion to cover

estimated results from multiple sensors. Sensor fusion tech-

niques [35]–[37] are commonly used to solve pedestrian

dynamics in probabilistic models, and a sum of random

variables approximates the estimated location distribution

from multiple independent sensors. The sensor fusion can be

expressed as a conditional probability such as the Bayesian

filter [38], [39] and modeling latent variables based on hidden

Markov models (HMMs) such as position, velocity, and di-

rection, which are indirect measurements. The Kalman filter

type of Bayes filters is efficient and widely known for its low

computational cost and high accuracy. However, it has two

inherent limitations: the estimated probability distribution is

limited to a Gaussian distribution, and a linear system is

assumed. An extended Kalman filter or an unscented Kalman

filter with nonlinearity has been developed, but the assump-

tion of a Gaussian distribution remains a constraint [40].

When tracking a pedestrian, the issue is that the probability

distribution is more akin to that of a multivariate Gaussian

mixture model. Particle filters are well suited for these two

problems, even at higher computational complexity, by ap-

proximating any distributions using the concept of particles.

Generally, the utilization of more particles provides more

satisfactory results.

The particle filter represents the position probability distri-

bution as the sum of the weights of theN particles following:

Xk ∼
1

N

N∑

i=1

p
(
x
[i]
k

)

p(xk ∈ Xk) ≈ p(xk|z1:k,u1:k),

(4)

where x denotes the state vector of particle [ox, oy, η]⊺,

z denotes online measurements that contain tilt [φ, θ] and

magnetic field vector b = [bx, by, bz]⊺ measurements, and

u denotes human dynamics (step length, yaw rate) [s,∆ψ].
The probability distribution of each particle is described

by the following equation:

p (xk|Zk, Uk)

∝ p(zk|xk)

sensor model



∫
p(xk|uk,xk−1)

motion model

p(xk−1|Zk−1, Uk−1)

prior

dxk−1


 ,

(5)
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where Zk is all measurements denoted Zk = {zi | i =
1, ..., k} up to the kth measure and Uk is all actions up to

k denoted Uk = {ui | i = 1, ..., k}.

The initialization of the state of p(x0) involves a uniform

distribution, and all particles should have independent head-

ing variables with sufficient diversity. We set the coordinate

system that the magnetic field vector collected during the

offline phase as the world frame. The online magnetic mea-

surement b in the online phase is augmented by using the

state of particles and converted into the world frame. The

augmented vector is illustrated as purple in Fig. 2, which is

created by the state of the particle.

The state transition model of a particle is given by the

human dynamics following (6):


o′x

o′y

η′


 =



ox

oy

η


+



(s+ ǫs) · cos(η +∆ψ + ǫψ)
(s+ ǫs) · sin(η +∆ψ + ǫψ)

ǫη


, (6)

where s denotes the step length with the particles move;

and ∆ψ is the accumulated yaw change; and ǫ is noise. η
is the value that compensates for the drift and determines

the heading, which is the direction of particles that should

be moved during the kth time. The meaning of η is the

heading (yaw) offset converged by the augmented magnetic

vector, which is supposed to be transposable to the azimuth

by aligning the map coordinate system to the world frame,

where the tilt (φ, θ) is used to transform the online magnetic

vector into a plane horizontally aligned on the ground plane.

The moved particles are sampled after updating the

weights of the probabilities. The weight update in the sen-

sor (observation) model (7) is proportional to the similarity

measure and is written as follows:

p(zk|xk) ≈

wk = wk−1p (zk|x
′

k) ∝
1

f (zk,x′

k,M)
,

(7)

where x
′

k is the particle state derived from the prediction at

time k.

The location likelihood probability of each particle with

the kth state p(zk|xk) is derived from the scoring function f :

f (zk,x
′

k,M) = |[Rz(η
′)A(φk, θk,∆ψk)

⊺]αbk −mNN|,
(8)

where αb is the online magnetic vector in the body frame.

Let

A(φk, θk,∆ψk)
⊺ =



a b c
d e f
g h i


 .

Then, the augmented vector is as follows:

[Rz(η
′)A(φk, θk,∆ψk)

⊺]αbk =



cos η − sin η 0
sin η cos η 0
0 0 1





a b c
d e f
g h i








bx
by
bz


 .

(9)

Each state of particles is provided the tilt (φ, θ) and yaw

rate (∆ψ) to determine A. Let wb = (αwR) αb, where α
wR is

the solution of the rotation matrix that represents the rotation

matrix from the local to world frame; then, the augmented

vector is as follows:

wbk
⊺ = [(a cos η − d sin η)bx + (b cos η − e sin η)by

+(c cos η − f sin η)bz,

(a sin η + d cos η)bx + (b sin η + e cos η)by

+(c sin η + f cos η)bz,

gbx + hby + ibz].

(10)

We can reduce heading estimation to a rotation matrix

optimization problem that finds a transform matrix to the

world frame using augmented vector (10).

NN = argmin
l∈L

d(o, cl)

d(o, cl) = ‖o− cl‖2 =
√∑

i=x,y(o
i − cil)

2.
(11)

In (11), the index NN is noted as the nearest neighbor in M,

which is derived from Euclidean distance.

mNN is a magnetic field vector in the geomagnetic map M,

which is determined by the particle state x
′. The score func-

tion f takes three arguments (bk, x
′,M), where the online

measurement of the magnetic field bk = [bx, by, bz], states

of particles x
′ and magnetic field map M. The transpose of

the rotation matrix RT is derived from the pose estimation

and expressed as RTx (φ)R
T
y (θ)R

T
z (ψ), which corresponds to

each roll, pitch, and yaw.

As the last step, new samples Xk are drawn from the

importance resampling performed by weights as follows:

p (Xk|Zk, Uk) ≈
N∑

i=1

w
[i]
k x

[i]
k ,

and the weight is normalized w
[i]
k = 1/N via sequence

importance resampling (SIR) [41], [42] and we then find the

solution. For particles that have not arrived at the solution

state, their weight is degraded in this feedback procedure. We

refine the weight using physical constraints to provide more

accurate predictions as a map matching. The state transition

model (6) (human dynamics) can reflect the spatial con-

straints that an individual’s movement process is sequential

and that instantaneous movement is not possible as follows:

wk :=

{
0 d(o′

k, cNN) > δ

wk d(o′

k, cNN) ≤ δ.
(12)

We use geomagnetic anomalies as a fingerprint to recover

the heading direction via a recursive feedback loop in the

resampling procedure. The geomagnetic field in the indoor

environment is determined as a spatial map and is a stable

feature over time. The anomalies of the flux vector are

stored in the geomagnetic map M at the offline phase as

a priori (learning) data. By learning the anomalies in three

dimensions, the orientation of the smartphone can be deter-

mined in a coordinate system. The heading offset between

the online magnetic field vector b and the offline training

6 VOLUME 4, 2016
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(a) corridor#1 (b) corridor#2 (c) corridor#3 (d) corridor#4

FIGURE 5. The floor plan at building N1. (1043 reference points)

data M is the heading offset, which should be calibrated,

and provides the relative heading direction of the map. For

global localization, the state of particles is initialized with

a uniform distribution in all directions and locations, and the

online magnetic field measurement is used to find the rotation

matrix that is supposed to resemble M.

IV. EVALUATION

A. EXPERIMENTAL ENVIRONMENT

We conducted extensive experiments on two buildings with

different characteristics. The two buildings, N1 and KI, were

built for research and as a large-scale auditorium, respec-

tively. The building structure of N1 has roads that lead to

several laboratories along the corridor. In constrast, building

KI has an open space in the form of a large lobby with an

auditorium in the center. Figs. 5 and 6 show the sizes of each

the buildings in meters, which are approximately 83 m × 32

m and 65 m × 70 m, respectively.

For the offline phase in N1, learning data were obtained

through the ML method. As shown in Fig. 5, 1043 reference

points were preset with a floor plan at 50 cm intervals,

and magnetic field states were recorded for 15 seconds on

a smartphone mounted on a tripod at the corresponding

location with zero inclination angle. The device aligned with

the horizontal plane (paralleled to the ground plane) at the

reference points. Since the location reference in N1 is a

straight corridor structure, we attached yellow markers for

guidance on the floor to distinguish the locations. When we

calculated the total collection time of 1043 reference points,

4.35 hours (15,645 seconds) was required for building N1

deployment.

In KI, the WS method was used, and the path to which the

starting and ending positions were determined was planned,

as shown in Fig. 6. The interval between the paths was 60

cm, based on the size of the floor tiles. In the WS method, the

datasets were collected in the usual scenario of walking while

10 20 30 40 50 60

10

20

30

40

50

60

data collecting path

(a) The data collecting path.

(b) An example of the test plan with floor tiles. (c) Markers for plan.

(d) A panoramic view in the open space.

FIGURE 6. The floor plan at building KI. (94 path lines)

holding a mobile phone without a stabilizing device such as

a gimbal. The inclination of the phone, the angle between

the screen and ground plane, was collected between about 0

degrees and 45 degrees to walk naturally. We placed colored

cones in Fig. 6c to draw virtual lines for guidance on the

start to the endpoint of paths. Through 94 paths gathered by

the WS in building KI, 2337 reference points were created.

The cumulative collection time was 0.38 hours (1372 sec-

onds). The WS deployment took 0.59 seconds per reference

point, 25x faster than the manual survey speed (15 seconds

per reference). The difference in the actual labor intensity

experienced was more substantial due to the structure of the

building, location confirmation, and movement.

The test data were collected under identical conditions

VOLUME 4, 2016 7
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(a) The ℓ2-norm of the magnetic field
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(b) The x of the magnetic field
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(c) The y of the magnetic field
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(d) The z of the magnetic field

FIGURE 7. The magnetic field map for each component of the magnetic field vector in building N1.
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(a) The magnitude of the total field

-10 0 10 20 30 40 50 60

x (m)

5

10

15

20

25

30

35

40

45

y
 (

m
)

-100

-80

-60

-40

-20

0

20

40

60

80

100

x

 o
f 

M
a
g

n
e
ti

c
 F

ie
ld

 (
T

)

(b) The magnitude of the x field
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(c) The magnitude of the y field
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(d) The magnitude of the z field

FIGURE 8. The magnetic field map for each component of the magnetic field vector in building KI.

to WS along the scenario’s path. Five different models of

smartphones were used for testing, which did not show a sig-

nificant difference between the sensors of each manufacturer

when calibrated [8], [11]. The models we used were Galaxy

S8, S9 (Samsung Inc., with an Asahi Kasei Microdevices

AK09916C magnetometer), iPhone X (Apple Inc), Nexus

6P (Google Inc., manufactured by Huawei, with a Bosch

BMM150 3-axis magnetometer) and Mate 20 Pro (Huawei

Inc.)

We compared MaLoc [43] as the state of the art utilizing

VH components. Although MaLoc is not the latest research

in magnetic field positioning, the reason for comparing

MaLoc with ILoA is that we focus on the feature dimension

of the magnetic field.

The path planning for fingerprint collection was set in a

straight line with the start and endpoint in a manner similar to

that of MaLoc [43]. However, we did not slice collecting path

lines to shorten them. In MaLoc, coordinate labeling depends

8 VOLUME 4, 2016
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FIGURE 9. Two sample results of test scenarios in N1.
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FIGURE 10. Three sample results of test scenarios in the KI.

on time, there is a constraint to walk at a constant speed, and

it is likely to increase error over time. In ILoA, reference

points are labeled according to a step event; it is unnecessary

to have a constant speed, but a consistent stride length is

assumed. We cannot ensure exactly consistent stride length

keeps all time, but as the number of steps increases, the vari-

ation in stride length decreases. We corrected the magnetic

field distortion that possibly caused by hard iron during each

collecting path through the eight-motion calibration process.

For the test data collection in building KI, the open space

was spacious, so there was no surrounding structure to refer

to for the location, and the area was too large to place a

marker on the floor. Therefore, path planning and coordinates

were obtained by simulating the same number of tiles, as

shown in Fig. 6b.

Figs. 7 and 8 depict the geomagnetic field (δ=0.8) in

buildings N1 and KI. The contour plot’s outline is the result

obtained through the alpha shape, and ℓ2-norm is, of course,

a positive scalar value. Figs. 7d and 8d show that the variance

of the z components is more prominent than that of x- or z-

axis.

B. EVALUATION OF THE GLOBAL LOCALIZATION

We evaluated different path scenarios to analyze the global

localization performance. Since the initial position probabil-

ity of the particles was uniform over the entire area, it was

possible to start at any position. We compared the trajectory

by the convergence of the particles with the scenario as the

ground truth. The precision rate was used to quantify global

localization performance as the metric of consistency and

reliability. To measure the convergence of particles, we used

the absolute deviation (AD) of the statistical dispersion:

AD =|x
[i]
k −m(Xk)|

σAD =

√∑N
i=1

(
ADi

k −ADk

)2

N − 1
,

(13)

where m is a mean function for the locations of particles.

The standard deviation of the AD (σAD) was used as a

criterion to examine convergence. We defined true-positive

(TP) and false-positive (FP) by whether the last half of

the estimated trajectory converged on the ground truth and

precision as TP/(TP+FP). We determined the threshold of the

standard deviation for the convergence by the noise level ǫ in

the transition model. The value of the threshold was chosen

based on the following assumption: The standard deviation

VOLUME 4, 2016 9
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should be less than the noise range when particles build a

cluster (consensus), even though the particles spread with

randomness in the state transition process.

Fig. 9 represents the estimated trajectories in building

N1. The location results before convergence are denoted as

red dots (’×’). The trajectories show that the initial phase’s

localization results are located around the center of the map.

This is because the initial distribution of particles is uniform

across all areas, and the estimated location (red dots) tends

to appear at the center of the map by mean. The blue dots

(’+’) in Fig. 9 correspond to the localization results after

convergence.

The letters A to D with the boxes marked are points to

start or end. The red lines in Fig. 5 represent the identification

number of corridors, which are passed through during testing.

Therefore, the initial location and selection of corridors are

chosen by randomness in the test scenarios. We can draw the

collected pathway using the labels of each case. For example,

’D431A’ in Fig. 9b means to start area is at D; go through

corridors 4, 3, and 1; and then arrive at the end area A.

1) Effect of the Number of Particles

In building N1, we conducted the tests with 40 different path

plans, and eight people participated in the test data collection.

Both ILoA and MaLoc in Fig. 13b showed a precision rate

close to 100% when they had a sufficient number of particles

(N=2000 or more). In detail, the difference in convergence

precision between the two methods in N1 was unclear due to

correction by map matching. This is because the indoor space

consisting of corridors has advantages in map matching that

lead to a good effect.

In building KI, as it is an open space, we conducted tests

with the three different path scenarios. Fig. 10 shows the

estimated trajectories for each of the three scenarios. The first

scenario starts at the south entrance, passes through a narrow

corridor clockwise, reaches an open space, and returns to the

south entrance. The second scenario starts at the east entrance

and turns left heading to the south entrance, turns around to

the north, then changes direction again and heads towards

the south entrance. The third scenario starts at the north

entrance, turns west, turns north-west, walks to the coffee

shop’s direction, turns south, and then proceeds diagonally

to the east entrance.

In KI, when we compared the ILoA and MaLoc with

the positioning performance, the proposed method showed

a significant improvement in terms of precision. As shown

in Figs. 13b and 14b, even if a sufficient number of par-

ticles (N=4000) were given, the convergence precision of

MaLoc was 58%, whereas the best precision of ILoA was

98%. The results implicate that the VH features of MaLoc

are constrained to pathway location on limited movement

direction. In N1, although initial particles moved randomly

in all directions, map constraints limit the physical movement

of particles. For instance, the hallway structure leads particles

into two directions. In KI, however, the weights of particles

were not correctly updated with the direction-invariant fea-

ture. The feature ambiguity was not resolved with the VH

components in the open space because of the low sensitivity

in heading direction. Therefore, even if a sufficient number of

particles are given, the global localization problem was not

solved in open space. The weight of particles was assisted

by map matching, and the weakness of low sensitivity in

direction was not revealed.

2) Effect of the Augmented Geomagnetic Vector

We analyzed the impact of the direct-variant property in open

space. Figs. 11 and 12 show the change of η with ILoA

and MaLoc in KI in terms of the probability distribution

over time. The probability distribution was expressed as

color intensity, and the y-axis indicates the direction range

[0, 2π]. η indicates the heading offset the sensor’s body

frame and the world reference frame, which augments the

geomagnetic measurement. In initial phase, ground truths of

η corresponding to each scenario are π, π, and 3π/2. In

Figs. 11 and 12, the initial heading is uniformly distributed

over [0, 2π] and then converging to the ground truths. The

converged η gradually skews because it compensates for the

drift error caused by the inertial sensor.

When we compared two groups, ILoA and MaLoc in

Figs. 11 and 12, it showed a significant difference with the

proceed of convergence results. In ILoA, the probability of

η in Fig. 11 showed an aspect decreasing as the particles

move away from the ground truth, which approximates a

normal distribution. The results mean that the sensitivity of

the direct-variant feature rewards the weights of particles

with the heading variable. In contrast, the probability distri-

bution in MaLoc was not related to the heading variable. The

initial probabilities of particles in MaLoc were distributed in

all directions, which was shown as clusters approximately

uniform distribution. The direction-invariant property of VH

features showed low sensitivity in terms of heading direction.

Table 1 summarizes the positioning error when we inter-

polate the geomagnetic map over the interval length δ. Best

cases are chosen in each method by high precision first, and

the cases are emphasized in bold font. The percentages of

proposed method improvement over the MaLoc on building

N1 and KI are 41% and 30% in terms of accuracy. The

percentages of proposed method improvement are 0% and

40% in terms of precision.

In N1, the accuracy of ILoA improved by 6% and 9%

for every 1000 particles added, and the accuracy of MaLoc

improved by 7% and 4%. In terms of precision for every

1000 particles added, ILoA improved by 17% and 6%, and

MaLoc improved by 22% and 1%. In KI, the accuracy of

ILoA improved by 6% for 1000 particles added, and the

MaLoc accuracy improved by 3%. In terms of precision for

1000 particle added, ILoA improved by 4% and 10%.

C. EVALUATION OF ACCURACY

We evaluated the accuracy of estimated location by the

numerically computed error distance ‖xgt−m(Xk)‖2, where

xgt is a test point location as a ground truth. The mean error

10 VOLUME 4, 2016
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

FIGURE 11. The ILoA heading offset (η) probability distribution with trajectories in building KI.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

FIGURE 12. The MaLoc heading offset (η) probability distribution with trajectories in building KI.

TABLE 1. The summary of the result of accuracy with the level of interpolation granularity and the number of particles.

B1 M2 N3 The interpolation granularity : δ (m)
(x1000) 0.1 0.2 0.3 0.5 0.8 1.0 1.2

MED (m) / precision rate of convergence (%)

N1 ILoA 1 0.48 / 74 0.54 / 85 0.56 / 78 0.55 / 81 0.49 / 77 0.62 / 88 0.66 / 76
2 0.48 / 91 0.49 / 97 0.51 / 92 0.53 / 95 0.46 / 94 0.57 / 99 0.66 / 93
3 0.45 / 99 0.48 / 99 0.47 / 100 0.47 / 100 0.42 / 100 0.55 / 100 0.65 / 100

MaLoc 1 0.68 / 78 0.72 / 82 0.79 / 73 0.72 / 86 0.74 / 77 0.85 / 86 1.37 / 71
2 0.69 / 100 0.64 / 97 0.68 / 95 0.70 / 100 0.69 / 99 0.83 / 97 1.36 / 57
3 0.67 / 100 0.67 / 100 0.64 / 98 0.64 / 98 0.66 / 100 0.84 / 100 1.44 / 89

KI ILoA 3 1.36 / 94 1.41 / 95 1.37 / 92 1.33 / 92 1.35 / 94 1.38 / 94 1.58 / 95
4 1.29 / 96 1.41 / 96 1.25 / 93 1.29 / 95 1.34 / 97 1.30 / 98 1.55 / 98

MaLoc 3 2.62 / 47 2.36 / 49 2.66 / 48 2.22 / 48 2.30 / 49 1.95 / 48 2.46 / 51
4 2.26 / 52 2.57 / 50 2.74 / 50 2.12 / 54 2.32 / 55 1.81 / 58 2.50 / 51

1 Building 2 Methodology 3 Number of particles

distance (MED) was used as the error metric of accuracy, and

MED determined the performance of positioning.

1) Effect of the Interpolation

Figs. 13a and 14a show the positioning accuracy according

to the number of particles and interpolation granularity. In

N1, Fig. 14a shows that the accuracy attained the inflection

point of the curve at δ = 0.8. However, in building KI, the

results of which are in Fig. 14a, the inflection point seems

to be unclear due to the overall positioning performance

degradation resulting from the open space.

The optimal δ of the geomagnetic map seems to be related

to the step length converted from the online phase’s observa-

tion sampling rate. Ideally, in importance sampling, particle

weights should be well estimated in the update process. We

suppose that the ideal granularity of the geomagnetic map

is tied to the online sampling rate, which conforms with

human gait. This is because the magnetometer sampling rate

is faster than the human gait. Therefore, the resolution of the

geomagnetic map should be higher than the stride length to

VOLUME 4, 2016 11
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FIGURE 13. The mean error distance and precision rate in building N1.

0.1 0.2 0.3 0.5 0.8 1.0 1.2

 (m)

0

0.5

1

1.5

2

2.5

3

M
E

D
 (

m
)

ILoA (N = 3000)

ILoA (N = 4000)

MaLoc (N = 3000)

MaLoc (N = 4000)

(a) MED with δ and N particles.

3 4

Number of particle (x1000)

0

10

20

30

40

50

60

70

80

90

P
re

c
is

io
n

 (
%

)

ILoA (  = 0.1 m)

ILoA (  = 0.2 m)

ILoA (  = 0.3 m)

ILoA (  = 0.5 m)

ILoA (  = 0.8 m)

ILoA (  = 1.0 m)

ILoA (  = 1.2 m)

MaLoc (  = 0.1 m)

MaLoc (  = 0.2 m)

MaLoc (  = 0.3 m)

MaLoc (  = 0.5 m)

MaLoc (  = 0.8 m)

MaLoc (  = 1.0 m)

MaLoc (  = 1.2 m)

(b) The precision rate with δ and N particles.

FIGURE 14. The mean error distance and precision rate in building KI.
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FIGURE 15. The size of the search space with the magnetic map granularity.

cover the distance that moved during the sampling period.

An overly fine-grained geomagnetic map limits localiza-

tion performance contrariwise because it increases the like-

lihood of overfitting and increases ambiguity in the search

space. This is because the online measurement resolution

relies on the step speed/frequency, and the high resolution

of M increases the complexity O(|M|) and ambiguity with

the enlarged search space.

We formalize the growth rate by the δ parameter to analyze

the computational complexity of localization in the online

phase. δ is inversely proportional to the density of the ref-

erence point in a space, which corresponds to the O(n2) and

n ∝ 1/δ. Fig. 15 displays the number of references with the

δ parameter. The fitted curve equation is a ∗ δb, where a is

972.9 and b is -1.987. (R-squared: 1, RMSE: 54.55)

2) Effect of the Attitude

We conducted an additional experiment for attitude analysis

because each person has a different attitude, even in a typical

walking motion. Each line of the Fig. 16 shows an aspect of

the magnetic field change with different attitudes, inclination

angles, and walking about 60 meters (sampling rate=50Hz).

We determined the attitude as the pitch angle between the

screen facing and the ground plane. Each column denotes

the change of ℓ2-norm, three components of the magnetic

field, and the calibrated result. The norm is a direction

invariant scalar, so there were no evident difference for each

attitude. When the patterns are decomposed into three-axis
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FIGURE 16. The geomagnetic patterns while walking 60 meters with different attitudes, and their calibrated results.

magnetic field details, it showed differences. However, when

we calibrated the vectors, a similar pattern was reproduced

by tilt correction.

V. DISCUSSION

In this section, we discuss the details that are not covered

in this paper. In future work, we will consider the following

improvements.

A. DEGENERACY AND IMPOVERISHMENT

The performance of the localization can be inferred by eval-

uating the position error. Additionally, we want to refer to

the convergence rate of particles as a qualitative precision

analysis. In somewhat detailed aspects, heuristic values such

as noise distributions over the modeling are crucial to con-

vergence, but we do not address why we set that exact value

because it was not taken systematically. The fundamental

difficulties [44] associated with particle filters are degeneracy

and impoverishment of the particle samples. These problems

are commonly associated with the distribution of particles

because the weight of the particles is not appropriately

distributed. The regularization [45] technique can improve

the performance of the particle filter, but parameters have a

delicate impact on particle distribution and performance. We

strive to reduce the effect of these parameters to help prevent

overfitting via the SIR approach, but there remain interesting

details to be addressed.

B. AUTOMATE MAP GENERATION

The magnetic field map requires sufficient reference points

because the necessary granularity is high. Therefore, if indi-

viduals need to manually collect data on a reference point

and move directly on the floor plan, the process is labor

intensive and exhibits poor scalability. In terms of scalability,

mobile robots are useful applications. The SLAM in the

robotics field is an applicable technique for solving the cost

of indoor map calibration [46]. Mobile robots can reduce the

cost of collection and increase the accuracy of maps. Vacuum

cleaning robots, which are becoming increasingly common

in homes, are equipped with high-precision distance sensors

based on LiDAR.

C. SIMILARITY FUNCTION

Euclidean distance is an intuitive and straightforward ap-

proach to measure similarity. However, in vector space, co-

sine similarity is likely to yield better results. Therefore, we

also tested other similarity measures, including the cosine

similarity measure. We found that Euclidean distance ex-

hibited the best performance when compared to the other

similarity functions. The analysis of these results suggests

the importance of magnitude, as well as orientation. The

range (image) of the cosine similarity function f according

to the cosine function is limited to [0, 1]. Nonetheless, more

research is needed to improve this aspect through a more

sophisticated model than the Euclidean similarity function.

VI. CONCLUSION

In this paper, we have proposed a novel localization method

to construct the three-axis geomagnetic anomaly map and

utilized it. The effectiveness of the augmented geomagnetic

vector was demonstrated in a variety of path scenarios by

solving the global localization problem. We analyzed the

effect of the direction-variant feature for heading estimation,

which resolves the directional ambiguity. Furthermore, we

validated our approach and presented promising results in

an open space environment, where no map information to

aid in localization such as map matching. The proposed

method can be easily extended to incorporate other sensors

as well as applicable to most mobile devices. We expect that

incorporating visual pose measurements could improve its

attitude robustness.
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