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Abstract

Motivation: Long non-coding RNAs (lncRNAs) are a class of RNA molecules with more than 200

nucleotides. They have important functions in cell development and metabolism, such as genetic

markers, genome rearrangements, chromatin modifications, cell cycle regulation, transcription

and translation. Their functions are generally closely related to their localization in the cell.

Therefore, knowledge about their subcellular locations can provide very useful clues or preliminary

insight into their biological functions. Although biochemical experiments could determine the lo-

calization of lncRNAs in a cell, they are both time-consuming and expensive. Therefore, it is highly

desirable to develop bioinformatics tools for fast and effective identification of their subcellular

locations.

Results: We developed a sequence-based bioinformatics tool called ‘iLoc-lncRNA’ to predict the

subcellular locations of LncRNAs by incorporating the 8-tuple nucleotide features into the general

PseKNC (Pseudo K-tuple Nucleotide Composition) via the binomial distribution approach. Rigorous

jackknife tests have shown that the overall accuracy achieved by the new predictor on a stringent

benchmark dataset is 86.72%, which is over 20% higher than that by the existing state-of-the-art

predictor evaluated on the same tests.

Availability and implementation: A user-friendly webserver has been established at http://lin-

group.cn/server/iLoc-LncRNA, by which users can easily obtain their desired results.

Contact: chenweiimu@gmail.com or kcchou@gordonlifescience.org or hlin@uestc.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The basic unit of life is a cell. It contains many biomolecules includ-

ing proteins, RNA and DNA. To really understand the biological

process inside a cell, the knowledge of the subcellular localization of

protein, RNA and DNA molecules is indispensible. In order to

timely obtain the information of their subcellular localization, many

bioinformatics tools for predicting the subcellular localization of

proteins molecules based on their sequence information alone have

been developed [see, e.g. (Cai et al., 2002, 2006; Cheng et al.,

2017b,d, 2018a; Chou and Cai, 2002, 2003; Chou and Shen, 2008,
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2010; Chou et al., 2011, 2012; Lin et al., 2009; Xuao et al., 2018;

Zhu et al., 2015) as well as a long list of references cited in two com-

prehensive reviews (Chou and Shen, 2007; Nakai, 2000). However,

relatively much fewer bioinformatics tools were developed for pre-

dicting the subcellular localization of RNA molecules.

Long non-coding RNAs (lncRNAs) are a class of RNA molecules

with more than 200 nucleotides and have little or no protein-coding

capacity (Spizzo et al., 2012). The large-scale analysis of animal

transcriptions showed that the diversity of lncRNA is far exceed

that of protein-encoded mRNAs (Birney et al., 2007; Carninci and

Hayashizaki, 2007; Carninci et al., 2005; Kapranov et al., 2007).

lncRNA was originally thought to be a non-functional by product of

RNA polymerase II transcripts that are false transcription noise

(Struhl, 2007). However, more and more researches have reported

that they have important biological functions. Accumulated eviden-

ces suggest that lncRNAs have important functional diversity in cell

development and metabolism, including genetic markers, genome

rearrangement, chromatin modification, cell cycle regulation,

transcription, splicing, mRNA decay and translation (Gong and

Maquat, 2011; Huarte et al., 2010; Hung et al., 2011; Kino et al.,

2010; Kretz et al., 2013; Lee, 2010; Tripathi et al., 2010, 2013; Tsai

et al., 2010; Xu et al., 2013a; Yap et al., 2010; Yi et al., 2013).

Their abnormal expression has been shown to be associated with

several types of cancer, Alzheimer’s disease, Huntington’s disease

and cardiovascular diseases (Gupta et al., 2010; Johnson, 2012; Lin

et al., 2007; McPherson et al., 2007; Mourtada-Maarabouni et al.,

2009; Panzitt et al., 2007; Pasmant et al., 2007; Wang et al., 2010;

Zhang et al., 2010; Zhao et al., 2005).

Initial studies on lncRNAs have showed that they tend to locate

in the nucleus and chromatin for epigenetically regulating gene ex-

pression (Hutchinson et al., 2007; Mondal et al., 2010; Rinn et al.,

2007; Tsai et al., 2010; Whitehead et al., 2009; Zhao et al., 2008).

There exists a substantial population of lncRNAs in the cytoplasm

(Carlevaro-Fita et al., 2016; Ulitsky and Bartel, 2013; van Heesch

et al., 2014) for regulating protein translation (Schein et al., 2016;

Yoon et al., 2012; Zucchelli et al., 2016), protein trafficking (Aoki

et al., 2010; Kino et al., 2010) or miRNA decoys (Cesana et al.,

2011). Intracellular localization of RNA is now regarded vitally im-

portant for understanding the mechanism of eukaryotic cell develop-

ment and physiology (Donnelly et al., 2010; Weil et al., 2010). In

prokaryotes, although there is a lack of nuclei and the coupling be-

tween transcription and translation, several studies have demon-

strated that various RNA molecules are localized to specific

subcellular regions in bacterial cells (Broude, 2011; Keiler, 2011). It

is easily deduced that the functions of lncRNAs are closely associ-

ated with their locations in cells. Therefore, the identification of sub-

cellular location of lncRNAs is very important.

By using the fluorescent RNA-binding MS2 protein, the first ob-

servation about mRNA in live bacterial cells showed that the RNA

transcripts in most cases are near the quarter points or close to the

cell center, with limited motion (Hiraga, 2000; Nevo-Dinur et al.,

2012). Valencia-Burton et al. used fluorescence protein complemen-

tation to monitor RNA localization in live prokaryotic cells and

found that the lacZ mRNA, the 5S RNA and short non-coding RNA

were distributed in cytoplasm, nucleoid and cell poles, respectively

(Valencia-Burton et al., 2007). Although these biochemical methods

provide very reliable and precise information to determine the

subcellular localization of RNAs, they are both expensive and time

consuming. Computational methods could overcome these disad-

vantages and provide high-throughput outcomes. As mentioned

above, during the past three decades, many efforts have been made

by focusing on the prediction of protein subcellular localization by

means of bioinformatics approaches. The similarity between the dis-

tribution patterns exhibited by proteins and RNA suggests that their

localization is intimately linked to each other (Nevo-Dinur et al.,

2012). This linkage suggests that the RNA subcellular localization

could also be predicted by using quite similar methods.

To study the RNA subcellular localization, Zhang et al. con-

structed a database called RNALocate, which collected more than

37 700 manually curated RNA subcellular localization entries

(Zhang et al., 2017). Subsequently, Mas-Ponte et al. (2017) built a

database called LncATLAS to store the subcellular localization of

lncRNA. Cheng and Leung (2018) systematically investigated the

distribution of lncRNA subcellular localization in gastric cancer and

uncovered its association with cancer. As a pioneer work, Feng et al.

(2017b) developed a computational method to predict the organelle

location of noncoding RNAs (ncRNAs) by collecting ncRNAs from

kinetoplast, mitochondrion and chloroplast genomes. Subsequently,

Zhen et al. (2018) developed a predictor called lncLocator to predict

the subcellular localization of long non-coding RNAs.

In this study, we are devoted to developing a computational

method to predict lncRNA subcellular localization. As demonstrated

by a series of recent publications (Chen et al., 2016b, 2017b, 2018a;

Feng et al., 2017a,b, 2018; Khan et al., 2018; Liu et al., 2017c,

2018b; Qiu et al., 2017a; Song et al., 2018b,c), presenting a new

predictor by observing the 5-step rules (Chou’s, 2011) would have

the following merits: (i) more transparent in logic development; (ii)

outcome easier to be repeated by others; (iii) more inspiring; (iv)

large impacts.

Below, let us also follow the 5-step guidelines to present our new

prediction method; i.e. (i) construct a reliable benchmark dataset to

train and test model; (ii) formulate the biological sequence samples

with an effective mathematical expression that can truly reflect their

intrinsic correlation with the target to be predicted; (iii) introduce or

develop a powerful algorithm (or engine) to operate the prediction;

(iv) properly perform cross-validation tests to objectively evaluate

the anticipated accuracy of the predictor; (v) establish a user-

friendly web-server for the predictor that is accessible to the public.

Illustrated in Figure 1 is an outline of the 5-steps and their detailed

development.

2 Materials and methods

2.1. Benchmark dataset
Constructing a high quality benchmark dataset is the first prerequis-

ite to establish a reliable model. To realize this, we collected the

lncRNA samples from RNALocate (http://www.rna-society.org/rna

locate/). A total of 923 lncRNA sequences with annotated subcellu-

lar localization were obtained. Since highly similar data will cause

overestimation on the prediction quality, to get rid of the redun-

dancy and avoid bias, the CD-HIT (Li and Godzik, 2006) program

was utilized to winnow those lncRNA samples that had � 80% pair-

wise sequence identity with any other in a same subset. Finally, we

obtained 655 lncRNA sequences, which are classified into four sub-

sets, as formulated by

S ¼ S1 [ S2 [ S3 [ S4 (1)

where the subset S1 contains 156 lncRNAs from nucleus (Fig. 2), S2

contains 426 samples from cytoplasm, S3 contains 43 lncRNAs

from ribosome, and S4 contains 30 lncRNAs from exosome. The

symbol [ represents the ‘union’ in the set theory. For readers’ con-

venience, the accession numbers of these lncRNA samples and their

sequences are given in Supporting Information S1, which can also be
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directly downloaded at http://lin-group.cn/server/iLoc-LncRNA/

Supp-S1.txt.

2.2. Sample formulation
Now let us consider the second step of the 5-step rule (Chou, 2011);

i.e. how to formulate the lncRNA sequence samples with an effect-

ive mathematical expression that can truly reflect their essential cor-

relation with the target concerned. Given an lncRNA sequence R, its

most straightforward expression is (Chen et al., 2015a)

R ¼ N1N2N3N4N5N6N7 � � �NL (2)

where L denotes the lncRNA’s length or the number of its constitu-

ent nucleic acid residues, N1is the first residue, N2 the second resi-

due, N3 the third residue and so forth. Since all the existing

machine-learning algorithms can only handle vectors (Chou, 2015),

we have to convert an lncRNA sample from its sequential expression

(Eq. 2) to a vector. But a vector defined in a discrete model might

completely miss all the sequence-order or pattern information. To

deal with this problem, the PseKNC (Pseudo K-tuple Nucleotide

Composition) was introduced (Chen et al., 2014), which is an exten-

sion of PseAAC (Pseudo Amino Acid Composition) (Chou, 2001,

2005) that can be used to deal with DNA/RNA sequences. Ever

since then, the concept of PseKNC has been widely and increasingly

used in many areas of computational genomics/genetics with the

aim to grasp various different sequence patterns that are essential to

the targets investigated [see, e.g. (Chen et al., 2013, 2015b; Feng

et al., 2017a, 2018; Guo et al., 2014; Kabir and Hayat, 2016; Lin

et al., 2014; Liu et al., 2018a,b; Qiu et al., 2017b; Xiao et al., 2016;

Yang et al., 2018) and a long list of references cited in a recent re-

view papers (Chou, 2017)]. According to the concept of general

PseKNC (Chen et al., 2015a), any RNA sequence can be formulated

as a PseKNC vector given by

R ¼ /1 /2 � � � /u � � � /C½ �T (3)

where T is the transposing operator, the subscript C is an integer,

and its value and the components /u u ¼ 1; 2; � � �ð Þ will depend

on how to extract the desired features and properties from the RNA

sequence. In this study, their definitions are described below.

K-tuple (or called K-mer) nucleotide composition has important

biological significance (Ghandi et al., 2014) and has been widely

applied in DNA/RNA regulatory element recognition (Chen et al.,

2017b; Feng et al., 2018; Zhao et al., 2017; Zhu et al., 2015). Some

studies on evolutionary mechanism and biological functions of

8-mers containing CG dinucleotide in yeast have shown (Jia et al.,

2018) that the 8-mer distribution has a unique evolutionary mechan-

ism. In order to characterize each lncRNA sequence as accurately as

possible, the 8-mer composition was proposed to describe lncRNA

samples in this study. Thus, the dimension of PseKNC in Eq. 3 is

C ¼ 4K ¼ 48 ¼ 65536 (4)

And the u-th 8-mer therein is given by

/u ¼
nuP65536

i¼1 ni

¼ nu

ðL� 7Þ (5)

where u and L denote the numbers of the u-th 8-mer and the length

of the sample sequence, respectively. Thus, the lncRNA sample can

be defined in a 65536-D vector given by

R ¼ /1;/2;/3; . . . ;/u; . . . ;/65536½ �T (6)

2.3. Feature selection
One may notice that if the lncRNA sample is represented by a vector

of 65 536 dimensions, which may cause the following three prob-

lems (Ding et al., 2012; Feng et al., 2013; Lai et al., 2017; Liu et al.,

2015; Tang et al., 2016b; Wang et al., 2008; Yang et al., 2016;

Zhao et al., 2016, 2017; Zhu et al., 2010): (i) redundant or irrele-

vant noise yielding poor prediction quality; (ii) over-fitting problem

resulting in the model with very low generalization ability; (iii) the

‘dimension disaster’ or ‘curse of dimensionality’. Fortunately, these

problems could be improved by means of the feature selection ap-

proach. In fact, some feature selection techniques such as principal

component analysis (PCA) (Du et al., 2017), analysis of variance

Fig. 1. A flowchart to outline the 5-step rule used in this study

Fig. 2. A schematic drawing to show the four locations of lncRNAs in a cell
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(ANOVA) (Chen et al. 2016c; Lin et al., 2015; Tang et al., 2016a,b,

2018), diffusion Maps (Yin et al., 2011) and mRMR (Minimal

Redundancy Maximal Relevance) approach (Hu et al., 2011; Huang

et al., 2011a,b, 2012; Li et al., 2012a,b; Wang et al., 2011; Zheng

et al., 2012) had been proposed to alleviate the interference from

noise or irrelevant features so as to improve the prediction quality.

In this study, we proposed a powerful technique based on binomial

distribution (Lai et al., 2017) to winnow out the most optimal

features.

In order to judge whether the occurrence of an 8-mer segment in

RNA is completely random, let us define the prior probability qj

given by

qj ¼
mj

M
(7)

where mj denotes the number of a given 8-mer segment occurring in

the jth type of sample (j¼1, 2, 3 and 4 corresponding to the subcel-

lular locations ‘Nucleus’, ‘Cytoplasm’, ‘Ribosome’ and ‘Exosome’,

respectively); M is the total number of all different 8-mer segments

in the four subsets.

Obviously, the probability of the ith 8-mer occurring in the jth

type of lncRNA can be defined as

p nij

� �
¼
XNi

m¼nij

Ni!

m! Ni �mð Þ! qm
j 1� qj

� �Ni�m
(8)

where Ni represents the total number of the ith 8-mer segment in the

benchmark dataset, nij represents the number of occurrences of the

ith 8-mer segment in the jth type of lncRNA, and the sum is taken

from nij to Ni. If the ith 8-mer segment occurring in the jth subset is

not random and biologically significant, the p nij

� �
will be very

small. Thus, we may define the confidence level of this statement as

CLij:

CLij ¼ 1� p nij

� �
(9)

According to Eqs. (7)–(9), we ranked the 65 536 8-mer vectors in

descending order based on their CL values. Because there are four

kinds of subcellular locations considered in this study, there will be

four CL values for each of the 8-mer segments. Finally, we assigned

the largest one for the CL of the ith 8-mer vector; i.e.

CLi ¼ max CLi1;CLi2;CLi3;CLi4ð Þ (10)

2.4. Support vector machine (SVM)
SVM is a machine-learning algorithm based on the statistical learn-

ing theory, which can improve the generalization ability of learning

machine and minimize the risk of experience and the scope of confi-

dence by minimizing the structural risk. Thus, a good statistic result

can be usually achieved even in small sample. As a powerful super-

vised learning method, SVM has been widely used in bioinformatics

[see, e.g. (Cai et al., 2002, 2003; Chen et al., 2016a; Chou and Cai,

2002; Ehsan et al., 2018; Hayat and Iqbal, 2014; Kumar et al.,

2015; Lai et al., 2017; Mohabatkar et al., 2011; Zhao et al., 2017)].

In this article, the LIBSVM 3.21(Chang and Lin, 2011) was used to

perform the prediction, which can be freely downloaded from http://

www.csie.ntu.edu.tw/�cjlin/libsvm/. Since it is suitable for non-

linear classification, the radial basis function (RBF) kernel was

selected as kernel function. The one-versus-one (OVO) strategy was

used for multiclass classification. In order to construct the optimal

model, the regularization parameter C and the kernel width param-

eter c were optimized via an optimization procedure using a grid

search approach, of which the search spaces for C and c were

[2�5; 215� and [23; 2�15� with step sizes of 2 and 2�1, respectively.

The predictor thus constructed is called ‘iLoc-lncRNA’ where

‘iLoc’ stands for ‘identify or predict subcellular localization’ and

‘lncRNA’ for ‘long non-coding RNAs’.

2.5. Performance evaluation
The classification performance for the subcellular localization of

lncRNA was evaluated using sensitivity (Sn), specificity (Sp),

Matthew’s correlation coefficient (MCC) and overall accuracy (OA),

(Chen et al., 2007) which are formulated as (Cheng et al., 2017d;

2018a,b; Feng et al., 2013; Liu et al., 2018b; Xiao et al., 2017)

Sn ið Þ ¼ 1�Nþ� ið Þ
Nþ ið Þ 0 � Sn ið Þ � 1

Sp ið Þ ¼ 1�N�þ ið Þ
N� ið Þ 0 � Sp ið Þ � 1

MCC ið Þ ¼
1� Nþ�ðiÞ

NþðiÞ þ
N�þðiÞ
N�ðiÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N�þðiÞ �Nþ�ðiÞ

NþðiÞ

� �
1þ

Nþ�ðiÞ �N�þðiÞ
N�ðiÞ

� �s � 1 � MCC ið Þ � 1

OA ¼ 1

d

Xf

i¼1

Nþ ið Þ �Nþ� ið Þ
� �

0 � OA � 1

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(11)

where Nþ ið Þ is the total number of lncRNA samples in the ith sub-

set, Nþ� ið Þ is the number of the samples in Nþ ið Þ that are incorrectly

predicted to be of other locations; N�ðiÞ is the total number of

lncRNA samples in any location but not the ith location, whereas

N�þðiÞ is the number of the samples in N�ðiÞ that are incorrectly pre-

dicted to be of the ith location; f is the total number of the con-

cerned, and d is the number of the total samples in the benchmark

dataset.

It is instructive to point out, however, the set of metrics of

Eq. 11 is valid for the single-label systems in which each sample has

one and only one label or just belongs to one attribute. For the

multi-label systems where a sample may simultaneously belong to

several different attributes, whose existence has become increasingly

frequent in system biology (Cheng et al., 2017a,b,c,d, 2018a; Xiao

et al., 2017), system medicine (Cheng et al., 2017e,f) and biomedi-

cine (Qiu et al., 2016b), a completely different set of metrics as

defined in (Chou, 2013) is needed.

3 Results and discussion

3.1 Prediction accuracy
As described in Section 2.2, each LncRNA sample was formulated

as a 65 536-D PseKNC vector (Eq. 6). By examining the perform-

ance of iLoc-lncRNA predictor via the 5-fold cross-validation on the

benchmark dataset, we observed that the overall accuracy is

69.77% when C¼29 and c¼2�15. Although high-dimensional fea-

ture vector may contain more information of the LncRNA sample, it

may unavoidably include a lot of noise as well, which could reduce

the predictor’s accuracy. Moreover, it is time-consuming to train the

model using a high-dimensional vector. Therefore, to construct a

more accurate predictor, it is necessary to exclude noise from the

high-dimensional feature vectors. To realize this, the binomial distri-

bution approach as given in Eqs. 7–10 can serve to do so. By investi-

gating the performance of iLoc-lncRNA predictor with the CL being

99.99%, we found that the corresponding model could improve the

accuracy from 69.77 to 72.06%. Even though, it is still far from our

satisfaction because the number of these 8-mer segments was so
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small that many important information might be lost. Therefore, it

is crucially important to choose the optimal number of features to

build a robust and efficient predictive model.

We used the IFS strategy to build the optimal feature subsets. At

first, the feature subset started from the 8-mer-vector with the max-

imum CL value in the ranked feature set. Then, a new feature subset

was produced when the second 8-mer with the second biggest CL

value was added. This process was repeated from the highest CL

value to the lowest CL value until all candidate 8-mer vectors were

added. Thus, a total of 65 536 feature subsets were collected and the

same number of SVM-based models were built accordingly. Their

prediction capabilities were investigated by using the 5-fold cross-

validation test. The most optimal feature set was obtained when the

overall accuracy reaches its maximum. The corresponding IFS curve

was plotted in a 3-D Cartesian coordinate system with feature di-

mension as its X-coordinate, 1-CL as its Y-coordinate and overall

accuracy as its Z-coordinate (Fig. 3). It can be seen that the overall

accuracy was reaching its maximum of 86.11% when the CL was

selected as 99.19%, with the number of 8-mers features being 4107.

In other words, when C ¼ 107 for the PseKNC of Eq. 3, the model

would perform the best. The 4107 vector components thus obtained

for each of the protein samples in the benchmark dataset are given

in Supporting Information S2, which can also be directly down-

loaded at http://lin-group.cn/server/iLoc-LncRNA/Supp-S2.txt.

Subsequently, the rigorous jackknife tests were used on the same

benchmark dataset to examine the performance of the new proposed

predictor iLoc-lncRNA when C ¼ 4107 for the PseKNC of Eq. 3.

The final outcomes thus obtained by the iLoc-lncRNA predictor for

Sn, Sp, MCC and OA (cf. Eq. 11) are listed in Table 1, where for

facilitating comparison with the corresponding results by

lncLocatior (Zhen et al., 2018), the state-of-the-art predictor for the

same purpose, the re-estimated results are also given.

As we can see from the table, the proposed iLoc-lncRNA is re-

markably superior to the lncLocator (Zhen et al., 2018) from the

measurement by each of the four metrics in Eq. 11. Particularly, the

overall accuracy achieved by the proposed predictor is over 20%

high than the existing state-of-the-art predictor, implying that the

powerful new predictor will become a high throughput tool widely

used in both basic research and drug development.

3.2 Web-server and user guide
As pointed out in Chou and Shen (2009), user-friendly and

publicly accessible web-servers represent the future direction for

developing practically more useful predictors. Actually, user-friendly

web-servers as given in a series of recent publications (Chen et al.,

2017a, 2018b; Jia et al., 2015, 2016a,b; Liang et al., 2017; Liu et al.,

2016, 2017a,b, 2018a; Qiu et al., 2016a,c; Song et al., 2018a; Song

et al., 2018c; Wang et al., 2017, 2018; Xu et al., 2013b, 2014; Yang

et al., 2018) will substantially increase the impacts of the bioinformatics

tools because they can be easily used by broad experimental scientists

(Chou, 2017). In view of this, a user-friendly and public accessible web-

server for the new iLoc-lncRNA predictor has also been established.

Moreover, to maximize users’ convenience, a step-by-step guide is given

below.

Step 1. Open the web server at http://lin-group.cn/server/iLoc-

LncRNA and you will see the top page of iLoc-LncRNA shown on

your computer screen (Fig. 4).

Step 2. Either type or copy/paste the query RNA sequences into

the input box at the center of Figure 4. The input sequences should

be in the FASTA format. And click on the Submit button to see the

predicted result. For example, if using the four query RNA sequen-

ces in the Example window as the input, after clicking the Submit

button, you will see the following shown on the screen of your com-

puter. (i) The first query LncRNA is predicted to locate in Nucleus.

(ii) The second query LncRNA in cytoplasm. (iii) The third query

LncRNA in ribosome. (iv) The fourth query LncRNA in exosome.

All these results are perfectly consistent with experimental

observations.

Step 3. Click the Download button to get the Supporting

Information mentioned in this paper.

Fig. 3. A plot showing the IFS procedure in a 3-D space. When the dimension of

Eq. 3 was C ¼ 4107 a peak of 86.11% was reached by 5-fold cross-validation

Table 1. A comparison of the proposed predictor with the existing

predictor

Location iLoc-lncRNAa lncLocatorb

Snc

(%)

Spc

(%)

MCCc OAc

(%)

Snc

(%)

Spc

(%)

MCCc OAc

(%)

Nucleus 77.56 97.59 0.796 86.72 38.15 92.17 0.357 66.50

Cytoplasm 99.06 67.68 0.742 88.01 36.36 0.288

Ribosome 46.51 99.83 0.652 7.00 97.53 0.070

Exosome 16.67 1.00 0.400 4.00 97.27 0.015

aProposed predictor in this paper.
bThe existing state-of-the-art predictor (Zhen et al., 2018).
cSee Eq. 11 for the definition of metrics.

Fig. 4. A semi-screenshot for the top page of the iLoc-LncRNA webserver at

http://lin-group.cn/server/iLoc-LncRNA
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Step 4. Click on the Citation button to find the relevant papers

that play the key roles in developing the iLoc-LncRNA predictor.

Step 5. Click on the Help button to view the relevant instructions

and the caveat when using it.

4 Conclusion

In this paper, a binomial distribution-based feature selection tech-

nique was introduced to reduce the feature dimension for avoiding

the over-fitting problem, excluding the redundant information,

reducing computational complexity, and improving accuracy as well

as generalization ability of the model. In fact, some traditional fea-

ture selection techniques such as the ANOVA have been used to op-

timize features. However, these techniques are usually suitable for

the data obeying normal distribution. For high dimension k-mer

composition, the features obey binomial distribution. Thus, we may

use binomial distribution to perform feature selection.

The proposed predictor ‘iLoc-lncRNA’ is superior to the existing

state-of-the-art predictor in identifying the subcellular localization

of lncRNAs, as clearly indicated by the compelling data listed in

Table 1. The powerful predictor will undoubtedly become a high

throughput bioinformatics tool for in-depth studying various

cellular biological processes including genetic markers, genome

rearrangements, chromatin modifications, cell cycle regulation, tran-

scription and translation. It has not escaped our notice that the novel

approach presented here may also be used to deal with many other

biological systems.
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