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Abstract

Estimating geographic information from an image is

an excellent, difficult high-level computer vision problem

whose time has come. The emergence of vast amounts of

geographically-calibrated image data is a great reason for

computer vision to start looking globally – on the scale of

the entire planet! In this paper, we propose a simple al-

gorithm for estimating a distribution over geographic loca-

tions from a single image using a purely data-driven scene

matching approach. For this task, we will leverage a dataset

of over 6 million GPS-tagged images from the Internet. We

represent the estimated image location as a probability dis-

tribution over the Earth’s surface. We quantitatively evalu-

ate our approach in several geolocation tasks and demon-

strate encouraging performance (up to 30 times better than

chance). We show that geolocation estimates can provide

the basis for numerous other image understanding tasks

such as population density estimation, land cover estima-

tion or urban/rural classification.

1. Introduction

Consider the photographs in Figure 1. What can you say

about where they were taken? The first one is easy – it’s

an iconic image of the Notre Dame cathedral in Paris. The

middle photo looks vaguely Mediterranean, perhaps a small

town in Italy, or France, or Spain. The rightmost photo-

graph is the most ambiguous. Probably all that could be

said is that it’s a picture of a seaside in some tropical lo-

cation. But note that even this vague description allows us

to disregard all non-coastal, non-tropical areas – more than

99.9% of the Earth’s surface! Evidently, we humans have

learned a reasonably strong model for inferring location dis-

tribution from photographs. Moreover, even in cases when

our geo-localization performance is poor, we are still able

to give fairly confident estimates to other related questions:

How hot/cold does it get? How many people live there?

How well-off are they? etc.

What explains this impressive human ability? Seman-

tic reasoning, for one, is likely to play a big role. People’s

faces and clothes, the language of the street signs, the types

of trees and plants, the topographical features of the terrain

– all can serve as semantic clues to the geographic location

of a particular shot. Yet, there is mounting evidence in cog-

nitive science that data association (ask not “What is it?”

but rather “What is it like?”) may play a significant role as

well [1]. In the example above, this would mean that in-

stead of reasoning about a beach scene in terms of the trop-

1Project Page: http://graphics.cs.cmu.edu/projects/im2gps/

Figure 1. What can you say about where these photos were taken?

ical sea, sand and palm trees, we would simply remember:

“I have seen something similar on a trip to Hawaii!”. Note

that although the original picture is unlikely to actually be

from Hawaii, this association is still extremely valuable in

helping to implicitly define the type of place that the photo

belongs to.

Of course, computationally we are quite far from being

able to semantically reason about a photograph (although

encouraging progress is being made). On the other hand,

the recent availability of truly gigantic image collections has

made data association, such as brute-force scene matching,

quite feasible [17, 4].

In this paper, we propose an algorithm for estimating a

distribution over geographic locations from an image using

a purely data-driven scene matching approach. For this task,

we leverage a dataset of over 6 million GPS-tagged images

from the Flickr online photo collection. We represent the es-

timated image location as a probability distribution over the

Earth’s surface, and geolocation performance is analyzed in

several tasks. Additionally, the usefulness of image local-

ization is demonstrated with meta-tasks such as land cover

estimation and urban/rural classification.

1.1. Background

Visual localization on a topographical map has been one

of the early problems in computer vision, which turned out

to be extremely challenging for both computers and hu-

mans [16]. But the situation improves dramatically if more

sources of data are available. Jacobs et al. [6] proposes a

very clever and simple method of geolocating a webcam

based on correlating its video-stream with satellite weather

maps over the same time period.

The recent availability of GPS-tagged images of urban

environments coupled with advances in multi-view geome-

try and efficient feature matching led to a number of groups

developing place recognition algorithms, some of which

competed in the “Where am I?” Contest [15] at ICCV’05

(winning entry described in [19]). Similar feature-based

geometric matching approaches have also been success-

fully applied to co-registering online photographs of fa-

mous landmarks for browsing [14] and summarization [13],
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Figure 2. The distribution of photos in our database. Photo locations are cyan. Density is overlaid with the jet colormap (log scale).

as well as image retrieval in location-labeled collections,

e.g. [2].

But can these geometric feature-based matching ap-

proaches scale up to the entire world? This is unlikely, not

just because of computational cost, but simply because the

set of all existing photographs is still not large enough to

exhaustively sample the entire world. Yes, there would be

tens of thousands of photos of a famous landmark, but some

ordinary streets or even whole cities might be entirely miss-

ing. And since the geometric constraints require an exact

match, most of the time the system will retrieve nothing at

all. Clearly, a generalization of some sort is required.

On the other side of the spectrum is the philosophy that

all forests look more or less the same, as do deserts, moun-

tains, cities, kitchens, bathrooms, etc. A large body of work

exist on scene recognition [10, 12, 8, 18], which involves

defining a handful of scene categories and using various

low-level features to classify a novel image into one of these

categories. While impressive results are typically obtained,

classification is not a difficult task if the number of cate-

gories is small. Moreover, the choice of categories is often

not very scientific.

The approach we are proposing in this paper neatly strad-

dles these two extremes, seamlessly adapting to the amount

of data available. If the query image is a famous landmark,

there will likely be many similar images of the same exact

place in the database, and our approach is likely to return a

precise GPS location. If the query is more generic, like a

desert scene, many different deserts will match, producing

a location probability that is high over the dry, sandy parts

of the world. In fact, our approach provides a more scientif-

ically valid method of defining scene categories – based on

geographic location as well as appearance.

2. Building a Geo-tagged Image Dataset

In order to reason about the global location of an ar-

bitrary scene we first need a large number of images that

are labelled with geographic information. This information

could be in the form of text keywords or it could be in the

form of GPS coordinates. Fortunately there is a huge (and

rapidly growing) amount of online images with both types

of labels. For instance, Flickr.com has hundreds of millions

of pictures with either geographic text or GPS coordinates.

But it is still difficult to create a useful, high-quality

database based on user collected and labelled content. We

are interested in collecting images that depict some amount

of geographic uniqueness. For instance, pictures taken by

tourists are ideal because they often focus on the unique

and interesting qualities of a place. Many of these images

can be found because they often have geographic keywords

associated with them (i.e. city or country names). But us-

ing geographic text labels is problematic because many of

them are ambiguous (e.g. Washington city/state, Georgia

state/country, Mississippi river/state, and LA city/state) or

spatially broad (e.g. Asia or Canada).

Images annotated with GPS coordinates are geograph-

ically unambiguous and accurate, but are more likely to

be visually irrelevant. Users tend to geo-tag all of their

pictures, whether they are pet dog pictures (less useful)

or hiking photos (more useful). In fact, the vast major-

ity of online images tagged with GPS coordinates and to

a lesser extent those with geographic text labels are not use-

ful for image-based geolocation. Many of the images are

poor quality (low resolution, noisy, black and white) or de-

pict scenes which are only marginally useful for geoloca-

tion (most portraits, wedding pictures, abstracts, and macro

photography). While these types of photos can sometimes

reveal geographic information (western-style weddings are

popular in Europe and Japan but not India; pet dogs are

popular in the US but not Syria) the customs are so broadly

distributed that it is not very useful for geolocation.

However, we found that by taking the intersection of

these groups, images with both GPS coordinates and ge-

ographic keywords, we greatly increased the likelihood of

finding accurately geolocated and visually useful data. Peo-

ple may geo-tag images of their cats, but they’re less likely

to label that image with “New York City” at the same time.



Figure 3. 18% of our 237 image test set. Note how difficult it is to specifically geolocate most of the images.

Our list of geographic keywords includes every country and

territory, every continent, the top 200 most populated cities

in the world, every US state, and popular tourist sites (e.g.

“Pisa”, “Nikko”, “Orlando”).

This results in a pool of approximately 20 million geo-

tagged and geographic text-labelled images from which

we excluded all photos which were also tagged with key-

words such as “birthday”, “concert”, “abstract” and “cam-

eraphone”. In the end we arrived at a database of 6, 472, 304

images. All images were downsized to max dimension 1024

and JPEG compressed for a total of 1 terabyte of data.

While this is a tremendous amount of data it cannot be

considered an exhaustive visual sampling of Earth. Our

database averages only 0.0435 pictures per square kilome-

ter of Earth’s land area. But as figure 2 shows the data is

very non-uniformly distributed towards places where peo-

ple live or travel which is fortunate since geolocation query

images are likely to come from the same places.

2.1. Evaluation Test Set

To evaluate the performance of our method, we also need

a separate hold-out test set of geo-located images. We built

the test set by drawing 400 random images from the origi-

nal data set. From this set we manually removed any unde-

sirable photos that were not automatically excluded during

database construction – abstract photos, overly processed

or artistic photos, and black and white photos. We also ex-

cluded photos with significant artifacts such as motion blur

or extreme noise. Finally we removed pictures with easily

recognizable people or other situations that might violate

someone’s privacy. To ensure that our test set and database

are independent we exclude from the database not just test

images, but all other images from the same photographers.

Of the 237 resulting images, about 5% are recognizable

as specific tourist sites around the globe but the great major-

ity are only recognizable in a generic sense (Figure 3 shows

a random sample of test set). Some of the images contain

very little geographic information, even for an astute human

examiner. We think this test set is extremely challenging but

representative of the types of photos people take.

3. Scene Matching

Is it feasible to extract geographic information from

generic scenes? One of the main questions addressed by this

paper is as much about the Earth itself as it is about com-

puter vision. Humans and computers can recognize specific,

physical scenes that they’ve seen before, but what about

more generic scenes which make up most of our database

and our test set. Many of these scenes may be impossible to

specifically localize. We know that our world is self-similar

not just locally but across the globe. Film creators have long

taken advantage of this (e.g. “Spaghetti Westerns” films that

were ostensibly set in the American Southwest but filmed in

Almerı́a, Spain.) Nonetheless, it must be the case that cer-

tain visual features in imagery correlate strongly with geog-

raphy even if the relationship is not strong enough to specif-

ically pinpoint a location. Beach images must be near bod-

ies of water, jungles must be near the equator, and glaciated

mountains cover a relatively small fraction of the Earth’s

surface.

What features can we extract from images that will best

allow us to examine and exploit this correlation between

image properties and geographic location? In this paper we

evaluate an assortment of popular features from literature:

Tiny Images: The most trivial way to match scenes is

to compare them directly in color image space. Reducing

the image dimensions drastically makes this approach more

computationally feasible and less sensitive to exact align-

ment. This method of image matching has been examined

thoroughly by Torralba et al.[17] for the purpose of object

recognition and scene classification. Inspired by this work

we will use 16 by 16 color images as one of our features.

Color histograms: In the spirit of most image retrieval

literature, we build joint histograms of color in CIE L*a*b*

color space for each image. Our histograms have 4, 14, and

14 bins in L, a, and b respectively for a total of 784 di-

mensions. We have fewer bins in the intensity dimension

because other descriptors will measure the intensity distri-

bution of each image. We compute distance between these

histograms using χ2 distance.

Texton Histograms: Texture features might help dis-

tinguish between geographically correlated properties such

ornamentation styles or building materials in cities or vege-

tation and terrain types in landscapes. We build a 512 entry

universal texton dictionary [9] by clustering our dataset’s

responses to a bank of filters with 8 orientations, 2 scales,

and 2 elongations. For each image we then build a 512 di-

mensional histogram by assigning each pixel’s set of filter

responses to the nearest texton dictionary entry. Again, we



use χ2 distances between texton histograms. Note that this

representation is quite similar to dense visual words.

Line Features: We have found that the statistics of

straight lines in images are useful for distinguishing be-

tween natural and man-made scenes and for finding scenes

with similar vanishing points. We find straight lines from

Canny edges using the method described in Video Com-

pass [7]. For each image we build two histograms based

on the statistics of detected lines- one with bins correspond-

ing to line angles and one with bins corresponding to line

lengths. We use L1 distance to compare these histograms.

Gist Descriptor + Color: The gist descriptor [11] has

been shown to work well for scene categorization [10]

and for retrieving semantically and structurally similar

scenes [4]. We create a gist descriptor for each image with

5 by 5 spatial resolution where each bin contains that image

region’s average response to steerable filters at 6 orienta-

tions and 4 scales. We also create a tiny L*a*b image, also

at 5 by 5 spatial resolution.

Geometric Context: Finally, we compute the geometric

class probabilities for image regions using the method of

Hoiem et al. [5]. We use only the primary classes- ground,

sky, and vertical since they are more reliably classified. We

reduce the probability maps for each class to 8x8 and use

L2 distance to compare them.

We precomputed all features for the database which took

about 15 seconds per image on a contemporary Xeon pro-

cessor for a total of 3.08 CPU years. Using a cluster of 400

processors we computed the features over 3 days.

4. Data-driven Geolocation

After all the preprocessing is complete, the geolocation

framework is quite simple. For each input image in our test

set we build the same features as discussed in Section 3 and

compute the distance in each feature space to all 6 million

images in the database. We scale each feature’s distances so

that their standard deviations are roughly the same and thus

they influence the ordering of scene matches equally. For

each query image we use the aggregate feature distances to

find the nearest neighbors in the database and we derive ge-

olocation estimates from those GPS tagged nearest neigh-

bors.

The simplest heuristic is to use the GPS coordinate of the

first nearest neighbor (1-NN) as our geolocation estimate.

Of course, 1-NN approaches are often not robust. Alterna-

tively, we can consider a larger set of k-NN (k = 120 in our

experiments). This set of nearest neighbors together forms

an implicit estimate of geographic location – a probability

map over the entire globe. The hope is that the location of

peak density in this probability map corresponds to the true

location of the query image. One way to operationalize this

is to consider the major modes of the distribution by per-

forming mean-shift [3] clustering on the geolocations of the

matches. We represent the geolocations as 3d points and re-

project the mean-shift clusters to the Earth’s surface after
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First Nearest Neighbor Scene Match

Chance− Random Scenes

Figure 4. Geolocation performance across database sizes. Per-

centage of test set images that were correctly geolocated within

200km of ground truth as function of dataset size using 1-NN. As

the database shrinks the performance converges to chance.

the clustering procedure. We use a mean-shift bandwidth

of 500km (although other settings work similarly) and dis-

regard clusters with fewer than 4 matches, resulting in be-

tween 6 to 12 clusters containing, on average, about two

thirds of the original 120 matches. This serves as a kind of

geographic outlier rejection to clean up spurious matches,

but can be unfavorable to locations with few data-points.

To compute a geolocation estimate, one approach is to

pick the cluster with the highest cardinality and report the

GPS coordinate of its mode. For some applications, it might

be acceptable to return a list of possible location estimates,

in which case the modes of the clusters can be reported in

order of decreasing cardinality. We show qualitative results

for several images in Figure 15. More results can be found

on our project web page.

4.1. Is the data helping?

The most interesting research question for us is how

strongly does image similarity correlate with geographic

proximity? To geolocate a query we don’t just want to find

images that are similarly structured or of the same semantic

class (e.g. “forest” or “indoors”). We want image matches

that are specific enough to be geographically distinct from

otherwise similar scenes. How much data is needed start to

capture this geography-specific information? In Figure 4

we plot how frequently the 1-NN scene match is within

200km of the query’s true location as we alter the size of

the database. With a tiny database of 90 images, the 1-NN

scene match is as likely to be near the query as a random

image from the database. With the full database we per-

form 18 times better than chance. Note that the percent-

age of test cases geolocated to within 200km (16%) is sig-

nificantly higher than the proportion of “landmark” images

(e.g. Notre Dame) in the test set (about 5%).

4.2. Which features are most geo­informed?

Another interesting question we consider is which visual

characteristics are more helpful in disambiguating between

locations? In Figure 5 we examine the geolocation accuracy

when using each of the features from Section 3 in isolation

as well as in unison. For each feature we consider the ge-

olocation accuracy of 1-NN against the largest cluster. The

latter is indeed more robust than using 1-NN, although per-
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First Nearest Neighbor Scene Match

Mean Shift Mode, Largest Cluster 
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Figure 5. Geolocation performance across features. Percentage

of test cases geolocated to within 200km for each feature. We

compare geolocation by 1-NN vs. largest mean-shift mode.

formance is similar when using all features. The richer fea-

ture combinations seem less prone to geographic outliers

which disrupt the 1-NN approach.

Using all features together performed considerably bet-

ter than any one by itself, suggesting that the information

they are capturing is somewhat independent. The most geo-

graphically discriminative features are the gist, color his-

togram, and texton histogram. The gist, especially, per-

forms well, even in the 1-NN regime, reaffirming its po-

sition as the feature of choice for scene matching tasks.

Surprisingly, color also does extremely well (but only af-

ter discarding geographic outliers), which suggests that it

is a more diverse and location-specific feature than previ-

ously assumed (artists have long talked about “that special

color” of a particular location). The least geographically

discriminative feature is the 8x8 geometric context class

likelihoods. This seems reasonable – the geometric con-

text framework is inspired by the observation that the vast

majority of scenes can be succinctly modelled by ground,

sky, and vertical components. A view down a forest path

can share the same class distribution as a view down Wall

St. (when considering only the primary classes). The 16x16

tiny images also scored low. In fact, after geographic out-

lier rejection, they performed worse than humble 5x5 color

images, suggesting that perhaps they are too noisy for this

task. In the rest of the evaluations, we will use all features

except the geometric context and the 16x16 tiny images.

4.3. How accurate are the estimates?

Given a photo, how often can we pin-point the right city?

Country? Continent? So far we have evaluated geoloca-

tion accuracy only in terms of a distance threshold. In Fig-

ure 6 we more closely examine the distribution of geoloca-

tion errors (distances between estimated and ground truth

locations) across our test set. For the two heuristics (1-NN,

and mean-shift mode) plus three baselines (chance, and two

best case scenarios), we sort the errors on the test set inde-

pendently, from best to worst. We see that both heuristics

are able to localize about 25% of the data within the scale of

a (small) country. While 1-NN approach performs better at

precise localization (within a city), mean-shift mode does
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Figure 6. Accuracy of geolocation estimates across the test set.

Localization errors (distance between predicted and ground truth

location), are shown for 1-NN and mean-shift estimates. Errors are

sorted from best to worst independently for each curve, thus show-

ing the proportion of images geolocated within any error threshold.

Chance performance (random matches) and two best-case scenar-

ios – picking the mean-shift mode or scene match which is spa-

tially closest to the ground truth query location – are shown for

comparison.

1 2 3 4 5 6 7 8 9 10 11 12
0

1000

2000

3000

4000

5000

6000

7000

Number of guesses allowed (N)

M
e

d
ia

n
 d

is
ta

n
c
e

 f
ro

m
 b

e
s
t 

g
u

e
s
s
 t

o
 q

u
e

ry
 l
o

c
a

ti
o

n
, 

k
m

 

 

Chance− N Random Scenes

N Nearest Neighbors

N Mean Shift Modes, Ordered by Cluster Size

Best Possible Mean Shift Mode

Best Possible of 120 Nearest Neighbors

Figure 7. Geolocation error with multiple guesses. Median geolo-

cation error for NN and mean-shift modes with increasing num-

bers of guesses allowed. The error is the distance from an algo-

rithm’s best guess to the query’s ground truth location. Although

the geolocation of a query may be ambiguous among several pos-

sibilities, after multiple guesses it is likely that one of the estimates

is near the ground truth location.

somewhat better for more global localization. Both meth-

ods outperform chance by a large margin for two thirds of

the test cases.

It’s instructive to note that although the largest one-third

of errors across the test set are very large (nearly as bad a

chance), for almost all queries there is some scene match

or mean-shift cluster that is quite close to the query (see

“best case” curves on Figure 6). In other words, among the

120 nearest neighbors there are almost always several ge-

ographically accurate matches but the heuristics sometimes

have trouble disambiguating those from other visually simi-

lar, spatially dissimilar matches (e.g. Hawaii vs Martinique

or New York City vs Hong Kong). If we allow ourselves N



Figure 8. In scanline order, the test cases with the highest and low-

est estimated population density.

Figure 9. In scanline order, the test cases with the largest and

smallest estimated elevation gradient.

“guesses” as to the location of a query we can rapidly get

closer to the ground truth location (Figure 7). For this task

we compare geolocation estimates from N nearest neigh-

bors and the modes of the N largest clusters. The proba-

bility map modes are especially accurate for this task. With

6 guesses for each query, the median error for the test set

is less than 500km (nearly half the error of 6-NN, and one

quarter the error of 6 random scenes).

5. Secondary Geographic Tasks
Once we have a geolocation estimate (either in the form

of a specific location estimate or a probability map), we

can use it to index into any geographic information sys-

tem (GIS). There is a vast amount of freely available ge-

olocated information about our planet such as climate in-

formation, crime rates, real estate prices, carbon emissions,

political preference, etc. Even if an image cannot be ge-

olocated accurately, its geographic probability map might

correlate strongly with some features of the planet. For in-

stance, given a map of population density (P.D.) and a query

image, we can sample the P.D. map at the estimated geolo-

cation(s) and use the average value as a P.D. estimate for

the query image. Using this approach we estimate the pop-

ulation density (Figure 8) and elevation gradient magnitude

(Figure 9) for each of our 237 test images.

We also produce land cover estimates for each of our test

images by sampling from a land cover classification map

(Figure 10) according to each image’s geolocation probabil-

ity map. We show the test images which are most likely to

be “forest” (Figure 11), “water” (Figure 12), and “savanna”

(Figure 13).

This framework can also be used to retrieve geograph-

Figure 10. Land cover classification map and key.

Figure 11. Test images with highest “forest” likelihood. Note that

there is no “mountain” class in the land cover map– most moun-

tains are labelled as “forest” or “barren” according to their land

cover. The mountains above are indeed forested.

Figure 12. Test images with the highest “water” likelihood.

Figure 13. Test images with the highest “savanna” likelihood. Per-

haps only a couple of the images in our test set actually depict

“savanna”, but many of these images contain similar geographic

elements.

ically relevant images out of an unlabelled collection, i.e.

“Which images in my photo collection are from my trip to

India?”. In this case the secondary geographic data source

could be a global map where India=1.

Additionally, we can perform image classification us-

ing properties derived from a secondary geographical data

source according to our geolocation estimates. For exam-

ple, using a global map of light pollution (not shown), we

look up the light pollution magnitude at the ground truth

location of each of our test cases. We divide the test im-

ages along their median light pollution value into “urban”

and “rural” classes. This is a difficult classification prob-

lem because the classes are not cleanly separated, but it is a

more principled way to generate labelled data than has been
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120 Nearest Neighbor Scene Matches

First Nearest Neighbor Scene Match

Mean Shift Mode, Largest Cluster

Chance− Random Scenes

Figure 14. ROC curve for urban/rural classification. Areas under

ROC curve are .82, .74, and .71 for 120-NN, 1-NN, and 1 mean-

shift mode, respectively.

done in previous scene classification work. Having defined

a ground truth classification, we try to predict each test im-

age’s class without using its ground truth location but in-

stead using its estimated geolocation. Figure 14 shows the

ROC curve for this task using different heuristics to estimate

geolocation. Using the entire geolocation probability map

instead of a single, explicit geolocation estimate performs

best (.82 area under ROC).

6. Discussion

We believe that estimating geographic information from

images is an excellent, difficult, but very much doable

high-level computer vision problem whose time has come.

The emergence of so much geographically-calibrated image

data is an excellent reason for computer vision to start look-

ing globally – on the scale of the entire planet! Not only

is geo-location an important problem in itself, but it could

also be tremendously useful to many other vision tasks:

i) Knowing the distribution of likely geolocations for an

image provides huge amounts of additional meta-data for

climate, average temperature for any day, vegetation index,

elevation, population density, per capita income, average

rainfall, etc.

ii) Even a coarse geo-location can provide a useful object

prior for recognition. For instance, knowing that a picture

is somewhere in Japan would allow one to prime object de-

tection for the appropriate type of taxi cabs, lane markings,

average pedestrian height, etc.

iii) Geo-location provides a concrete task that can be

used to quantitatively evaluate scene matching algorithms

as well as provide a more scientific basis for scene recogni-

tion studies, both for humans and machines.

In conclusion, this paper is the first to be able to extract

geographic information from a single image. It is also the

first time that a truly gargantuan database of over 6 million

geolocated images has been used in computer vision. While

our results look quite promising, much work remains to be

done. We hope that this work might jump-start a new direc-

tion of research in geographical computer vision.
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Figure 15. From left to right: query images, nearest neighbors, and three visualizations of the estimated geolocation probability map. The

probability map is shown as a jet-colorspace overlay on the world map. Cluster modes are marked with circumscribed “X”’s whose sizes

are proportional to cluster cardinality. If a scene match is contained in a cluster it is highlighted with the corresponding color. The ground

truth location is a cyan asterisk surrounding by green contours at radii of 200km, 750km, and 2500km. From top to bottom, these photos

were taken in Paris, Barcelona, Thailand, California, Argentina, and Tanzania. For the Yosemite, California query note that the apparently

spurious “Paris” match with the Eiffel tower is in fact the Paris Casino in nearby Las Vegas. Perhaps the texture similarities from vegetation

and color distribution similarities helped produce this informative match.


