Image-adaptive Color Super-resolution

Umamahesh Srinivas Xuan Mo Vishal Monga Pennsylvania State University, USA

Manu Parmar

Qualcomm MEMS Technologies, San Jose, CA

Color and Imaging Conference 2011

November 10, 2011

- Gray-scale super-resolution (SR): State-of-the-art
- Olor SR: Background and motivation
- Ontribution: Image-adaptive color super-resolution

Results

Digital image acquisition system¹

¹Park et al., IEEE Signal Process. Mag., 2003

Model of the forward imaging process

$$\mathbf{y}_k = \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x} + \mathbf{n}_k, \quad 1 \le k \le K$$

- $\mathbf{x} \in \mathbb{R}^n \rightarrow$ unknown hi-res image
- $\mathbf{y}_k \in \mathbb{R}^m \ (m < n) \rightarrow k$ -th lo-res image
- T(θ_k) ∈ ℝ^{n×n} → k-th geometric warping matrix
 θ_k obtained from projective homography matrix²
- $\mathbf{B} \in \mathbb{R}^{n imes n}
 ightarrow$ camera optical blur
- $\mathbf{D} \in \mathbb{R}^{m \times n} \to \text{downsampling matrix of } 1s \text{ and } 0s$
- $\mathbf{n}_k \in \mathbb{R}^m \to \text{noise}$ vector that corrupts \mathbf{y}_k .

²Mann and Picard, IEEE Trans. Image Process., 1997

$$\begin{aligned} \mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) &= \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \geq 1 \\ (\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) &= \arg\min_{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C} \end{aligned}$$

- ④ Sequential estimation of $\{oldsymbol{ heta}_k\}$ and hi-res image ${f x}$
 - Sub-optimal
- $\textcircled{\sc 0}$ Cost function minimization under different ${\rm norms}^3 \rightarrow {\rm different}$ noise models
- Joint MAP estimation⁴ of $\{\theta_k\}$ and hi-res image x
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints.

11/10/2011

³ Farsiu et. al., IEEE Trans. Image Process., 2004

^{&#}x27;Hardie et. al., IEEE Trans. Image Process., 199

$$\begin{aligned} \mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) &= \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \geq 1 \\ (\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) &= \arg\min_{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C} \end{aligned}$$

Sequential estimation of {θ_k} and hi-res image x
 Sub-optimal

- $\textcircled{\sc 0}$ Cost function minimization under different ${\rm norms}^3 \rightarrow {\rm different}$ noise models
- **③** Joint MAP estimation⁴ of $\{\boldsymbol{\theta}_k\}$ and hi-res image \mathbf{x}
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints.

Farsiu et. al., IEEE Trans. Image Process., 2004

⁴Hardie et. al., IEEE Trans. Image Process., 1997

$$\begin{aligned} \mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) &= \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \geq 1 \\ (\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) &= \arg\min_{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C} \end{aligned}$$

() Sequential estimation of $\{ \boldsymbol{\theta}_k \}$ and hi-res image \mathbf{x}

Sub-optimal

- O Cost function minimization under different $norms^3 \rightarrow different$ noise models
- Joint MAP estimation⁴ of $\{m{ heta}_k\}$ and hi-res image ${f x}$
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints.

³Farsiu et. al., IEEE Trans. Image Process., 2004

⁺Hardie et. al., IEEE Trans. Image Process., 1997

$$\begin{aligned} \mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) &= \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \geq 1 \\ (\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) &= \arg\min_{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C} \end{aligned}$$

9 Sequential estimation of $\{\boldsymbol{\theta}_k\}$ and hi-res image \mathbf{x}

- Sub-optimal
- O Cost function minimization under different $norms^3 \rightarrow different$ noise models
- **3** Joint MAP estimation⁴ of $\{\boldsymbol{\theta}_k\}$ and hi-res image **x**
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints.

⁴Hardie et. al., IEEE Trans. Image Process., 1997

³Farsiu et. al., IEEE Trans. Image Process., 2004

$$\begin{aligned} \mathcal{C}(\mathbf{x}, \boldsymbol{\theta}) &= \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}(\boldsymbol{\theta}_k)\mathbf{x}\|_p, p \geq 1 \\ (\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}}) &= \arg\min_{\mathbf{x}, \boldsymbol{\theta}} \mathcal{C} \end{aligned}$$

9 Sequential estimation of $\{\boldsymbol{\theta}_k\}$ and hi-res image \mathbf{x}

Sub-optimal

- O Cost function minimization under different $norms^3 \rightarrow different$ noise models
- **3** Joint MAP estimation⁴ of $\{\boldsymbol{\theta}_k\}$ and hi-res image **x**
 - Tractability of optimization problem
 - Faithfulness of resulting solutions to real-world constraints.

³Farsiu et. al., IEEE Trans. Image Process., 2004

⁴Hardie et. al., IEEE Trans. Image Process., 1997

Addressing the challenges⁵

- **()** Separable convexity via transformation of variables $\mathbf{f}_k : \boldsymbol{\theta}_k \mapsto \mathbf{T}(\boldsymbol{\theta}_k)$
 - θ : change in pixel coordinates, **T**: pixel intensity mapping

$$\mathcal{C}(\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p + \lambda\rho(\mathbf{x}).$$

Formulation of elegant and physically meaningful convex constraints. Why convexity?

- Convergence guarantee to minima
- Robustness to initialization values.

⁵Monga and Srinivas, IEEE Asilomar Conf., 2010

Addressing the challenges⁵

- **()** Separable convexity via transformation of variables $\mathbf{f}_k : \boldsymbol{\theta}_k \mapsto \mathbf{T}(\boldsymbol{\theta}_k)$
 - θ : change in pixel coordinates, **T**: pixel intensity mapping

$$\mathcal{C}(\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p + \lambda \rho(\mathbf{x}).$$

Some of elegant and physically meaningful convex constraints. Why convexity?

CIC 2011

- Convergence guarantee to minima
- Robustness to initialization values.

 5 Monga and Srinivas, IEEE Asilomar Conf., 2010

Addressing the challenges⁵

- **()** Separable convexity via transformation of variables $\mathbf{f}_k : \boldsymbol{\theta}_k \mapsto \mathbf{T}(\boldsymbol{\theta}_k)$
 - θ : change in pixel coordinates, **T**: pixel intensity mapping

$$\mathcal{C}(\mathbf{x}, \{\mathbf{T}_k\}, \mathbf{B}) = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p + \lambda \rho(\mathbf{x}).$$

Formulation of elegant and physically meaningful convex constraints.
 Why convexity?

- Convergence guarantee to minima
- Robustness to initialization values.

⁵Monga and Srinivas, IEEE Asilomar Conf., 2010

$$\begin{array}{ll} \underset{\mathbf{x},\{\mathbf{T}_k\},\mathbf{B}}{\text{minimize}} & \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p \\ \text{subject to} & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\ & \mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{T}_k.\mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{B}.\mathbf{1} = \mathbf{1} \\ & \mathbf{t}_{k,i}^T\mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T\mathbf{e}_i = 0, \quad 1 \leq i \leq n \end{array}$$

.

$$\begin{array}{ll} \underset{\mathbf{x},\{\mathbf{T}_k\},\mathbf{B}}{\text{minimize}} & \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p \\ \text{subject to} & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\ & \mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{T}_k.\mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{B}.\mathbf{1} = \mathbf{1} \\ & \mathbf{t}_{k,i}^T\mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T\mathbf{e}_i = 0, \quad 1 \leq i \leq n \end{array}$$

• Non-negative pixel values of hi-res and lo-res images

- **T**_k: interpolation matrix, **B**: filtering with a local spatial kernel; each row should sum to 1
- Membership constraints: candidate set of non-zero entries in each row of T_k and B known.

11/10/2011

$$\begin{array}{ll} \underset{\mathbf{x},\{\mathbf{T}_k\},\mathbf{B}}{\text{minimize}} & \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p \end{array}$$

subject to $0 \le x \le 1$ $0 \le DBT_k x \le 1$, $1 \le k \le K$ $T_k \cdot 1 = 1$, $1 \le k \le K$ $B \cdot 1 = 1$ $t_{k,i}^T m_{k,i} = 0$, $1 \le i \le n$, $1 \le k \le$ $b_i^T e_i = 0$, $1 \le i \le n$

- Non-negative pixel values of hi-res and lo-res images
- T_k: interpolation matrix, B: filtering with a local spatial kernel; each row should sum to 1
- Membership constraints: candidate set of non-zero entries in each row of T_k and B known.

PAL @

11/10/2011

$$\begin{array}{ll} \underset{\mathbf{x},\{\mathbf{T}_k\},\mathbf{B}}{\text{minimize}} & \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p \end{array}$$

subject to $0 \le x \le 1$ $0 \le DBT_k x \le 1, \quad 1 \le k \le K$ $T_k.1 = 1, \quad 1 \le k \le K$ B.1 = 1

 $\mathbf{t}_{k,i}^T \mathbf{m}_{k,i} = 0, \quad 1 \le i \le n, \quad 1 \le k \le K$ $\mathbf{b}_i^T \mathbf{e}_i = 0, \quad 1 \le i \le n$

Non-negative pixel values of hi-res and lo-res images

- **T**_k: interpolation matrix, **B**: filtering with a local spatial kernel; each row should sum to 1
- Membership constraints: candidate set of non-zero entries in each row of T_k and B known.

PAL @

11/10/2011

$$\begin{array}{ll} \underset{\mathbf{x},\{\mathbf{T}_k\},\mathbf{B}}{\text{minimize}} & \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p \\ \text{subject to} & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\ & \mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{T}_k.\mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{B}.\mathbf{1} = \mathbf{1} \\ & \mathbf{t}_{k,i}^T\mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T\mathbf{e}_i = 0, \quad 1 \leq i \leq n \end{array}$$

.

Color super-resolution: Prior work

- Operate in a de-correlated color space⁶
 - Assumption: luminance component of image carries its spatial features
 - Chrominance components used mainly to improve image registration^{7,8}
- Strong correlation among spatial high-frequency components across color channels⁹

• Related work: color image demosaicking¹⁰.

11/10/2011

⁶Vandewalle et al., Electronic Imaging, 2007

⁷Shah and Zakhor, IEEE Trans. Image Process., 1999

⁸Tom and Katsaggelos, IEEE Trans. Image Process., 2001

⁹Farsiu et al, IEEE Trans. Image Process., 2006

¹⁰Menon and Calvagno, IEEE Trans. Image Process., 2009

Luminance regularization

- $S_r, S_g, S_b \in \mathbb{R}^{3n \times 3n}$: gradient operators on red, green and blue color channels respectively
- Luminance regularization (for images with dominant luminance edges):

$$\rho_L(\mathbf{x}) = \|(\mathbf{S}_r - \mathbf{S}_g)\mathbf{x}\|_1 + \|(\mathbf{S}_g - \mathbf{S}_b)\mathbf{x}\|_1 + \|(\mathbf{S}_r - \mathbf{S}_b)\mathbf{x}\|_1 \le \epsilon_L.$$

• Modified optimization cost function:

$$\mathcal{C}_1 = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}).$$

 \bullet Successful for color SR \rightarrow most images possess dominant luminance geometry.

11/10/2011

Luminance regularization

- $S_r, S_g, S_b \in \mathbb{R}^{3n \times 3n}$: gradient operators on red, green and blue color channels respectively
- Luminance regularization (for images with dominant luminance edges):

$$\rho_L(\mathbf{x}) = \|(\mathbf{S}_r - \mathbf{S}_g)\mathbf{x}\|_1 + \|(\mathbf{S}_g - \mathbf{S}_b)\mathbf{x}\|_1 + \|(\mathbf{S}_r - \mathbf{S}_b)\mathbf{x}\|_1 \le \epsilon_L.$$

• Modified optimization cost function:

$$\mathcal{C}_1 = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}).$$

 $\bullet\,$ Successful for color SR $\to\,$ most images possess dominant luminance geometry.

11/10/2011

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- \bullet Chrominance edge \rightarrow R, G and B channels with different high-frequency components
 - \bullet Strong edge in Cb \rightarrow strong edge in B, mild edges in R and G.

11/10/2011

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- Chrominance edge \rightarrow R, G and B channels with different high-frequency components
 - Strong edge in Cb \rightarrow strong edge in B, mild edges in R and G.

11/10/2011

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- $\bullet~$ Chrominance edge \to R, G and B channels with different high-frequency components
 - Strong edge in Cb \rightarrow strong edge in B, mild edges in R and G.

11/10/2011

- Luminance edge (in Y) \rightarrow present in R, G and B channels
- $\bullet~$ Chrominance edge \to R, G and B channels with different high-frequency components
 - $\bullet\,$ Strong edge in Cb \rightarrow strong edge in B, mild edges in R and G.

Chrominance regularization: Intuition

• For images with significant chrominance geometry, edge correlation between RGB channels expected to be low

• Minimize edge correlation between channels in desired HR image: $(\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) < \epsilon_{rg}, (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) < \epsilon_{gb}, (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x}) < \epsilon_{br}.$

• Incorporate into cost function as a regularization term: $\rho_C(\mathbf{x}) = (\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) + (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) + (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x}).$

Chrominance regularization: Intuition

- For images with significant chrominance geometry, edge correlation between RGB channels expected to be low
- Minimize edge correlation between channels in desired HR image: $(\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) < \epsilon_{rg}, (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) < \epsilon_{gb}, (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x}) < \epsilon_{br}.$
- Incorporate into cost function as a regularization term: $\rho_C(\mathbf{x}) = (\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) + (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) + (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x}).$

Chrominance regularization: Intuition

- For images with significant chrominance geometry, edge correlation between RGB channels expected to be low
- Minimize edge correlation between channels in desired HR image: $(\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) < \epsilon_{rg}, (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) < \epsilon_{gb}, (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x}) < \epsilon_{br}.$
- Incorporate into cost function as a regularization term: $\rho_C(\mathbf{x}) = (\mathbf{S}_r \mathbf{x})^T (\mathbf{S}_g \mathbf{x}) + (\mathbf{S}_g \mathbf{x})^T (\mathbf{S}_b \mathbf{x}) + (\mathbf{S}_b \mathbf{x})^T (\mathbf{S}_r \mathbf{x}).$

$$C = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}) + \alpha_C \rho_C(\mathbf{x}).$$

$$C = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p$$

•

$$C = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x})$$

٠

$$\mathcal{C} = \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{DBT}_k \mathbf{x}\|_p + \alpha_L \rho_L(\mathbf{x}) + \alpha_C \rho_C(\mathbf{x}).$$

Contribution: Image-adaptive color super-resolution

$$\begin{array}{l} \underset{\mathbf{x},\{\mathbf{T}_k\},\mathbf{B},\mathbf{S}_r,\mathbf{S}_g,\mathbf{S}_b}{\text{minimize}} & \sum_{k=1}^{K} \|\mathbf{y}_k - \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x}\|_p + \alpha_L\rho_L(\mathbf{x}) + \alpha_C\rho_C(\mathbf{x}) \\ \text{subject to} & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\ & \mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_k\mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{T}_k \cdot \mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K \\ & \mathbf{B} \cdot \mathbf{1} = \mathbf{1} \\ & \mathbf{t}_{k,i}^T\mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq 3n, \quad 1 \leq k \leq K \\ & \mathbf{b}_i^T\mathbf{e}_i = 0, \quad 1 \leq i \leq 3n \\ & \mathbf{S}_r.\mathbf{1} = \mathbf{0} \\ & \mathbf{S}_g.\mathbf{1} = \mathbf{0} \\ & \mathbf{S}_b.\mathbf{1} = \mathbf{0} \\ & \mathbf{S}_b.\mathbf{1} = \mathbf{0} \\ & \mathbf{S}_b.\mathbf{1} = \mathbf{0} \\ & (\mathbf{s}_{r,i})^T\mathbf{f}_{r,i} = 1, \quad 1 \leq i \leq 3n \\ & (\mathbf{s}_{g,i})^T\mathbf{f}_{g,i} = 1, \quad 1 \leq i \leq 3n \\ & (\mathbf{s}_{b,i})^T\mathbf{f}_{b,i} = 1, \quad 1 \leq i \leq 3n \end{array}$$

Constraints on gradient operators

• Gradient operator \rightarrow high-pass filter \Rightarrow elements in each row must sum to zero:

$$\mathbf{S}_r \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_q \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_b \cdot \mathbf{1} = \mathbf{0}.$$

• Membership constraints on $\mathbf{S}_r, \mathbf{S}_g, \mathbf{S}_b$ to prevent convergence to 0:

$$(\mathbf{s}_{r,i})^T \mathbf{f}_{r,i} = 1, (\mathbf{s}_{g,i})^T \mathbf{f}_{g,i} = 1, (\mathbf{s}_{b,i})^T \mathbf{f}_{b,i} = 1, 1 \le i \le 3n.$$

- $\mathbf{f}_{r,i}, \mathbf{f}_{g,i}, \mathbf{f}_{b,i}$ generated from initial gradient operator
- Element in S takes positive, negative or zero value \rightarrow corresponding entry in f equals 1, -1 or 0 respectively.

Constraints on gradient operators

• Gradient operator \rightarrow high-pass filter \Rightarrow elements in each row must sum to zero:

$$\mathbf{S}_r \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_q \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_b \cdot \mathbf{1} = \mathbf{0}.$$

• Membership constraints on $\mathbf{S}_r, \mathbf{S}_g, \mathbf{S}_b$ to prevent convergence to $\mathbf{0}$:

$$(\mathbf{s}_{r,i})^T \mathbf{f}_{r,i} = 1, (\mathbf{s}_{g,i})^T \mathbf{f}_{g,i} = 1, (\mathbf{s}_{b,i})^T \mathbf{f}_{b,i} = 1, 1 \le i \le 3n.$$

- $\mathbf{f}_{r,i}, \mathbf{f}_{g,i}, \mathbf{f}_{b,i}$ generated from initial gradient operator
- Element in S takes positive, negative or zero value \rightarrow corresponding entry in f equals 1, -1 or 0 respectively.

Constraints on gradient operators

• Gradient operator \rightarrow high-pass filter \Rightarrow elements in each row must sum to zero:

$$\mathbf{S}_r \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_q \cdot \mathbf{1} = \mathbf{0}, \quad \mathbf{S}_b \cdot \mathbf{1} = \mathbf{0}.$$

• Membership constraints on $\mathbf{S}_r, \mathbf{S}_g, \mathbf{S}_b$ to prevent convergence to $\mathbf{0}$:

$$(\mathbf{s}_{r,i})^T \mathbf{f}_{r,i} = 1, (\mathbf{s}_{g,i})^T \mathbf{f}_{g,i} = 1, (\mathbf{s}_{b,i})^T \mathbf{f}_{b,i} = 1, 1 \le i \le 3n.$$

- $\mathbf{f}_{r,i}, \mathbf{f}_{g,i}, \mathbf{f}_{b,i}$ generated from initial gradient operator
- Element in S takes positive, negative or zero value \rightarrow corresponding entry in f equals 1, -1 or 0 respectively.

• Estimate degree of image chrominance geometry

$$\beta = \frac{1}{2} \left(\frac{\|\mathbf{H}_{1}\mathbf{x}_{cb}\| + \|\mathbf{H}_{1}\mathbf{x}_{cr}\|}{\|\mathbf{H}_{1}\mathbf{x}_{r}\|} + \frac{\|\mathbf{H}_{2}\mathbf{x}_{cb}\| + \|\mathbf{H}_{2}\mathbf{x}_{cr}\|}{\|\mathbf{H}_{2}\mathbf{x}_{r}\|} \right).$$
$$\mathbf{h}_{1} = \begin{pmatrix} 3 & 10 & 3\\ 0 & 0 & 0\\ -3 & -10 & -3 \end{pmatrix}, \ \mathbf{h}_{2} = \begin{pmatrix} 3 & 0 & -3\\ 10 & 0 & -10\\ 3 & 0 & -3 \end{pmatrix}.$$

• $\beta \downarrow \Rightarrow \alpha_C \downarrow, \alpha_L \uparrow$

•
$$\beta \uparrow \Rightarrow \alpha_C \uparrow, \alpha_L \downarrow$$

• α_C and α_L assigned complementary weights: $\alpha_C = \alpha_{\max} - \alpha_L$.

• Estimate degree of image chrominance geometry

$$\beta = \frac{1}{2} \left(\frac{\|\mathbf{H}_{1}\mathbf{x}_{cb}\| + \|\mathbf{H}_{1}\mathbf{x}_{cr}\|}{\|\mathbf{H}_{1}\mathbf{x}_{r}\|} + \frac{\|\mathbf{H}_{2}\mathbf{x}_{cb}\| + \|\mathbf{H}_{2}\mathbf{x}_{cr}\|}{\|\mathbf{H}_{2}\mathbf{x}_{r}\|} \right).$$
$$\mathbf{h}_{1} = \left(\begin{array}{ccc} 3 & 10 & 3\\ 0 & 0 & 0\\ -3 & -10 & -3 \end{array} \right), \ \mathbf{h}_{2} = \left(\begin{array}{ccc} 3 & 0 & -3\\ 10 & 0 & -10\\ 3 & 0 & -3 \end{array} \right).$$

• $\beta \downarrow \Rightarrow \alpha_C \downarrow, \alpha_L \uparrow$

• $\beta \uparrow \Rightarrow \alpha_C \uparrow, \alpha_L \downarrow$

• α_C and α_L assigned complementary weights: $\alpha_C = \alpha_{\max} - \alpha_L$.

• Estimate degree of image chrominance geometry

$$\beta = \frac{1}{2} \left(\frac{\|\mathbf{H}_{1}\mathbf{x}_{cb}\| + \|\mathbf{H}_{1}\mathbf{x}_{cr}\|}{\|\mathbf{H}_{1}\mathbf{x}_{r}\|} + \frac{\|\mathbf{H}_{2}\mathbf{x}_{cb}\| + \|\mathbf{H}_{2}\mathbf{x}_{cr}\|}{\|\mathbf{H}_{2}\mathbf{x}_{r}\|} \right).$$
$$\mathbf{h}_{1} = \begin{pmatrix} 3 & 10 & 3\\ 0 & 0 & 0\\ -3 & -10 & -3 \end{pmatrix}, \ \mathbf{h}_{2} = \begin{pmatrix} 3 & 0 & -3\\ 10 & 0 & -10\\ 3 & 0 & -3 \end{pmatrix}.$$
$$\bullet \ \beta \downarrow \Rightarrow \alpha_{C} \downarrow, \ \alpha_{L} \uparrow$$

•
$$\beta \uparrow \Rightarrow \alpha_C \uparrow, \alpha_L \downarrow$$

• α_C and α_L assigned complementary weights: $\alpha_C = \alpha_{\max} - \alpha_L$.

• Estimate degree of image chrominance geometry

$$\beta = \frac{1}{2} \left(\frac{\|\mathbf{H}_{1}\mathbf{x}_{cb}\| + \|\mathbf{H}_{1}\mathbf{x}_{cr}\|}{\|\mathbf{H}_{1}\mathbf{x}_{r}\|} + \frac{\|\mathbf{H}_{2}\mathbf{x}_{cb}\| + \|\mathbf{H}_{2}\mathbf{x}_{cr}\|}{\|\mathbf{H}_{2}\mathbf{x}_{r}\|} \right).$$
$$\mathbf{h}_{1} = \begin{pmatrix} 3 & 10 & 3 \\ 0 & 0 & 0 \\ -3 & -10 & -3 \end{pmatrix}, \ \mathbf{h}_{2} = \begin{pmatrix} 3 & 0 & -3 \\ 10 & 0 & -10 \\ 3 & 0 & -3 \end{pmatrix}.$$
$$\bullet \ \beta \downarrow \Rightarrow \alpha_{C} \downarrow, \alpha_{L} \uparrow$$
$$\bullet \ \beta \uparrow \Rightarrow \alpha_{C} \uparrow, \alpha_{L} \downarrow$$

• α_C and α_L assigned complementary weights: $\alpha_C = \alpha_{\max} - \alpha_L$.

11/10/2011

۲

Choice of β and α_C

(a) 0.584

(b) 0.864

(c) 0.294

(d) 0.483

(e) 0.497

(g) 0.425

(f) 0.503

Figure: Threshold: $\beta_0 = 0.75$.

(h) 0.828

Figure: Mapping from β to α_c .

11/10/2011

Results: I

(a) Orig. hi-res image.

(b) Sample lo-res images.

(c) RGB independently.

(d) Luminance only (Farsiu).

(e) Lum. and chrom. independently (Vandewalle).

(f) Proposed method.

11/10/2011

Results: II

(a) Interp. lo-res image. (b) l_1 -norm $\rho_L(Farsiu)$ (c) l_2 -norm $\rho_L(Menon)$

(d) Lum. and chrom. (e) Proposed framework (f) Image-adaptive independently (Vande- (non-adaptive). framework. walle)

11/10/2011

Conclusions

- Color super-resolution framework that simultaneously exploits spatial and amplitude information
 - Novel chrominance regularization
 - Image-adaptive selection of optimization parameters
- Onstrained convex optimization framework
 - Tractable algorithms.

Thank you Questions?

Backup Slides

High-pass filter constraints for gradient operators

$$H(\omega_1, \omega_2) = \sum_{(n_1, n_2) \in \mathcal{R}} h[n_1, n_2] e^{-j\omega_1 n_1} e^{-j\omega_2 n_2}$$

Quantitative comparison of performance $J_{i} = 10 \left[\log \left(\frac{\sum_{k=1}^{K} \|\mathbf{y} - \mathbf{DBT}_{k} \mathbf{x}_{i}\|_{2}}{\sum_{k=1}^{K} \|\mathbf{y} - \mathbf{DBT}_{k} \mathbf{x}\|_{2}} \right) + (1 - \beta) \log \frac{\rho_{L}(\mathbf{x}_{i})}{\rho_{L}(\mathbf{x})} + \beta \log \frac{\rho_{C}(\mathbf{x}_{i})}{\rho_{C}(\mathbf{x})} \right]$

• Comparison with three competitive methods:

- $\textcircled{1} \quad i=1: lpha_L$ with l_1 -norm 1
- 2 $i=2:lpha_L$ with l_2 -norm¹²
- If i = 3: luminance and chrominance separately¹³
- $J>0 \Rightarrow {\rm dB}$ gain using proposed approach; $J<0 \Rightarrow$ competitive method better.

		1.599	
(b)	7.900	6.562	26.856
		-1.153	17.711
	0.404	-0.979	12.196
		4.674	
			20.804
(h)	7.857	6.208	25.863
(i)	12.110	10.899	27.805

¹¹Farsiu et al., IEEE Trans. Image Process., 2006

^{LZ} Menon et al., IEEE Trans. Image Process., 2009

¹³Vandewalle et al., SPIE 2007

Quantitative comparison of performance

$$J_i = 10 \left[\log \left(\frac{\sum_{k=1}^{K} \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}_i\|_2}{\sum_{k=1}^{K} \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}\|_2} \right) + (1 - \beta) \log \frac{\rho_L(\mathbf{x}_i)}{\rho_L(\mathbf{x})} + \beta \log \frac{\rho_C(\mathbf{x}_i)}{\rho_C(\mathbf{x})} \right]$$

• Comparison with three competitive methods:

$${f 0} \hspace{0.1in} i=1: lpha_L \hspace{0.1in}$$
 with $l_1 ext{-norm}^1$

2)
$$i=2:lpha_L$$
 with l_2 -norm¹²

- **(**) i = 3: luminance and chrominance separately¹³
- $J > 0 \Rightarrow dB$ gain using proposed approach; $J < 0 \Rightarrow$ competitive method better.

		1.599	
(b)	7.900	6.562	26.856
		-1.153	17.711
	0.404	-0.979	12.196
		4.674	
			20.804
(h)	7.857	6.208	25.863
(i)	12.110	10.899	27.805

- ¹¹Farsiu et al., IEEE Trans. Image Process., 2006
- 12 Menon et al., IEEE Trans. Image Process., 2009
- ¹³Vandewalle et al., SPIE 2007

Quantitative comparison of performance

$$J_i = 10 \left[\log \left(\frac{\sum_{k=1}^{K} \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}_i\|_2}{\sum_{k=1}^{K} \|\mathbf{y} - \mathbf{DBT}_k \mathbf{x}\|_2} \right) + (1 - \beta) \log \frac{\rho_L(\mathbf{x}_i)}{\rho_L(\mathbf{x})} + \beta \log \frac{\rho_C(\mathbf{x}_i)}{\rho_C(\mathbf{x})} \right]$$

• Comparison with three competitive methods:

1
$$i = 1 : \alpha_L$$
 with l_1 -norm¹

2)
$$i=2: lpha_L$$
 with l_2 -norm¹²

- **③** i = 3: luminance and chrominance separately¹³
- $J > 0 \Rightarrow dB$ gain using proposed approach; $J < 0 \Rightarrow$ competitive method better.

Image	J_1	J_2	J_3
(a)	0.182	1.599	16.469
(b)	7.900	6.562	26.856
(c)	-0.493	-1.153	17.711
(d)	0.404	-0.979	12.196
(e)	7.902	4.674	21.647
(f)	7.222	5.260	20.804
(g)	9.806	8.388	21.588
(h)	7.857	6.208	25.863
(i)	12.110	10.899	27.805

¹¹Farsiu et al., IEEE Trans. Image Process., 2006

¹²Menon et al., IEEE Trans. Image Process., 2009

¹³Vandewalle et al., SPIE 2007