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Digital image acquisition system1

1
Park et al., IEEE Signal Process. Mag., 2003
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Model of the forward imaging process

yk = DBT(θk)x+ nk, 1 ≤ k ≤ K

x ∈ R
n → unknown hi-res image

yk ∈ R
m (m < n) → k-th lo-res image

T(θk) ∈ R
n×n → k-th geometric warping matrix

θk obtained from projective homography matrix2

B ∈ R
n×n → camera optical blur

D ∈ R
m×n → downsampling matrix of 1s and 0s

nk ∈ R
m → noise vector that corrupts yk.

2
Mann and Picard, IEEE Trans. Image Process., 1997
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Prior work and key research challenges

C(x,θ) =
K
∑

k=1

‖yk −DBT(θk)x‖p, p ≥ 1

(x̂, θ̂) = argmin
x,θ

C

1 Sequential estimation of {θk} and hi-res image x

Sub-optimal

2 Cost function minimization under different norms3 → different noise
models

3 Joint MAP estimation4 of {θk} and hi-res image x

Tractability of optimization problem

Faithfulness of resulting solutions to real-world constraints.

3
Farsiu et. al., IEEE Trans. Image Process., 2004

4
Hardie et. al., IEEE Trans. Image Process., 1997
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Addressing the challenges5

1 Separable convexity via transformation of variables fk : θk 7→ T(θk)

θ: change in pixel coordinates, T: pixel intensity mapping

C(x, {Tk},B) =

K
∑

k=1

‖yk −DBTkx‖p + λρ(x).

2 Formulation of elegant and physically meaningful convex constraints.

Why convexity?

Convergence guarantee to minima

Robustness to initialization values.
5
Monga and Srinivas, IEEE Asilomar Conf., 2010
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Single-channel SR: Optimization problem

minimize
x,{Tk},B

∑K

k=1 ‖yk −DBTkx‖p

subject to 0 ≤ x ≤ 1

0 ≤ DBTkx ≤ 1, 1 ≤ k ≤ K

Tk.1 = 1, 1 ≤ k ≤ K

B.1 = 1

tTk,imk,i = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ K

bT
i ei = 0, 1 ≤ i ≤ n

.
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Non-negative pixel values of hi-res and lo-res images

Tk: interpolation matrix, B: filtering with a local spatial kernel;
each row should sum to 1

Membership constraints: candidate set of non-zero entries in each
row of Tk and B known.
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Color super-resolution: Prior work

1 Treat RGB as independent channels → no channel correlation

2 Operate in a de-correlated color space6

Assumption: luminance component of image carries its spatial

features

Chrominance components used mainly to improve image

registration7,8

3 Strong correlation among spatial high-frequency components across
color channels9

Related work: color image demosaicking10.

6
Vandewalle et al., Electronic Imaging, 2007

7
Shah and Zakhor, IEEE Trans. Image Process., 1999

8
Tom and Katsaggelos, IEEE Trans. Image Process., 2001

9
Farsiu et al, IEEE Trans. Image Process., 2006

10
Menon and Calvagno, IEEE Trans. Image Process., 2009
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Luminance regularization

Sr,Sg,Sb ∈ R
3n×3n: gradient operators on red, green and blue

color channels respectively

Luminance regularization (for images with dominant luminance
edges):

ρL(x) = ‖(Sr − Sg)x‖1 + ‖(Sg − Sb)x‖1 + ‖(Sr − Sb)x‖1 ≤ ǫL.

Modified optimization cost function:

C1 =

K
∑

k=1

‖yk −DBTkx‖p + αLρL(x).

Successful for color SR → most images possess dominant luminance
geometry.
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Motivation: Value of chrominance geometry

Luminance edge (in Y) → present in R, G and B channels

Chrominance edge → R, G and B channels with different
high-frequency components

Strong edge in Cb → strong edge in B, mild edges in R and G.
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Chrominance regularization: Intuition

For images with significant chrominance geometry, edge correlation
between RGB channels expected to be low

Minimize edge correlation between channels in desired HR image:

(Srx)
T (Sgx) < ǫrg, (Sgx)

T (Sbx) < ǫgb, (Sbx)
T (Srx) < ǫbr.

Incorporate into cost function as a regularization term:

ρC(x) = (Srx)
T (Sgx) + (Sgx)

T (Sbx) + (Sbx)
T (Srx).
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Role of regularization: Venn diagram interpretation

C =

K
∑

k=1

‖yk −DBTkx‖p + αLρL(x) + αCρC(x).
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Contribution: Image-adaptive color super-resolution

minimize
x,{Tk},B,Sr,Sg,Sb

∑K

k=1 ‖yk −DBTkx‖p + αLρL(x) + αCρC(x)

subject to 0 ≤ x ≤ 1

0 ≤ DBTkx ≤ 1, 1 ≤ k ≤ K

Tk · 1 = 1, 1 ≤ k ≤ K

B · 1 = 1

tTk,imk,i = 0, 1 ≤ i ≤ 3n, 1 ≤ k ≤ K

bT
i ei = 0, 1 ≤ i ≤ 3n

Sr.1 = 0

Sg.1 = 0

Sb.1 = 0

(sr,i)
T fr,i = 1, 1 ≤ i ≤ 3n

(sg,i)
T fg,i = 1, 1 ≤ i ≤ 3n

(sb,i)
T fb,i = 1, 1 ≤ i ≤ 3n
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Constraints on gradient operators

Gradient operator → high-pass filter ⇒ elements in each row must
sum to zero:

Sr · 1 = 0, Sg · 1 = 0, Sb · 1 = 0.

Membership constraints on Sr,Sg,Sb to prevent convergence to 0:

(sr,i)
T fr,i = 1, (sg,i)

T fg,i = 1, (sb,i)
T fb,i = 1, 1 ≤ i ≤ 3n.

fr,i, fg,i, fb,i generated from initial gradient operator

Element in S takes positive, negative or zero value → corresponding
entry in f equals 1, -1 or 0 respectively.
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How to choose αC and αL?

Estimate degree of image chrominance geometry

β =
1

2

(

‖H1xCb‖+ ‖H1xCr‖

‖H1xY‖
+

‖H2xCb‖+ ‖H2xCr‖

‖H2xY‖

)

.

h1 =





3 10 3
0 0 0
−3 −10 −3



, h2 =





3 0 −3
10 0 −10
3 0 −3



 .

β ↓ ⇒ αC ↓, αL ↑

β ↑ ⇒ αC ↑, αL ↓

αC and αL assigned complementary weights: αC = αmax − αL.

11/10/2011 CIC 2011 15



How to choose αC and αL?

Estimate degree of image chrominance geometry

β =
1

2

(

‖H1xCb‖+ ‖H1xCr‖

‖H1xY‖
+

‖H2xCb‖+ ‖H2xCr‖

‖H2xY‖

)

.

h1 =





3 10 3
0 0 0
−3 −10 −3



, h2 =





3 0 −3
10 0 −10
3 0 −3



 .

β ↓ ⇒ αC ↓, αL ↑

β ↑ ⇒ αC ↑, αL ↓

αC and αL assigned complementary weights: αC = αmax − αL.

11/10/2011 CIC 2011 15



How to choose αC and αL?

Estimate degree of image chrominance geometry

β =
1

2

(

‖H1xCb‖+ ‖H1xCr‖

‖H1xY‖
+

‖H2xCb‖+ ‖H2xCr‖

‖H2xY‖

)

.

h1 =





3 10 3
0 0 0
−3 −10 −3



, h2 =





3 0 −3
10 0 −10
3 0 −3



 .

β ↓ ⇒ αC ↓, αL ↑

β ↑ ⇒ αC ↑, αL ↓

αC and αL assigned complementary weights: αC = αmax − αL.

11/10/2011 CIC 2011 15



How to choose αC and αL?

Estimate degree of image chrominance geometry

β =
1

2

(

‖H1xCb‖+ ‖H1xCr‖

‖H1xY‖
+

‖H2xCb‖+ ‖H2xCr‖

‖H2xY‖

)

.

h1 =





3 10 3
0 0 0
−3 −10 −3



, h2 =





3 0 −3
10 0 −10
3 0 −3



 .

β ↓ ⇒ αC ↓, αL ↑

β ↑ ⇒ αC ↑, αL ↓

αC and αL assigned complementary weights: αC = αmax − αL.

11/10/2011 CIC 2011 15



Choice of β and αC

(a) 0.584 (b) 0.864 (c) 0.294

(d) 0.483 (e) 0.497 (f) 0.503

(g) 0.425 (h) 0.828 (i) 0.975

Figure: Threshold: β0 = 0.75.

Figure: Mapping from β to αc.
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Results: I

(a) Orig. hi-res image. (b) Sample lo-res images. (c) RGB independently.

(d) Luminance only
(Farsiu).

(e) Lum. and chrom.
independently (Vande-
walle).

(f) Proposed method.

11/10/2011 CIC 2011 17



Results: II

(a) Interp. lo-res image. (b) l1-norm ρL(Farsiu) (c) l2-norm ρL(Menon)

(d) Lum. and chrom.
independently (Vande-
walle)

(e) Proposed framework
(non-adaptive).

(f) Image-adaptive
framework.
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Conclusions

1 Color super-resolution framework that simultaneously exploits spatial
and amplitude information

Novel chrominance regularization

Image-adaptive selection of optimization parameters

2 Constrained convex optimization framework

Tractable algorithms.
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Thank you

Questions?
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Backup Slides
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High-pass filter constraints for gradient operators

H(ω1, ω2) =
∑∑

(n1,n2)∈R

h[n1, n2]e
−jω1n1e−jω2n2 .

Back
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Quantitative comparison of performance

Ji = 10

[

log

(

∑K

k=1
‖y −DBTkxi‖2

∑K

k=1
‖y −DBTkx‖2

)

+ (1− β) log
ρL(xi)

ρL(x)
+ β log

ρC(xi)

ρC(x)

]

Comparison with three competitive methods:

1 i = 1 : αL with l1-norm
11

2 i = 2 : αL with l2-norm
12

3 i = 3 : luminance and chrominance separately13

J > 0 ⇒ dB gain using proposed approach; J < 0 ⇒ competitive method

better.
Image J1 J2 J3

(a) 0.182 1.599 16.469
(b) 7.900 6.562 26.856
(c) -0.493 -1.153 17.711
(d) 0.404 -0.979 12.196
(e) 7.902 4.674 21.647
(f) 7.222 5.260 20.804
(g) 9.806 8.388 21.588
(h) 7.857 6.208 25.863
(i) 12.110 10.899 27.805

11
Farsiu et al., IEEE Trans. Image Process., 2006

12
Menon et al., IEEE Trans. Image Process., 2009

13
Vandewalle et al., SPIE 2007
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