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Abstract. Panorama stitching of sparsely structured scenes is an open
research problem. In this setting, feature-based image alignment meth-
ods often fail due to shortage of distinct image features. Instead, direct
image alignment methods, such as those based on phase correlation, can
be applied. In this paper we investigate correlation-based image align-
ment techniques for panorama stitching of sparsely structured scenes.
We propose a novel image alignment approach based on discriminative
correlation filters (DCF), which has recently been successfully applied to
visual tracking.
Two versions of the proposed DCF-based approach are evaluated on two
real and one synthetic panorama dataset of sparsely structured indoor
environments. All three datasets consist of images taken on a tripod
rotating 360 degrees around the vertical axis through the optical cen-
ter. We show that the proposed DCF-based methods outperform phase
correlation based approaches on these datasets.

Keywords: image alignment, panorama stitching, image registration,
phase-correlation, discriminative correlation filters

1 Introduction

Image stitching is the problem of constructing a single high resolution image
from a set of images taken from the same scene. We consider panorama stitching,
the process to merge images taken by a camera fixed on a tripod and rotated
about its vertical axis through the optical center. This procedure is visualized
in Figure 1. A panorama stitching pipeline usually contains three major steps:

1. Camera calibration: estimate of the camera parameters.
2. Image alignment (or image registration): compute the geometric transfor-

mation between the images.
3. Image stitching and blending: transform all the images to a new coordinate

system and blend them to eliminate visual artefacts.

Mobile applications and desktop software for panorama images are usually de-
signed to produce visually good results, and therefore focus on the third step.
However, the exact estimation of the transformation is required in increasingly
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Fig. 1. Left: Visualization of an incorrect image registration output. The blue lines
represents the optical axis for each image and the green line represents the vertical
axis around which the camera is rotating. In this panorama the top-most image is
misaligned with respect to the others. This will greatly reduce the visual quality of the
panorama and generate errors in the camera extrinsic parameters. Center: Resulting
image alignment using POC for an image pair in our Synthetic dataset. In this case the
images are clearly misaligned. Right: Image alignment result of the same image pair
using the proposed DFC-CN method. In this case, the alignment is correct and does
not contain any visual artefacts.

many fields, including computer graphics (image-based rendering), computer
vision (surveillance applications, automatic quality control, vehicular systems
applications) and medical imaging (multi-modal MRI merging). In this paper,
we therefore investigate the problem of image alignment for panorama stitching.

Image alignment methods can be divided into two categories, namely fea-

ture based methods and direct (or global) methods [19, 24, 4]. The feature-based
methods work by first extracting descriptors from a set of image features (e.g.
points or edges). These descriptors are then matched between pairs of images
to estimate the relative transformation. Direct methods instead estimate the
transformation between an image pair by directly comparing the whole images.
Feature based methods often provide excellent performance in cases when there
are sufficient reliable features in the scene. However, these methods struggle and
often fail in sparsely structured scenes, i.e. when not enough distinct features
can be detected. We find such cases, for example, in indoors scenarios, where
uniform walls, floors and ceilings are common, or in outdoor panoramas, where
sky and sea can dominate. In this work, we tackle the problem of image align-
ment for panorama stitching in sparsely structured scenes, and therefore turn
to the direct image alignment methods. Since our camera is rotating of small
angle the transformation between two consecutive images can approximated as
a translation in the image plane. Given this assumption we restrict our investi-
gation to phase correlation approaches [17, 11]. This approach is usually robust
against sparsely structured images. However, it is desirable that an alignment
method is robust to the perspective distortions caused by the rotation around
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the vertical camera axis. Recently, Discriminative Correlation Filter (DCF) [3,
9, 14, 8] based approaches have successfully been applied to the related field of
visual tracking, and have achieved state-of-the-art results on standard tracking
benchmarks [23, 16]. These methods have shown robustness to many types of
distortions and changes in the target appearance, including illumination varia-
tions, in-plane rotations, scale changes and out-of-plane rotations [9, 14, 8]. The
multi-channel DCF approaches also provide a consistent method of utilizing
more general image features, instead of just relying on grayscale values. We
therefore investigate to what extent DCF based methods can be used for the
image alignment problem in panorama stitching.

1.1 Contributions

In this paper, we investigate the image alignment problem for panorama stitch-
ing in sparsely structured scenes. For this application, we evaluate four different
correlation-based techniques in an image alignment pipeline. Among phase cor-
relation approaches, we evaluate the standard POC method and a regularized
version of POC developed for surveillance systems [11].

Inspired by the success of DCF-based visual trackers, we propose an image
alignment approach based on DCF. Two versions are evaluated: the standard
grayscale DCF [3] and a multi-channel extension using color names for image rep-
resentation, as suggested in [9]. Image alignment results for these four methods
are presented on three panorama stitching datasets taken in sparsely structured
indoors environments. We provide quantitative and qualitative comparisons on
one synthetic and two real datasets. Our results clearly suggest that the proposed
DCF-based image alignment methods outperform the POC-based methods.

2 Background

Image alignment is a well-studied problem with applications in many differ-
ent fields. Image stitching, target localization, automatic quality control, super-
resolution images, multi-modal MRI merging, are some of many applications that
use registration between images. Many techniques have been proposed [19][24][4]
in the last decades. Image alignment methods can be divided in two major cat-
egories.

2.1 Feature based methods

The feature-based methods mostly vary in the way of extracting and matching
the features in an image pair. After the corresponding features have been found,
a process of outlier removal is used to improve robustness to false matching.

The estimation of the geometric transformation is usually computed from
the corresponding features using Direct Linear Transformation and then refined
using bundle adjustment techniques. A classical example of a feature-based reg-
istration approach is Autostitch [5, 6] (a panorama stitching software).
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Feature-based methods often fail to perform accurate image alignment in
sparsely structured scenarios or when the detected features are unevenly dis-
tributed. In such cases, direct methods are preferable since they utilize a global
similarity metric and do not depend on local features.

2.2 Direct methods

Direct methods can be divided into intensity-based and correlation-based ap-
proaches, depending on the kind of similarity measure (or error function). The
sum of square difference (SSD) and the sum of absolute differences (SAD) be-
tween the intensity values of the pixels of two images, are two intensity-based
similarity metrics. Correlation-based approaches compute a similarity score using
a “sliding window” procedure. Among these normalized cross correlation (NCC)
computes the scalar product of two image windows and divides it by the product
of their norms. Given the error (or score) function, various techniques can be
applied to find the optimum, such as, exhaustive search of all possible align-
ments, which is prohibitively slow, hierarchical coarse-to-fine techniques based
on image pyramids, which suffer from the fact that image structures need not be
on the same scale as the displacement, and Fourier transform-based techniques.
The latter techniques are based on the shift theorem of the Fourier transform,
the correlation between two images is computed as the multiplication of the first
with the complex conjugate of the second one. If the images are related by a
translation, phase correlation technique [17], estimates the shift between them
by looking for the peak in the inverse Fourier transform of the normalized cross-
power spectrum. The normalization is introduced since, it significantly improves
the peak estimation with respect to using the cross-power spectrum [15].

For image alignment, this latter technique is preferable, since it uses all the
information available in the image. Given two images that differ just by a trans-
lation, POC is a simple and robust technique for retrieving the displacement
between them. Therefore, we consider this class of techniques in the present pa-
per and suggest a novel approach to image alignment. We propose to use MOSSE
[3] and its colornamespace-extension, that have recently been show to perform
best on tracking of local regions [9].

2.3 Related Work

The phase correlation method is a frequency domain technique used to estimate
the delay or shift between two signals that differ only by a translation. It is based
on the shift theorem of the Fourier transform and determine the location of the
peak in the inverse Fourier transform of the normalized cross-power spectrum.
It is usually applied in motion estimation applications, since it is very accurate
and robust to illumination variation and noise in the images. Many versions have
been proposed during the years [4, 19, 24]. However, phase correlation for image
alignment was first introduced by Kuglin and Hines [17], who compute the dis-
placement as the maximum of the inverse Fourier transform of the normalized
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cross-power spectrum between the two images. The drawback was that the re-
covered translation has pixel accuracy only. Subpixel precision techniques, were
later introduced for improving the peak estimation, using fitting functions [12,
20], or finding approximate zeros of the gradient of the inverse Fourier transform
of the normalized cross-power spectrum [1], which is more robust against border
effect and multiple motions. Foorosh [12] suggested to prefilter the phase differ-
ence matrix to remove aliased components (generally at high spatial frequencies),
but filtering must be adjusted to each image and sensor. Phase correlation can
also be used to estimate other image transformations than pure translation,
such as in-plane rotation and scale between two images [10]. Other techniques
are based on the Log-polar transformation, since it is invariant to rotation and
scaling. Used in combination with correlation, it can robustly estimate scale and
in-plane rotations [22]. Chen et al. [7] propose a solution for rotated and trans-
lated images that computes Fourier-Mellin invariant (FMI) descriptors. Among
all the variants that use phase correlation, Eisenbach et al. [11] implemented
a regularized version based on the noise of the image for surveillance system
application.

Phase correlation does not decrease the efficiency depending on the baseline
between the images (if they consistently overlap), moreover it is robust against
sparsely structured images where feature-based methods fail to detect features.
Among all the available phase correlation techniques, we choose the original
phase correlation algorithm (POC) [17] and the regularized phase-only correla-
tion version [11].

Recently, discriminative correlation filter based methods [3, 9, 14, 8] have suc-
cessfully been applied to visual tracking. They have shown to provide excellent
results on benchmark datasets [23, 16], while operating above real-time frame
rates. These methods work by learning an optimal correlation filter from a set of
training samples of the target. Bolme et al. proposed the MOSSE tracker [3]. Like
standard POC, it only employs grayscale images to estimate the displacement
of the target. This method has however been extended to multi-channel features
(e.g. RGB) [9, 14, 8]. Danelljan et al. [9] performed an extensive evaluation of sev-
eral color representations for visual tracking in the DCF-based Adaptive Color
Tracker (ACT). In their evaluation it was shown that the Color Names (CN)
representation [21] provided the best performance. In this work, we therefore
investigate two DCF-based methods for the problem of image alignment. First,
we evaluate the standard grayscale DCF method (MOSSE) and second, we em-
ploy the color name representation used in the ACT tracker in the multi-channel
extension of the standard DCF.

3 Method

In this section we present the the evaluation pipeline for the image alignment and
the methods investigated. The images are assumed to have been taken from a
camera fixed on a tripod. Between each subsequent image, the camera is assumed
to have been rotated around the vertical axis through the optical center. The
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Fig. 2. Representation of the geometrical relation between the angle α and the dis-
placement d.

rotations are further assumed to be small enough such that two subsequent
images have a significantly overlapping view of the scene, at least 50%. We also
assume known camera calibration and we, therefore, work on rectified images to
compensate for any lens distortion.

3.1 Image Alignment Pipeline

Our image alignment pipeline contains three basic steps that are performed in
an iterative scheme. Given a pair of subsequent images u and v, the following
procedure is used:

1. Estimate the displacement d between the images u and v using an image
alignment method.

2. Using the displacement d, estimate the 3 × 3 homography matrix H, that
maps the image plane of v to the image plane of u.

3. Warp image v to the image plane of u using the homography H.
4. Iterate from 1. using the warped image as v.

Fig. 2 shows a geometrical illustration of the displacement estimation d. O is
the common optical center of images u and v, which is projected, respectively,
in Ou and Ov. Ouv consists in the intersection of the optical axis of u with
the image v. The translation between the images is identified as the distance
between Ouv and Ov. The evaluated image alignment methods used to estimate
this displacement, are described in Section 3.2 and 3.3. Given an estimate of
the displacement d between the image pair, we can calculate a homography
transformation H between the images using the geometry of the problem. Since
the camera rotates about the vertical axis through the optical center, the angle
α of rotation can be computed as:

α = tan−1

(

d

f

)

. (1)

Here, f is the focal length of the camera. The homography H between the two
images can then be computed as

H = KRαK
−1. (2)
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Here, K is the intrinsic parameter matrix and Rα is the rotation matrix corre-
sponding to the rotation α about the vertical axis

Rα =





cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)



 . (3)

The presented iteration scheme is employed for two reasons. First, it is known
that correlation-based methods are biased towards smaller translations due to
the fact that a windowing operation and circular correlation is performed. Sec-
ond, the initial estimate of the displacement is affected by the perspective distor-
tions, since the correlation-based methods assume a pure translation transforma-
tion between the image pair. However, as the iterations converge, the translation
model will be increasingly correct since the image v is warped according to the
current estimate of the displacement. Hence, the estimation of the rotation angle
is refined with each iteration. In practice, we noticed that the methods converge
already after two iterations in most cases. We therefore restrict the maximum
number of iterations to three.

3.2 Phase Only Correlation

The phase correlation method is a frequency domain technique used to estimate
the delay or shift between two copies of the same signal. This technique is based
on the shift properties of the Fourier transform and determines the location of the
peak of the inverse Fourier transform of the normalized cross-power spectrum.
Consider two images u and v such that v is translated with a displacement
[x0, y0] relative to u:

v(x, y) = u(x+ x0, y + y0) (4)

Given their corresponding Fourier transforms U and V , the shift theorem of the
Fourier transform states that U and V differ only by a linear phase factor

U(ωx, ωy) = V (ωx, ωy) · e
i(ωxx0+ωyy0) (5)

where ωx and ωy are the frequency component of the columns and the row of
the image. The correlation response s of the normalized cross-power spectrum
of U and V is computed from its inverse Fourier transform:

s = F
−1

{

U∗ · V

| U∗ · V |

}

(6)

where U∗ represents the complex conjugate of U and · denotes the point-wise
multiplication. The displacement is then computed as the maximum of the re-
sponse function. In the ideal case, the inverse Fourier transform of the normalized
cross-power spectrum is a delta function centered at the displacement between
the two images. A regularized phase correlation version can be found in Eisen-
bach et al. [11], where the response is computed by regularizing the phase corre-
lation using a constant λ. This parameter should be in the order of magnitude
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of the noise variance in the individual components of the cross spectrum V ·U∗:

s = F
−1

{

U∗ · V

| U∗ · V | +λ

}

(7)

3.3 Discriminative Correlation Filters

Recently, Discriminative Correlation Filters (DCF) based approaches have suc-
cessfully been applied to visual tracking and have obtained state-of-the-art per-
formance on benchmark datasets [16, 14]. The idea is to learn an optimal corre-
lation filter given a number of training samples of the target appearance. The
target is then localized in a new frame by maximizing the correlation response of
the learned filter. By considering circular correlation, the learning and detection
tasks can be performed efficiently using the Fast Fourier transform (FFT). The
tracker implemented by Bolme et al. [3], called MOSSE, uses grayscale patches
for learning and detection, and thus only considers luminance information. Mul-
tidimensional feature maps (e.g. RGB) [13, 2] generalize this approach, where
the learned filter contains one set of coefficients for every feature dimension.

In the application of image alignment, we are only interested in finding the
translation between a pair of images. The first image is set as the reference train-
ing image used for learning the correlation filter. We consider the D-dimensional
feature map component uj with j ∈ {1, . . . , D}. The goal is to learn an optimal
correlation filter fj per feature dimension that minimizes the following cost:

ε =

∥

∥

∥

∥

∥

D
∑

j=1

fj ⋆ uj − g

∥

∥

∥

∥

∥

2

+ λ

D
∑

j=1

∥

∥fj
∥

∥

2
. (8)

Here, the star ⋆ denotes circular correlation. The first term is the L2-error of
the actual correlation output on the training image compared to the desired
correlation output g. In this case, g is a Gaussian function with the peak on
the displacement. The second term is a regularization with a weight λ. The
considered signals fj , uj and g are all of the same size, corresponding to the
image size in our case. The filter that minimizes the cost (8) is given by

Fj =
G∗ · Uj

∑D

k=1 U
∗

k · Uk + λ
. (9)

Here, capital letters denote the discrete Fourier transform (DFT) of the corre-
sponding signals.

To estimate the displacement, the correlation filter is applied to the feature
map v extracted from the second image. The correlation response is computed
in the Fourier domain as:

s = F
−1







D
∑

j=1

F ∗

j · Vj







= F
−1

{

G ·

∑D

j=1 U
∗

j · Vj

∑D

j=1 U
∗

j · Uj + λ

}

(10)
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Fig. 3. Left: Sample image from the Synthetic dataset. Center: Sample images from
the Lunch Room Blue dataset. Right: Sample image from the Lunch Room dataset.

The displacement can then be found by maximizing s.
The multi-channel DCF provides a general framework for incorporating any

kind of pixel-dense features. Danelljan et al. [9] recently performed an evaluation
of several color features in a DCF based framework for visual tracking. In their
work it was shown that the Color Names (CN) [21] representation concatenated
with the grayscale channel provides the best result compared to several other
color features. We therefore evaluate this feature combination in the presented
DCF approach. We refer to this method as DCF-CN.

Eq. 10 resembles the procedure (6) used for computing the POC response.
However, two major distinctions exist. First, DCF employs the desired correla-
tion output g, which is usually set to a Gaussian function with a narrow and
centered peak. In standard POC the desired response is implicitly considered
to be the Dirac function. In the DCF approach g acts as a lowpass filter, pro-
viding a smoother correlation response. The second difference is that the cross-
correlation is divided by the cross power spectrum in the POC approach. In the
DCF method, the cross-correlation is instead divided by the power spectrum
of the reference image. For this reason, DCF is not symmetric but depends on
which image that is considered the reference.

4 Experiments

In this section we present the datasets we use and the evaluation of the image
alignment methods in our pipeline.

4.1 Datasets

As far as we know, no dataset with sparsely structured scene were public avail-
able, then we acquired the following three datasets1.

1 http://www.cvl.isy.liu.se/research/datasets/panorama-dataset/index.html
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Synthetic dataset: consists of 72 images of a room rendered with Blender 2

with a resolution of 1280 × 1920 px. Intrinsic parameters were retrieved from
Blender and the camera is rotating by 5 degrees between consecutive images.
This dataset depicts an almost sparsely structured scene.
Lunch Room Blue: consists of 72 images acquired with a Canon DS50 and
perspective lenses with a resolution of 1280× 1920 px at poor light condition.
Lunch Room: consists of 72 images acquired with a Canon DS70 and wide
angle lenses Samyang 2.8/10mm (about 105 degree of field of view), with a res-
olution of 5740× 3780 px.
For the image acquisition of the real datasets, a panorama head was used to
approximate a fixed rotation of 5 degrees around the vertical axis about the op-
tical center of the camera. These datasets were acquired in the same room with
different light conditions. They naturally contain more structure than the syn-
thetic images. We have tested all methods on rectified images to remove lenses
distortion effects. Figure 3 shows sample images for the three dataset used.

4.2 Results and discussion

We compare four different correlation-based methods: phase correlation (POC)
[17], regularized phase correlation (RPOC) [11] and discriminative correlation
filter (DCF-CN) with and without (DCF) the color names representation [3,
9]. For reference, a state-of-the-art feature-based approach for panoramic image
stitching has been included [18]. The results are shown using three different
evaluation metrics. Table 1 I shows the standard deviation of the estimated
angles compared from the reference angle of 5 degrees. Table 1 II shows the
success rate of the four methods on the three dataset. An estimated angle is
considered to be an inlier (and therefore a success) if the error is smaller than a
threshold. The value for the threshold has been computed as the 95th percentile
of the absolute error on each dataset for all four methods. However, the threshold
is set to 2 degrees for the synthetic dataset. This is due to the high failure
rate of the POC methods on this particular dataset. Finally, Table 1 III shows
the average estimated angle in the three datasets when only considering the
successful estimates (inliers).

We observe that the proposed DCF based methods outperform the POC
methods in all three datasets. The achieved success rates (Table 1 II) in the
synthetic dataset clearly demonstrate that POC-based methods fail on the ma-
jority of cases. This is most probably due to the sparsity of visual structure in the
scene. In the same scenario, both DCF based methods provide a 100% inlier rate
and below 0.07 degrees in standard deviation. Among the successful estimates on
the synthetic dataset, the DCF based approaches still outperform the evaluated
POC methods. The average angle (Table 1 III) is correct within 0.01 degrees for
the DCF method. For the Lunch Room Blue dataset DCF and DCF-CN achieve
significantly lower standard deviations of 0.61 and 0.62 degrees respectively com-
pared to 1.41 for POC and 1.44 degrees for RPOC. Similarly, there is a clear

2 http://www.blender.org/
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Table 1. Results of each method for all three datasets. I: Standard Deviation of the
estimated angles from the reference angle (degrees). II: Inlier rate for the four methods
(threshold set at 95 percentile). III: Average inter-frame rotation in degrees (successful
cases).

Synthetic dataset Lunch Room Blue Lunch Room
I II III I II III I II III

Feature-based 0.95 98.63% 4.97 4.68 84.93% 5.04 0.86 94.52% 4.70

POC 2.52 31.94% 5.20 1.41 90.41% 5.41 0.56 97.22% 5.29

RPOC 2.47 41.67% 4.98 1.44 91.78% 5.19 1.57 87.50% 5.08

DCF 0.07 100.00% 5.00 0.62 98.63% 5.18 0.51 97.22% 4.97

DCF-CN 0.06 100.00% 4.99 0.61 98.63% 5.17 0.50 97.22% 4.98

difference in the inlier rate. On the Lunch Room dataset, the standard DCF and
DCF-CN achieve a slight improvement over normal POC, while RPOC provides
inferior results. Table 1 II shows that the DCF-based methods provide the same
inlier rate as POC. However, they perform better in terms of accuracy both in
standard deviation (Table 1 I) and mean angle estimation (Table 1 III). Table 1
II and Table 1 III show that the feature-based method performs well when is able
to retrieve reliable features. Nevertheless, we can notice that it is not as strong
as the DCF based methods. The success of the DCF based approaches is likely
due to its robustness to geometric distortions, which has previously been demon-
strated in the application of visual tracking. This property is largely attributed
to the desired correlation output g, which regularizes the correlation response
as discussed in Section 3.3. Moreover, our results indicate an improvement in
precision and robustness when using the color names representation instead of
only grayscale images in our DCF-based framework. Figure 1 Center and Right
show a comparison between the standard POC and the DCF using color names
representation on an image pair.

5 Conclusions

In this paper, we tackle the problem of image alignment for panorama stitching
in sparsely structured scenes. We propose an image alignment pipeline based on
discriminative correlation filters. Two DCF-based versions are evaluated on three
panorama datasets of sparsely structured indoor environments. We show that
the proposed methods are able to perform robust and accurate image alignment
in this scenario. Additionally, DCF-based methods are shown to outperform the
standard and the regularized phase-correlation approaches.

Future work will consider extending our evaluation with other panorama
datasets of even more challenging scenarios. We will also look into generalizing
our image alignment pipeline for more general image mosaicking problems.

Acknowledgments: The authors thank Andreas Robinson for providing the
synthetic dataset. Funding granted by the VPS project.
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