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Abstract- A system capable of analyzing image sequences of 

human motion is described. The system is structured as a 

·feedback loop between high and low levels: predictions are 

made at the semantic level, and verifications are sought at 

the image level. The domain of human motion lends itself to 

a model-driven analysis, and the system includes a detailed 

model of the human body. All information extracted from the 

image is interpre ted through a constraint network based on 

the structure of the human model. A constraint propagation 

operator is defined and its theoretical,properties 

developed. An implementation of this operator is described, 

and results of the analysis system for a short image 

sequence are presented. 

Index Terms- motion, time-varying images, human motion, 

constraint propagation, constraint networks, computer vision 
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1. INTRODUCTION 

Given a sequence of images of a human in motion, a 

computer system should be capable of following the motion in 

three dimensions and "understanding" or describing the 

motion in some form, tasks which are routinely accomplished 

by humans. We are building a system to perform this 

analysis of human motion based primarily on constraint 

propagation and high level prediction. We will show that 

together these techniques allow tracking of human motion 

with a minimum of image analysis. The emphasis in this 

paper will be on the propagation of constraints, which is 

shown to be a useful method for interpreting low level 

knowledge in accordance with a detailed world model. 

There is now a sizable body of literature on the 

analysis of time-varying images, and a number of survey 

articles (Martin and Aggarwal [33], Nagel [37], 

Scacchi (50]) have examined the work from the point of view 

of the techniques employed. In order to locate our research 

effort with the spectrum of previous work·, we will classify 

the research according to the domains of application studied. 

Since the task of building a system to analyze digital image 

sequences is a difficult one, researchers have been forced 

to restrict the problem iri various ways in order to make it 

tractable. There are four main dimensions which determine 

the complexity of a system which analyzes image sequences: 

(1) the complexity of the objects in the images; (2) the 

number of such objects; ( .3) the type of motions the objects 
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execute; and (4) the depth of understanding achieved by the 

system. As might be expected, there is a trade-off between 

these complexities in the current research, in that those 

who tackle the mar~ complex end of one nimension usually 

compromise on one or more of the other. At one extreme, the 

objects observed are simple point-like shapes: tachistoscope 

dots (Ullman (60]), biological cells (Levine (29], 

Futrelle (151}, and it is in just these cases where many 

objects can be handled simultaneously. When the objects 

become less point-like but still remain rigid inflexible 

bodies, then fewer objects are treated and the analyses 

become more complicated, usually involving occlusion. Such 

objects include automobiles (Nagel [3~], Jain and 

Nagel [26], Fennema and Thompson [12]), industrial parts 

(Neuman (39]), rocks (Eskenazi and Cunningham (11]), 

polygons (Aggarwal and Duda [1]), and polyhedra (Roach and 

Aggarwal [46], Chien and Jones [7]). The most complex 

objects, such as hearts (Schudy [51], Herman and Liu [22], 

Tsotsos [55], Yachida et al [65]), require complex shape 

analysis, and are always considered in isolation. 

The type of motions which have been studied include: 2D 

rigid motion without rotation (Levin [29], Futrelle [14], 

Potter 42], Chow and Aggarwal [8], Aggarwal and Duda (1]); 

2D rigid motion with rotation (Martin and Aggarwal [33]); 3D 

rigid motion without rotation (Roach and Aggarwal [46]); 3D 

rigid motion with rotation (Nagel [361, Jain and Nagel [26], 

Fennema and Thompson (12], Wallace and Mitchell [~2]); 3D 
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articulated rigid motion with rotation (Sadler [2], 

Rashid [43], Tsuji et al (58]); and various amorphous shape 

changes (Schudy [51], Herman and Liu [22), Tsotsos [55), 

Hernan and Jimenez [23]). 

Concerning the fourth complexity dimension mentioned 

above, the depth of understanding achieved by the system is 

related to the ability of the system to answer questions 

about the image sequence and the scope of the allowed 

quesitons. Much of the recent research has been concerned 

mainly with segmentation and tracking, and so can only field 

a limited set of questions. However, a few research efforts 

have attempted deeper descriptions, usually employing a 

linguistic approach for representing motion .concepts 

(Sadler [2], Tsuji et al [57], Herman [20] [21], 

Tsotsos (56 1) • 

The domain we have chosen to examine is that of ~uman 

motion. The human body is an extremely complex object, 

being highly articulated and capable of a bewildering 

variety of motions. Rotations and twists of the body parts 

occur in nearly every movement, and various parts of the 

body continually move into and out of occlusion. Therefore 

our domain is far along the first (object) and third 

(movement) complexity dimensions. In order to keep the 

complexity within manageable limits, we will simplify the 

domain of the second complexity dimension by only 

considering a single human in an environment devoid of other 

objects (except for the ground or floor). For the fourth 
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dimension of complexity, we hope to eventually achieve 

rather deep semantic understanding of human motion (see 

Badler and Smoliar [5] for an indication of our goals), but 

the results presented in this paper only show a rather 

modest understanding. 

Most of the work to date in computer analysis of 

time-varying images has attempted to reach high-level 

understanding by building on the results of low-level 

processing. This bottom-up approach is especially suited to 

the analysis of real-world scenes, where some primitive 

change detection and region segmentation is usually 

necessary for any further analysis (for example, Fennema and 

Thompson [12], Nagel [36], Jain and Nagel (26], 

Potter [44]). One of the reasons we have chosen to study 

the domain of human motio~ is to investigate a top-down 

approach to analysis. 

The human body has a well-defined structure which can be 

encoded into a model. In our system, we use a model of the 

human body as a type of detailed frame (Minsky [341) or 

schema (Neisser [38], Hayes [19]). All of the information 

we gather from the image will be interpreted in terms of the 

model of the body, and the model will be used to predict or 

anticipate future positions of the body. Low level image 

processing is relegated to a rather minor role in our 

system, not because it is unimportant, but because we wish 

to concentrate on the high-level aspects of motion 

perception. 
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In the next section we present an overview of our 

system, and in Section 3 the human model is briefly 

discussed. A theoretical basis for constraint networks and 

propagation is developed in Section 4, and our 

implementation described. Section 5 presents the results of 

the motion analysis system on a test image sequence, and 

future work is outlined in Section 6. 
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2. SYSTEM OVERVIEW 

We will use the term high level to describe the semantic 

level involving the 3D scene domain and object models, and 

the term low level to mean the signal level involving the 2D 

gray-scale picture domain (see Kanade (27]). In terms of 

this distinction, our system can be described as consisting 

of four main components or processes: prediction, 

simulation, image analysis, and parsing. As shown in 

Figure 1, the prediction component operates at the high 

level, and the image analysis takes place at the low level. 

The simulation serves to convert from high to low, and the 

parsing component interprets low level nata as higher level 

concepts. 

Note that the model is depicted as sitting in the middle 

and influencing all the o~her components. Each of these 

four components will now be described in some detail, and 

the role of the model in each outlined. 

A. Image Analysis 

The image analysis component is the only process which 

actually looks at the image. The input to this component is 

a list of picture areas where various body features are 

predicted to appear. (The generation of this input will be 

described later.) Using these predicted regions as a guide, 

the image analysis module searches the image for certain 

body features, employing various feature detectors. Notice 
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that the image has not been preprocessed to segment it into 

regions, or detect edges, or any other such low level 

processing. This type of processing is done only when 

needed, and then only within the area predicted for a 

particular feature. In effect, we are processing the image 

via "successive glimpses" (Hochberg [24]) similar to human 

saccades. With each glance, some feature detector is 

applied within the predicted image region for that feature, 

and if it is successful, the region within which the feature 

is understood to lie becomes smaller (than the predicted 

region). This new k'·nowledge is immediately fed to the 

constraint propagation mechanism, which infers the spatial 

consequences of the knowledqe. Generally, · the result will 

be a further reduction of the areas where other body 

features may appear, which reduces the search space for 

these features. 

It could happen, however, that the constraint 

propagation reveals that the knowledge just passed to it is 

inconsistent with the previously predicted and/or determined 

locations of the entire network of features. The usual 

method of handling such inconsistencies is to initiate some 

type of backtracking, eventually resulting in some alternate 

* choices made or hypotheses postulated. Our approach, 

however, is to simply terminate the analysis of the current 

image when an inconsistency is detected, and attempt to 

*stahlman and Sussman [54) have developed this idea into 
an intelligent interactive tool for designing electronic 
circuits. 
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recover gracefully by passing as much useful information as 

possible to the next component, together with an indication 

that an error occurred~ The justification for this approach 

is: (1) it is difficult to determine exactly which 

observation or assumption is the cause of the inconsistency, 

and therefore, (2) backtracking can be very time-consuming, 

and finally, (3) the current image may be difficult to 

interpret, but future images may resolve the ambiguities and 

uncertainties. In effect, we allow for a moment of 

confusion, and hope that succeeding images will resolve 

matters. 

When the features have been localized to a small enough 

area (more on this later), or when no further progress can 

be made in analyzing the image, or when the process is 

aborted because of inconsistencies, the image analysis 

component passes its results onto the next stage. The 

output is in the same form as the input: a list of 3D 

regions where the various body features have been found to 

reside. If the analysis was at all successful, the output 

regions are substantially smaller than the predicted input 

regions. Informally, the amount of shrinkage represents the 

system's increase in knowledge from analyzing one imaqe 

frame. 

B. Parsing 

Over a number of cycles, the outputs of the image 

analysis phase constitute a stream of regions in space for 
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each fe~ture of interest. Each region represents the 

location in which the feature has been found to lie at a 

particular time. The "parser" fits these location-time 

streams with piecewise linear functions of time (see 

O'Rourke [4lj for details}. The model is used to choose the 

appropriate variables (linear or angular position, relative 

or absolute coordinates} to describe the motion of each 

feature. Each linear piece is consioered a movement 

primitive, in the sense that it describes a uniform 

continuous motion. Thus the parser converts the 3D spatial 

regions into primitive movement commands describing "chunks" 

of motion for the body parts. 

Although currently not implemented, we also intend to 

group together sequences of movement primitives which 

represent a repetitive pattern, similar to the approach of 

Sadler [2]. Such pattern recognition operating on movement 

primitives would reach a higher semantical level, and so 

would be more useful for prediction purposes. 

c. Prediction 

The prediction component operates entirely at the high 

level. It receives sequences of primitive movement commands 

which describe the observed motion, and it projects these 

commands into the future to predict the position of the body 

in the next frame. The usual method of extrapolating the 

commands is to simply continue them without change: if a 

rotation is being observed, then it is predicted to 
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continue. However, if some repetitive pattern has been 

recognized by the parser, such as walking and swinging of 

arms, the continuation of the repetition would be predicted, 

rather than just a continuation of the current movement. 

The ouput of the prediction stage is a set of movement 

comMands which will move the human body model into the 

predicted position. Note that the position itself is not 

the basis of the prediction, but the movement primitives. 

Our assumption is that predictions made at the semantic 

level will be more accurate and useful than those made at 

lower levels, and that the movement primitives have more 

semantic content than the raw positional data. (For a 

rather different approach to model-based prediction, see 

Futrelle and Speckert [16].) 

D. Simulation 

In order to translate the predicted movements into data 

that can be used by the image analysis component, the 

movements are simulated by a human movement simulator. This 

simulator will execute each movement by actually moving the 

indicated body part as specified by the movement commands. 

The simulator embodies extensive knowledge of the human body 

and how it may move. For example, it will not move any limb · 

beyond the limitations of its associated joint, nor will it 

move one body part through another. The simulator 

understands about gravity, and will attempt to keep the body 

model in balance (see Sadler et al [3] for further details). 
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The simulator can also interpret inconsistent commands, 

in the sense that it will attempt to reacb some compromise 

among the possibly conflicting commands it receives from the 

prediction stage. This means that the prediction module 

does not have to take into account the myriad restrictions 

and details of human movement: the simulator will act as a 

filter on the commands. 

The output of the simulator is a particular positional 

configuration of the human body. The location of each 

feature of the body is precisely determined by this 

position. However, prediction errors arise from two causes: 

(1) the amount of time the prediction is extrapolating into 

the future, coupled with the acceleration abilities of the 

body, and (2) the uncertainty of the previous analysis. To 

account for these errors, each feature is predicted to lie 

within some spatial region surrounding its exact location in 

the positioned model. These regions are then fed to the 

image analysis component, which uses them to guide the 

search for the features in the next frame. 
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3. HUMAN MODEL AND SIMULATOR 

A. Human Model 

In this section we describe the structure of the human 

model and the basic capabilities of the human motion 

simulator. The description of any aspects of the model 

which bear on constraint propagation ~ill be defered until 

the next section. 

The human model contains all of the system's "world 

knowledge" about the human body (Sadler et al r4]). It is 

composed of segments and joints linked together into a 

tree-structured skeleton. A joint is a unique point 

connecting two segments (sliding joints are not permitted). 

A segment is an abstract rigid body with an associated 

embedded coordinate system. Each segment may have a number 

of joints located at fixed points within its coordinate 

system. Each segment moves rigidly; the only articulation 

permitted is at the joints. Our current model consists of 

24 segments and 25 joints. The "flesh" or surface of each 

segment is defined by a collection of graphical primitives 

located at fixed positions within the segment's coordinate 

system. Currently we are using spheres as our primitive, 

resulting in the model shown in Figure 2 (see 

O'Rourke [40]). 

The human model incorportates two fundamental 

restrictions on the motions it may execute: angle limits and 

collision detection. Each pair of segments connected by a 
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jont are only permitted to have certain orientations with 

respect to one another, expressed as limits on angles at the 

joint. Also, the model includes a method of detecting 

collisions between non-adjacent segments, which can be used 

to prevent one segment from passing through another (see 

Badler et al [4]). 

The human model is located within a global coordinate 

system, which also includes a camera. All of the parameters 

of the camera model are assumed to be known; only the 

position and orientation of the human body are unknown (in 

contrast to the approach of Roach and Aggarwal (4G]). 

The camera model together with the human body model 

allows us to take pictures of the model. Together with the 

simulator described below, this gives us the capability of 

producing simulated motion sequence films, which we have 

used as input to our analysis system. 

B. Simulator 

The simulator moves the human body model in response to 

certain movement commands based on human movement notations 

(Badler and Smoliar [5]). These are eventually executed by 

five basic movement primitives: MOV~, ROTATE, BEND, TWIST, 

and TOUCH. The simulator accepts a stream of movement 

commands, and "executes" them by positioning the body in 

accordance with the commands. Conceptually, the monitor. of 

the sioulator sends each command to appropriate joint 

processors, which then process · the commands in parallel. In 

13 



practice, the commands have to be scheduled according to 

their scope and the hierarchy of the body, and executed 

serially. The details of this process are described more 

fully in Badler et al [3]. 

Only the most rudimentary capabilities of the simulator 

are currently used in our analysis system. The most 

important aspect of the simulator for the purposes of this 

paper is that it will always position the body in a legal 

achievable position, and this position is, in some sense, 

the one which most nearly or naturally achieves the goals of 

the movement commands driving the simulator. 
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4. CONSTRAINT PROPAGATION 

A. Background 

When the image analysis component of our system begins 

to examine the low level information of the actual image, 

high level knowledge has already been applied to produce a 

predicted position of the body. However, if there were no 

further interaction between the high and low levels, a great 

deal of power and flexibility would be lost. Every time a 

body feature is located in t~e image, the location of other 

features are constrained by the structure of the human body. 

We would like to exploit these constraints to aid the image 

analysis component in finding other features. 

Our main tool for eMploying knowledge of the human 

body's structure in low level analysis is a method of 

propagating constraints through a network. The features of 

the body are connected into a network describing the 

relationships or constraints between the features. Each 

time a feature is determined to lie within an area of the 

image, this constraint is propagated throughout the network, 

reducing the regions where other body features may appear. 

The propagation is effected by a reduction operator whose 

properties are developed in Sections 4.2 and 4.3. Before 

describing our own work, however, we will first establish a 

setting for the discussion by a brief review of related 

literature. 

Although there has been some direct work on locating 
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objects in images via constraints (Ballard et al [6], 

Russel [49]), most of the research on constraint propagation 

has arisen out of the problem of determining a consistent 

labeling for a set of units constraining one another in some 

manner. This problem was recognized and dicussed with 

various degrees of explicitness in the early papers of 

Ullman (61], Guzman [17], Fikes [13], Clowes [101, and 

Huffman [25]. Waltz [63] developed the first system to 

employ these ideas extensively, and was able to "understand" 

a blocks world scene by labeling the edges and vertices of 

the blocks. Waltz developed an elegant "filtering" 

algorithm tp remove the inconsistent labels. Waltz's , 

algorithm removes only what Mackworth [31] calls "arc 

inconsistencies," that is, inconsistencies between two 

directly constrained nodes. Montanari [35] studied binary 

constraint relations in a general algebraic setting, 

developirig the idea of path consistency. Rosenfeld et 

al [47] further developed the notion of arc and path 

consistency, and extended these ideas. to parallel 

computation and fuzzy or probabilistic relations, and to 

relaxation techniques (Zucker [66]). More recently, 

Freuder [14] has shown how to synthesize the higher-order 

constraints (beyond path consistency), and Haralick and 

Shapiro [18] have placed the entire consistent labeling 

problem into a general setting using look-ahead operators. 

The one common assumption of all the above mentioned 

work is that the set of labels is finite. Thus all of the 



algorithms developed for finding consistent lahelings are 

methods of limiting the combinatorial search throuqh the 

space of possible labelings. Removing all of the 

inconsistent labels has in fact shown to be an NP-complete 

problem (Montanari [35], Freuder [14]), but the success of 

Waltz and others (e.g., Shneier (53], Shapira and 

Freeman [521) shows that many .cases are quite tractable. In 

our application, the analog to the "unii" or "node" of the 

labeling problem is a point in 3D space representing the 

location of a feature, and the analog of a set of "labels" 

is a region in space (a subset of R3 ) where the feature 

may lie. Thus our set of "labels" is infinite and 

continuous rather than finite and discrete. Of course one 

could discretize and bound space to force the allowable 

positions (and therefore labels) to be finite, but the very 

large size of the resulting finite sets rules out any direct 

application of the algorithms developed for finite sets of 

labels. We will see, however, that similar algorithms can 

be developed for the continuous case. In fact, in the next 

section we will develop an operator which achieves the 

analog of arc consistency for continuous spaces. 

B. Theory 

As mentioned in the previous section, the "units" of our 

problem are features of the human body, and the "labels" are 

regions of space. We will now establish the notation used 

throughout the remainder of the paper to discuss the 
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continuous constraint Propagation problem. 

The set of feature indices will be called 

J = {1,2, ••• ,n}, and subsets of this index set will be 

denoted by IC: J, with individual subscripts lower case. 

The cardinality of a set I will be written as III. The 

position in 3-space of feature i is Pi' 

Pi E R3 , where R3 indicates 3D Euclidean space. 

We will follow Freuder [141 in allowing subscripting by 

index sets, but we want the resulting object to be an 

ordered k-tuple rather than a set. Thus, if 

I = { i 1 , i 2 , ••• , i k} ~ J, then 

-- ... ... .... Pr = <P 1• rP 1• , ••• ,p 1• >, where 1 2 . . k 

i1 < i 2 < ••• < ik. A set of points for feature 

i will be written as Pi = {pi}, and in analogy with 

single vectors, we will write Pr for an ordered k-tuple 

of sets Pr =<Pi ,Pi , ••• ,Pi >. 
1 2 k 

Our goal is to define and develop the properties of a 

function which will take an initial set of regions (subsets 

of R3 ) for the features PJ and compute a subset of 

these regions which satifies a collection of constraint 

relations. The constraint relations are relntions between 

points or vectors, and will be denoted by r subscripted with 

the feature indices whose vectors are related by the 

constraint. We will consider each constraint relation a 

mapping from the appropriate space into 2 = {T,F}. Thus, 
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selects out a subset of R3 for the point pi. 

Similarly, 

and in general, 

A unary constraint simply specifies a subset of R3 

within which a feature may lie. A typical binary constraint 

is one specifying a range for the distance between two 

features: 

A tertiary constraint might express an angular limitation: 

- -and pk-Pi ~ is~ eijk• 

For each constraint ri, with III = k, we can define k 

functions, each of which oroduces the set of all possible 

positions of one feature, given the position of all of the 

other joints. Let I-i = {j I j E I and i I= j}. For each 

i € I define 

For example, the binary constraint rij (here I = {i,j}) 

gives rise to two functions: 
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i - {pi . I - - T} f .. ( <p. >) = r··{<p·,P·>) = 1J J 1 J 1 .. J 

fj, ·(<p·>) {p· I - - T}. = r· ·(<p.,p.>) = 
1J 1 J 1J 1 J 

Similarly, a unary constraint produces one function of no 

arguments, . and a tertiary constraint has three associated 

functions, each taking 2-tuples for arguments. Although 

these constraint functions operate on points, most of our 

calculations will be based on sets of points. We will 

therefore general~ze the functions to take tuples of sets of 

points for arguments, as follows: 

u 
...... 
PI . E PI . 

-1 -1 

_. - - -= {pi I r 1 (Pr) = T for some Pr with Pr-i E Pr-i}. (2) 

Here the notation pK E PK should be read as a 

shorthand for PJ<E X P·. For a binary relation 
i•IC 1 

rij' the function Ffj is 

and thus produces, according to constraint rij' the 

regions of space in which feature i may lie, given that the 

feature j is inside Pj• This qeneralization of the point 

constraints to sets of points weakens their discriminatory 

power, but it is a necessary step for the development of 

constraint propagation on infinite sets. 

In general, any one feature i may participate in a 
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number of constraint relations. We will let Ci(PJ) 

represent the intersection of the constraint regions 

generated by all constraint functions for feature i: 

Ci(PJ) = n F~(PI-i) 

If; J 

It is understood here that not every subset I has a 

corresponding constraint function FI, simply because 

there may not be any constraints relating the features 

indexed by I. One could consider all such functions to 

return the entire space R3. 

One simple property of the constraint functions which 

(3) 

will be useful later on is their monotonicity. In the case 

where F is the constraint function for a binary distance 

constraint of the form illustrated in equation (1), this 

property simply means that if some point in . space can be 

reached by a link when one end of the link is· confined to a 

region of space, then this point can also be reached if the 

end of the link is confined to a superset of the region. 

This is stated formally in the following lemma. 

Lemma 1. Each constraint function Fi (and 

therefore each Ci} is montotonic, i.e., if 

I 

P ' r~i s; Pl:-i, then 

Ff (P·I-i) ~ Ff (P'I-i) • 

.._; i / 
Proof: Let Pi£ FI(PI-i>· Then by the 

definition of F~, there is some Pr with 

- - . r 1 (P:t> = T and Pr-i E PI-i. But s1nce 
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, _. ' 
P1 _ 1 ~ Pr-i, we also have Pr-i ~ Pr-i. By 

definition of F again, this gives 

Pie Ff (P'r-i), which establishes the 

Lemma. 0 

We may n6w define our reduction operator R, which will 

take an n-tuple of feature regions PJ as an argument, 

and produce a subset of PJ which is more consistent with 

the qiven constraint relations. More precisely, R will 

intersect each feature's input region with the constraint 

regions generated by all features related to it, as follows: 

(4) 

This reduction function deletes feature regions which are 

inconsistent with related n~ighbors, and so will achieve 

(after repetition) the equivalent of Mackworth's arc 

consistency. 

We will now establish some simple properties of the 

reduction function defined by equation (4). The first and 

most obvious justifies the name "reduction". 

Theorem 1. R(PJ) ~ PJ. 

Proof: This follows immmediately from equation (4): 

R(PJ) is defined as PJ intersected with some set, 

and therefore the result must be a subset of PJ. 0 

A second simple but useful property of R is monotonicity. 

Theorem 2. R is monotonic: if PJ' ~ PJ, then 
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Proof: This follows easily from the definition of R 

(equation (4)) and Lemma 1, which establishes the 

monotonicity of the constraint functions. C 

Let us call an n-tuple of feature positions 

define a consistent configuration as a configuration which 

satisfies all of the constraint relatons. This notion 

corresponds to the idea of a "consistent labeling" as 

defined, for example, in Rosenfeld et al [47] or Haralick 

and Shapiro [18]. It is important that the ~eduction 

function not delete any consistent configurations. This is 

guaranteed by the next theorem. 

Theorem 3. If PJ is a consistent configuation, and 

PJ € P J, then pJ e R ( P J) • 

Proof: Let r
1 

be one narticular constraint relation, 

with I S J. Since PJ is a consistent configuration, 

ri <PI) = T. Therefore, \;/ i E I, 

i -fr<Pr-i) => P·. - - 1 -Because PJ E PJ, 

and from the definition of Ff (equation (2)), this 

- i implies that Pi e. FI (PI) "'i. Since this 

is true independent of the particular constraint relation, 

Pi € ci (PJ) \:1 i, which, from equation (4)' 

gives PJ E R (PJ). C 

This theorem implies that we can always be assured of 

including all consistent configur?tions if we start with the 
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entire space. This is stated in the following corollary. 

co r o 11 a r y • R m ( <R 3 , R 3 , ••• , R 3 > ) i n c 1 u des a 11 

consistent configurations for any m > 1. 

Proof: Immediate from Theorem 2. C 

We now look at the effect of applying the reduction 

function repeatedly. 

Theorem 4. lim Rm(PJ) exists for any PJ. 
lW\ .. 00 

Proof: This follows immediately from Theorem 1 and the fact 

that ~J = <~,~, •.• ,~> is a lower bound for PJ: 

~J ~ R(PJ) S PJ• 0 

In the case of discrete finite sets of labels, it is 

possible to prove that the limit in Theorem 4 can be reached 

after a finite number of applications of R (see for example 

Theorem 5 in Rosenfeld et al [47]). With infinite sets, 

this is not necessarily true, and it is important to 

characterize those constraint problems for which it is in 

fact true. Given a set of constraint relations, let us call 

the associated network of the relations the undirected graph 

with IJI nodes labeled by the feature index set J and an arc 

connecting i and j iff there is some constraint relation 

involving both features i and j. Whether or not the limit 

in Theorem 4 is reached after only a finite number of 

applications of R depends on whether or not the associated 

network is a tree. 

Under the above ctefinition of associate~ network, it is 
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clear that any relation involving three or more variahles 

will cause a cycle. Therefore, the network is a tree only 

when there are just unary and binary constraint relations. 

Unary constraints can be satisfied by reducing the 

corresponding regions once, and from then on these 

constraints have no further effect, so we will restrict our 

attention to the case where there are only hinary 

constraints (similar to Montanari [35]). 

We first need to establish that after one application of 

R, a leaf node no longer affects its (single) neighbor. 

Lemma 2. Let feature 1 be a leaf node of the associated 

network, so that there is only one constraint relation 

involving 1. Call this relation rlk' where k is l's 

neighbor in the network. Let 

Rm(PJ) = PJ(m). Then 

P (m) 
k V m > 1. Thus 

node 1 can not cause any reduction in node k's region after 

the first application of R. 

Proof: Since feature 1 is only related tofeature k, the 

definition of R (equation (4)) gives 

pl(m) = pl(m-1) n F~(pk(m-1)). 

Feature k, on the other hand, can be influenced by a number of 

other features inside the network, and so we will write 

P (m) 
k = pk (m-1) n F~ (Pl (m-1)) (\ G 

where G represents the constraint regions generated from all 
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of the other relations in which k is invnlved. We are 

trying to prove that if P'k e pk<m>, then 

pkeF~(Pl(m) ). By (6),_ 

P'k: E pk (m) imp1 i es 

and 

p (m-1) 
k 

Fk(P (m-1)) 
1 1 . 

By definition (equation (2)), equation (8) means that 

3 P'1 e 

such that 

p (m-1) 
1 

Equations (7) and (10) together imply 

F~(Pk(m-1)) 

and equations (9) and (11), together with (5), show that 

.. 
P1 P (m) 

1 • 

Finally, equations (12) and (10) imply that 

which completes the proof. 0 

With this Lemma, we can easily establish the following 

theorem. 

Theorem 5. If the associated network is a tree of 
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( 7) 

(8) 

(9) 

(10) 

(11) 
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diameter* d, then Rd is stable, that is, 

Proof: The proof will be by induction on d. Suppose d = o. 

Then the network consists of a single node and is trivially 

stable after 0 applications of R, since R is the identity if 

there are no constraint relations. 

Suppose then that the theorem is true for all trees of 

diameter d, and consider a network of diameter d+l. Apply R 

once to this network and then remove all leaf nodes (there 

are some leaf nodes since N is a tree), calling the new 

network N'. By the Lemma, this removal will not affect the 

subsequent development of the ne~work N'. Network N' has a 

diameter of d-1, and so by the induction hypothesis, it will 

stabilize after d-1 further applications of R~ We have now 

applied ~a total of l+(d-1) = d times, and we are certain 

that all of the internal nodes of ~ are stable. It only 

remains to show that the leaf nodes are also stable. 

Let 1 be a leaf node, and k its only neighbor. We want 

to prove that the (d+2)nd application of R will not affect 

node 1, i.e., that 

F~(Pk(d+l)) P (d+l) 
1 • 

Now, by the defintion of R (equation {4)), 

*The diameter of a tree is the number of edqes in the 
longest path contained in the tree. 
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Thus, ?
1 

E P
1 

(d+l) implies 

p 1 E F ~ ( P k ( 0 ) ) , but s i n c e node k 

stabilized after d applications, 

p (d) = Pk (d+l) and 
k 

PI € F~(Pk (d+l)). c 

If there is a single loop within the associated network 

of a constraint problem, then it is possible that there is 

no finite m for which Rm is stable. To prove this it is 

sufficient to show an example. The network shown in 

Figure 3 will never stabilize: each application of R will 

clip off one piece of one of the four regions, spiraling 

inwards in a manner reminiscent of a golden section 

construction. 

Let us define the solution tuple SJ for a constraint 

network to include all of the consistent configurations: 

= {~i I there is some consistent configuration with 
an ith component Pi}. 

If our initial set of regions include SJ, then repeated 

applications of the reduction function R will always produce 

a superset of SJ, but we have no guarantee that the 

supersets will be at all close to SJ. It would be 

useful if there were a method of approaching SJ 

arbitrarily closely. 

If the reduction function is applied to a single 

configuration, rather than a set of points, then it acts ns 
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a consistency or solution verifier, in the . sense that a 

consistent configuration will remain unchar ~ ed while an 

inconsistent configuration will have at least one of its 

components reduced to ~. If our spaces were discrete and 

finite, then applying R to every possible n-tuple of points 

would precisely qelimit the solution tuple s. In the case 

of continuous spaces, we can improve (or at least not 

worsen) our superset of S by fracturing the regions into 

pieces. If this fracturing process were carried to the 

limit, it would be equivalent to testing each n-tuple of 

points individually. This idea is employed by all the 

consistent labeling algorithms for finite sets; see, for 

example, Rosenfeld et al (47] or Haralick and Shapiro [18]. 

We first define the notion of combinatorial partition 

recursively: 

(1) The set {PJ} is a combinatorial partition of PJ. 

(2) If Q = {Q1 ,Q 2 , ••• } is a combinatorial partition 

of PJ, then a new combinatorial partition can be 

constructed from Q as follows: identify all tuples which 

have a common ith component Pi; call this set of 

tuples Q'. 

, n " p. p. = ~-
l l 

Let Q/Pi denote the set of all 

tuples in Q' hut with Pi replacing each ith 

component, and similarly for Q/P'i_. Then the 

following set is also a combinatorial partition of 

o' u Q';p'. 
1 

u 
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Thus each fracturing of. a region for a feature into two 

pieces requires adding all possible combinations of each 

piece with all the other regions. 

Theorem 6. If the reduction function is applied to each 

member of a combinatorial partition of PJ and the 

results unioned, this union will be a subset of R(PJ). 

Moreover, any consistent configuations in PJ will remain 

in this union. More precisely, if 

Q = {Ql,Q2, ••• ,Qk} is a combinatorial partition 

of PJ, and if the solution tuple is included in PJ, 

Proof: By Theorem 2, the function R is monotonic, and since 

each Qi is a subset of PJ by the definition of 

combinatorial partition, it follows that 

The remainder of the theorem follows from Theorem 3, which 

states that R never deletes a consistent confi~uration which 

is already present, and the observation that any particular 

configuration must be a member of one of the tuples in the 

combinatorial partition. 0 

c. Implementation 

The implementation of a constraint propagation network 
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turns on the choice of a ~rimitive for representing regions . 

of space. A review of the main definitional equations of 

the last section (equations (2), (3), and (4)) shows that 

only two operations are performed on spatial regions: 

generation of the constraint regions via the functions 

F~, and intersection of two regions. We have 

chosen to use orthogonal rectangular boxes as a primitive 

volume element: all the faces of the boxes are parallel to 

either the x-y, y-z, or x-z planes of a fixed Cartesian 

coordinate system. This primitive element is crude in many 

ways, but it has a number of distinct advantages: 

(1) A single box Bi can be represented succinctly: 5 

numbers are sufficient, 3 for the coordinates of each of 

two opposite corners: 

Bi ::= <(xmini,ymini,zmin 1 ), (xmax 1 ,ymax 1 ,zmaxi)>. 

(2) The intersection of two boxes is again a box. This is a 

cruciaily important property, and is not shared by any 

other simple volume primitive. 

(3) The intersection of two boxes can be easily computed: it 

requires only taking n maximums or minimums. If 

s 3 = a1 n B2 , then in the notation above, 

xmin 3 = max(xmin1 ,xmin 2 ) and 

xmax 3 = min(xmax 1 ,xmax 2 ), ann similarly for 

y and z. 

(4) Any closed subset of R3 can be represented as a 

union of rectangular boxes. 

In order to compute the effect of the reduction function 
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R (equation (4)), we must be able to compute the constraint 

regions Ci for each joint i (equation (3)), which in 

turn depends on the constraint functions F~ 

associated with each constraint relation ri. At this 

point we will specialize our analysis to binary constraint 

relations rij• Binary constraint relations (and not 

higher order relations) have the useful property that their 

associated constraint functions are homeomorphic with 

respect to the union operation, as stated in the following 

lemma. 

Lemma 3. If Pj = 

= F~ (p'.) U 
J J 

I II 

p]. u p., 
J . 

F~ (Jf'.) • 
J J 

then 

Proof: ~e will first show that an element of the left hand 

side of the above equation must also be an element of the 

right hand side. Let Let P· E Ft(P·). 
' 1 J J 

Then by definition of F~, there exists a 

Pj E Pj such that rij(<pi,pj>) = T. 

I II 

Since Pj = Pj U Pj, this P"j must be an 

, , 
element of Pj or Pj; let us say that 

Pj ~ Pj. Then, again by definition of F3, 

• I 

Pi E. Fj (Pj), and so is an element of the 

right hand side of the equation. 

The other direction of the proof is similar. 

be a member of the right hand side, say 

- i I p
1
· € F·(P·). Then there exists a 

J J - , -- -Pj E Pj such that rij(<pi,pj>) = T. But 

since Pj C Pj, Pj E Pj, and therefore 
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This lemma permits us to concentrate on defining the 

constraint functions for a single box; the value of F 

operating on a region described as a union of boxes can he 

computed by unioning the results of F on each individual 

box. 

We will specialize the discussion again, this time to a 

particular binary relation describing the distance between 

two points: 

If Bj is a box, then the constraint function associated 

with r · · is 
1] 

pt.(B·) = {'p. I .3PJ· such that dmin·. < I'P·-P·I < dmax .. }, 
1] J 1 1] 1 J 1] 

and represents the region of space which is reachable by 

rods with an end fixed inside Bj, where the lengths of 

the rods are between dminij and dmaxij• 

Unfortunately, this constraint region is not rectangular, 

but rather has some spherical surface sections. We can, 

however, make a conservative rectangular approximation, as 

is illustrated in Figure 4. The details of the computation 

of this approximation can be found in O'Rourke [43]. 

Once we have a method of generating the constraint 

regions via the F functions, and an algorithm for 

intersecting boxes, the reduction function R can be simply 

implemented as follows; 
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(1) For each joint i, compute Ci(PJ) by intersecting 

together Ffj(Pj) for all constraint 

relations involving joint i. 

(2) For each i, intersect Pi with Ci(PJ); the 

result is the new value of Pi. 

Normally the reduction function is applied repeatedly 

until the regions stabilize, that is, until a fixed point is 

reached. Theorem 5 guarantees that if the constraint 

network is a tree, then the number of applications can be 

easily computed. If there are cycles in the network, 

however, then some criteria must be applied to stop the 

iteration loop. We use a simple tolerance check, coupled 

with a maximum on the number of permitted repetitions. We 

have yet to encounter a case which required more than 15 

repetitions to stabilize within tolerance, and so slow 

convergence does not appear to be a problem. 

Figure 5 shows five "snapshots" of a portion of the 

constraint network of the body during constraint 

propagation. The first figure shows a stable network, and 

the succeeding figures follow the propagation caused by a 

shrinkage in the left wrist region as a result of image 

analysis. Eventually, the joints at the left elbow, 

shoulder, and clavicle, the center shoulder and neck, and 

the right clavicle and shoulder, are all affected by this 

change. After five applications of the reduction function 

R, the network is again stable. 
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6. RESULTS 

In this section we prAsent results of the complete 

analysis system operating on a short motion sequence. 

A. Description of Test 

Each image of the test sequence is 100 by 100 pixels, 

with 256 gray levels of resolution. The frame rate is 

nominally 5 frames/second. The images were produced with 

the human model and the human motion simulator. The 

segments representing the hands, feet, and head are colored 

a lighter shade of gray than the remainder of the body, 

giving the images something of the character of moving light 

displays (Rashid [45]). This is to enable a very simple 

type of "feature detection" based on the gray value of 

regions. It is recognized that this is not a very realistic 

feature detector (although the hands and face often stand 

out because they are flesh-colored), but it will serve to 

illustrate the functioning of the system. Each joint of the 

body is considered a "feature," even though many of them 

(such as the waist) have no outstanding visual 

characteristics. Only the hand, foot, and head joints are 

explicitly searched for in the image. 

There is one computational strategy used in the image 

analysis component which has not been previously described. 

The silhouette of the figure in the image is used as a 

"cookie cutter" on the predicted feature regions as the 

35 



first step of image analysis (see Weiler and Atherton [64]). 

A rectangular cover is computed for the figure, and this is 

extended in depth to produce a collection of boxes within 

which all body features must lie. This cover is then 

intersected with the predicted box for each feature, 

clipping them to project within the silhouette. 

B. Results of Test 

Figure 6 presents the input and output of the system for 

10 frames, every other frame for the first 20 frames (4 

seconds) of a test sequence. The images were produced by 

rotating the left arm, left leg, and right arm at various 

rates, and bending the torso towards the right and the head 

towards the left. Adjacent to each input image in the 

Figure is shown the output of the image analysis phase for 

that frame. Although the camera is viewing the human figure 

head on, the boxes are shown at an angle to illustrate their 

three dimensionality. Also, the centroids of each joint's 

collection of boxes are connected by dotted lines to show 

the network structure. 

Initially (time=O.O) the arms and legs are all vertical, 

and at time=0.2, it can be seen that movements of the wrists 

and left ankle have been detected. No movement has been 

detected in the knees or elbows, but when the simulator is 

commanded to move the joints to the detected positions, it 

finds it necessary to move the elbows and left knee in order 

to reach the position. Thus these joints are predicted to 
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move, and are properly tracked in later frames. 

For each frame, after the outline of the figure has been 

used as a "cookie cutter" on the predicted regions, and the 

constraint propagation has stabilized the network, the 

system decides whether the regions for certain features are 

already tight enough, or whether further analysis is needed. 

If the latter, then the feature detector is called and 

examines the image in the area covered by the feature's 

boxes, and any improvements in the feature's location are 

propagated via the constraint network. The example 

described in Section 4 and shown in Figure 5 is taken from 

the left hand analysis at time=l.6. 

The bend of the torso evident in the input images is a 

bit too subtle for the program to detect initially. Instead 

it tilts the head sidewards and dips the right shoulder. 

Eventually, however, the right_ hand pulls all the joints 

over, finally producing a torso bend at tiMe=2.~. Actually, 

the system bends the torso too much, which causes some 

confusion in the head area (time=3.0 to 3.8), but in later 

frames (not shown) the torso straightens up somewhat. 

Since all the motion in the input sequence was produced 

by rotation and bend commands to the simulator, and since 

the parser only worked with rectilinear motion (no angular 

representations), the program's description of the motion is 

inevitably not as parsimonious as it could be. 

Nevertheless, under the limiten capabilities, the 

description is reasonable. Figure 7 shows the findings of 
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the parser for one joint, the left wrist, together with the 

true position of that - joint in the input images. 

C. Discussion 

The example described above is a very simple test case: 

the motions exhibited are very limited -- no gross body 

movement, no motion in depth, and no occlusion. We feel, 

however, that more complex motions will be adequately 

handled by the same basic system. Gross body motion will 

not be difficult when all features are described in relative 

coordinate systems. Motion in depth requires a proper use 

of perspective projection; the boxes will then become 

cone-shaped objects. Occlusion will necessitate use of the 

collisi~n detection aspect of the simulator as well as the 

constraint network. 

The example was also a simple t~st in that the figure in 

the image and the internal model matched dimensions exactly, 

since the images themselves were made from the internal 

model. A less precise match c~n be accomodated very 

naturally by the constraint propagation mechanism. The link 

lengths between each pair of joints can be assigned a 

minimum of, say, the 5th percentile length among a 

population pool, and a maximum of. the 95th percentile 

length. Then the constraint propagation will naturally 

relax, after a number of cycles, to the true link lengths of 

the input figure, as long as they lie between the 5th and 

95th percentiles. 
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Even though the test sequence is simple, it does 

illustrate that the motion can be tracked without examining 

the entirety of each image. Note that at no point in the 

analysis do we difference two input images, or produce a 

picture of the model and subtract it from an image frame, or 

any other such expensive image processing technique. In 

fact, the results of this section were obtained by only 

looking at. about 20 percent of the pixels in each image 

frame. 
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7. CONCLUSIONS AND FUTURE WORK 

We have described a computer system capable of analyzing 

image sequences of human motion. The system operates as a 

feedback cycle between high level predictions and low level 

verifications and ahalysis. All computations and inferences 

are conducted in a three dimensional space; two dimensions 

are only used while accessing the image. The system is 

driven by a detailed model of the human body. The 

constraints implied by the body model are encoded into a 

constraint network which can propagate location information 

between various parts of the body. 

One area which we have yet to explore fully is the use 

of Theorem 6 to further reduce the regions of features in 

the constraint network. Occasionally, a region fractures 

into two rather distinct pieces, usually along the same line 

of sight but separated in the depth dimension. In these 

cases, a sizable reduction in the network may result from 

partitioning the region into two pieces and propagating with 

each separately, as justified by Theorem 6. Major 

improvements my also arise from exploiting the various 

resolution hierarchies within the system. The human model 

can be freed from its current fixed structure by defining a 

body part hierarchy, such that, for example, the arm 

includes the upper and lower arms and the hand, and the hand 

includes the fingers {see Clarke [9] and Marr .and 

Nishihara (32] for similar ideas). The system can then 
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switch to the appropriate level of detail, depending on the 

accuracy of its predictions and the desires of the user. 

Similarly, the effective coarseness of the image grid size 

may be altered in certain regions by sampling the pixels 

within the region rather than looking at every one, perhaps 

according to a dithering pattern (Lippel (30]) through the 

time dimension. This will effectively implement a pyramid 

data structure for the image (Kelley [28], Uhr (59], 

Rosenthal [48]). There is also a natural motion description 

hierarchy, in that a concept such as "walk" is composed of 

lower-level motion descriptions such as "raise thigh" and 

"bend knee," corresponding to the straight line fits now 

produced by our parser. Implementing these hierarchies so 

that the system can dynamically switch between levels will 

effectively realize an attention/focus mechanism which 

w~ 

shares a number of characteristics human perception (see 

O'Rourke [41]). We are currently invesitgating these issues 

as part of an effort towards developing an image analysis 

system which can understand American Sign Language. 
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Fig. 1 System Components. The prediction component operates 
at the high level, the image analysis is conducted at the 
low level, and parsing and simulation components function to 
translate information between the levels. 
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Fig. 2 The current human model, consisting of 24 segments, 
25 Joints, and 585 spheres. 

49 



Fig. 4 Constraint region for box. The front face has been 
cut away for illustration purposes. 
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