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Abstract

In this paper, we propose three new separable two-dimensional discrete orthogonal moments baptized: RTM

(Racah-Tchebichef moments), RKM (Racah-Krawtchouk moments), and RdHM (Racah-dual Hahn moments). We

present a comparative study between our proposed separable two-dimensional discrete orthogonal moments and

the classical ones, in terms of gray-level image reconstruction accuracy, including noisy and noise-free conditions.

Furthermore, in this study, the local feature extraction capabilities of the proposed moments are described. Finally, a

new set of RST (rotation, scaling, and translation) invariants, based on separable proposed moments, is introduced in

this paper for the first time, and their description performances are highly tested as pattern features for image

classification in comparison with the traditional moment invariants. The experimental results show that the new set of

moments is potentially useful in the field of image analysis.

Keywords: Separable discrete orthogonal moments, Moment invariants, Gray-level image reconstruction, Local

feature extraction, Image classification, Classical discrete orthogonal polynomials

1 Introduction
The theory of moments has been widely used in several

fields of image processing, such as image analysis [1–5],

image watermarking [6, 7], classification and pattern

recognition [8–10], and video coding [11, 12], with con-

siderable and important results. Historically, Hu in 1962

has presented a set of geometric moment invariants [1],

used particularly in pattern recognition. However, these

moments suffer from high information redundancy due

to their non-orthogonal property [13]. To overcome this

problem, Teague in 1980 has introduced a set of contin-

uous orthogonal moments [14], such as Zernike, pseudo-

Zernike, and Legendre moments. This set of moments has

been used as high discriminative features in many fields

[15]. Apart from their usefulness and wide applicability,

the computation of continuous orthogonal polynomials

involves two major inconveniences: discrete approxima-

tion of the continuous integration and discretization of

the continuous space [14]. Nevertheless, to overtake this
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problem, a new set of discrete orthogonal moments has

been proposed. Mukundun in 2001 was the first who

introduced discrete Tchebichef moments in image anal-

ysis [16]. This study has initiated several other types

of discrete moments: Krawtchouk [17], Racah [18], and

dual Hahn [19].

The majority of continuous and discrete orthogonal

moments in 2D space have separable basic functions. This

property can be expressed as two separate terms by the

product tensor of two classical orthogonal polynomials

with one variable [10]. Zhu in [20] proposed a set of

bivariate discrete and continuous orthogonal polynomi-

als in order to define a series of new set of separable

orthogonal moments. In this study, the author cites differ-

ent application in image analysis, such as reconstruction

of noisy and noise-free image, local feature extraction,

and object recognition using the invariant geometric

moments. Hmimid et al. in [10] introduced a new set of

separable orthogonal moments based on the product ten-

sor of Meixner polynomials by Tchebichef, Krawtchouk,

and Hahn polynomials; this study focuses on the classifi-

cation performance of geometric invariant moments.
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In this paper, firstly, we introduce a new set of bivariate

orthogonal polynomials, obtained by the product ten-

sor of Racah polynomials defined on non-uniform lattice

by Tchebichef, Krawtchouk polynomials, both defined on

uniform lattice, and dual Hahn polynomials defined on

non-uniform lattice. Using this new approach, we gen-

erate three separable 2D discrete orthogonal moments:

RTM, RKM, and RdHM. Secondly, we provide the the-

oretical background for deriving their corresponding

RST invariants RTMI (Racah-Tchebichef moment invari-

ants), RKMI (Racah-Krawtchouk moment invariants),

and RdHMI (Racah-dual-Hahn moment invariants) with

respect to rotation, scaling, and translation transforms.

Finally, we evaluate the performance of this new set

of separable discrete orthogonal moments and moment

invariants in the field of image analysis, specifically in

image reconstruction, local feature extraction, and image

classification.

To demonstrate usefulness of the proposed moments

in image analysis, their accuracy as global descriptors is

assessed by reconstructing the whole gray-level images.

We then compare the results with the most used discrete

orthogonal moments in the literature; our goal is to evalu-

ate the combination of the three polynomials (Tchebichef,

Krawtchouk, and dual Hahn) with Racah polynomials.

Also, our study investigates the robustness of the pro-

posed moments against different types of noise. Besides,

it should be highlighted that the locality parameter p of

Krawtchouk polynomials has been depicted in order to

introduce the local feature extraction of the two pro-

posed separable orthogonal moments RKM and KRM

(Krawtchouk-Racah moments), which provide the oppor-

tunity to extract a specific ROI (region of interest) of

an image.

In the last decades, moment invariants have been exten-

sively studied and widely applied in image analysis and

pattern recognition, since they can extract shape fea-

tures independently of geometric transformation. In this

context, only few papers are published with the aim to

construct separable moment invariants for object recog-

nition and image classification [10, 20]; however, all these

introduced works focus on the generation of separable

moment invariants from bivariate polynomials defined

only on uniform lattice. To the best of our knowledge,

no such paper has been published in order to derive

RST separable 2D moment invariants based on bivariate

polynomials, which defined as a combination of polyno-

mials of uniform and non-uniform lattice. Our objective

is to extend the derivation process of moment invari-

ants to include bivariate polynomials defined on dif-

ferent lattices (uniform and non-uniform lattice) and

evaluate their performances in a real image classifica-

tion problem in comparison with the traditional moment

invariants.

As a summary, the main contributions of our work

include the following aspects: (1) The proposition of

a new set of bivariate discrete orthogonal polynomials

based on the product tensor of Racah polynomials defined

on non-uniform lattice by Tchebichef and Krawtchouk

polynomials, both defined on uniform lattice, and dual

Hahn polynomials defined on non-uniform lattice. (2) The

application of the proposed methods in the field of image

reconstruction, in the case of noisy and noise-free gray-

level images. (3) The introduction of local feature extrac-

tion by specific separable discrete orthogonal moments

i.e. RKM and KRM. (4) The proposition of new sets

of moment invariants for object recognition and image

classification.

The rest of this paper is structured as follows. In

Section 2, we discuss the known classical discrete orthog-

onal polynomials of one variable; this set of orthogonal

polynomials serves as basic background for the rest of this

work, followed by the introduction of the new proposed

separable discrete orthogonal moments. In Section 3, we

introduce their RST invariants. Results and discussion

are provided in Section 4 to demonstrate their perfor-

mance in image reconstruction, local feature extraction,

and image classification. In conclusion, a brief summary

and the future work are presented.

2 Methods

2.1 Discrete classical orthogonal polynomial

In this section, we include a brief presentation of the most

used discrete orthogonal polynomials. This will consti-

tute a theoretical background for the rest of our work.

For that, the definition of Tchebichef polynomials is firstly

provided, followed by Krawtchouk, dual Hahn and Racah

polynomials. For more details, all these polynomials are

described in [16–19].

2.1.1 Tchebichef discrete orthogonal polynomial

Mukundun et al. in [16] have presented their approach

to compute discrete Tchebichef orthogonal moments. For

that, the following formula expresses the nth order of

classical Tchebichef polynomials:

tn(x;N) = (1 − N)n 3F2(−n,−x, 1 + n; 1, 1 − N ; 1), n, x, y

= 0, 1, . . .N − 1.

(1)

Note that 3F2 represents the generalized hypergeomet-

ric function defined as follows:

3F2(a1, a2, a3; b1, b2; z) =
∞
∑

k=0

(

(a1)k(a2)k(a3)kz
k

(k! )(b1)k(b2)k

)

,

(2)
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and (a)k expresses the Pochhammer symbol defined as

follows:

(a)k = a(a + 1)(a + 2) . . . (a + k − 1)

= Ŵ(a + k)

Ŵ(a)
, k ≥ 1, and a0 = 1.

(3)

where Ŵ(·) is the Gamma function.

As known, the set of Tchebichef polynomials {tn(x,N)}
satisfies the orthogonality property:

N−1
∑

x=0

wttn(x;N)tm(x;N) = ρt(n,N)δnm; x, n,m

= 0, 1 . . . ,N − 1;N > 0

(4)

with respect to the weight function wt = 1 and the

squared norm

ρ(n,N) = 2n!

(

N + n

2n + 1

)

(5)

In order to avoid numerical instability of classical

Tchebichef polynomials caused by the hypergeometric

function in Eq. (1), a set of normalized Tchebichef polyno-

mials has been introduced by Mukundan et al. in [16] by

the following formula:

t̄n(x;N) = tn(x;N)

β(n,N)
, (6)

where β(n,N) is a suitable constant which is independent

of x, as given in [16] by

β(n,N) =
√

ρ(n,N). (7)

In order to decrease the high computation cost of

Eq. (6), the authors in [16] have mentioned a recursive for-

mula of the normalized Tchebichef polynomials denoted

by

t̄n(x;N) =

(2n − 1)t̄1(x;N)t̄n−1(x;N) − (n − 1)
(

1 − (n−1)2

N2

)

t̄n−2(x;N)

n
,

t̄0(x;N) = 1,

t̄1(x;N) = 2x + 1 − N

N
.

(8)

2.1.2 Krawtchouk discrete orthogonal polynomial

The Krawtchouk discrete orthogonal polynomials have

been introduced by Mikhail Krawtchouk in [21] and used

for the first time in image analysis by Yap et al. [17]. These

polynomials are defined as follows:

kn(x; p,N) =
N

∑

k=0

ak,n,px
k = 2F1

(

−n,−x;−N ;
1

p

)

,

(9)

where x, n = 0, 1, ,N , 0 < p < 1 and 2F1 express the

hypergeometric function defined as follows:

2F1(a, b; c; z) =
∞
∑

k=0

(a)k(b)kz
k

k! (c)k
. (10)

The Krawtchouk polynomials satisfy the following

orthogonality condition:

N−1
∑

x=0

wk(x; p,N)kn(x; p,N)km(x; p,N) =ρk(n; p,N)δnm, n,m

= 1, . . . ,N .

(11)

Giving that wk(x; p,N − 1) is the weight function denoted

by

wk(x; p,N − 1) =
(

N − 1

x

)

px(1 − p)N−1−x, (12)

and the squared norm is

ρk(n; p,N − 1) = (−1)n
(

1 − p

p

)n n!

(1 − N)n
. (13)

In order to avoid numerical instability of classical

Krawtchouk polynomials caused by the hypergeometric

function, a set of normalized polynomials of Krawtchouk

has been mentioned in [17] by the following formula:

k̄n(x; p,N−1) = kn(x; p,N−1)

√

wk(x; p,N − 1)

ρk(n; p,N − 1)
. (14)

In our study, we use the recursive formula presented by

Yap et al. in [17] denoted by

k̄n(x; p,N − 1) = Ank̄n−1(x; p,N − 1) − Bnk̄n−2(x; p,N − 1),

k̄0(x; p,N − 1) = wk(x; p,N − 1),

k̄0(x; p,N − 1) = wk(x; p,N − 1)
(N − 1)p − x

√

(N − 1)p(1 − p)
,

(15)

with An = (N−1p−2(n−1)p+n−1−x)√
p(1−p)n(N−n)

and Bn =
√

(n−1)(N−n+1)
(N−n)n .

2.1.3 Dual Hahn discrete orthogonal polynomial

The dual Hahn polynomials have been introduced in

image analysis by Zhu et al. in [19]. This family of discrete

orthogonal polynomials is defined on the non-uniform

lattice.

The nth order is given by

dh(c)
n (s, a, b) = (a − b + 1)n(a + c + 1)n

n!

× 3F2(−n, a − s, a + s + 1; a − b + 1, a + c + 1; 1),

(16)

where the parameters a, b, c, n, and s are restricted to

− 1
2 < a < b, b = a + N , |c| < a + 1, n = 0, 1, . . .N − 1,
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and s = a, a + 1, . . . b − 1. Also, 3F2 is the generalized

hypergeometric function given in Eq. (2). The dual Hahn

polynomials satisfy the following orthogonality property:

b−1
∑

s=a

wdh(s)

[

�X

(

s − 1

2

)]

dh(c)
n (s, a, b)dh(c)

m (s, a, b)

= ρdh(n)δnm; 0 ≤ n, m ≤ N − 1,

(17)

where �X(s) = X(s + 1) − X(s), with X(s) = s(s + 1) and

wdh, is the weight function :

wdh(s) = Ŵ(a + s + 1)Ŵ(c + s + 1)

Ŵ(s − a + 1)Ŵ(b − s)Ŵ(b + s + 1)Ŵ(s − c + 1)
,

(18)

and the square norm is given by the following formula:

ρdh(n)= Ŵ(a + c + n + 1)

n! (b − a − n − 1)!Ŵ(b − c − n)
, n =0, . . . ,N−1.

(19)

To avoid numerical instability in polynomial compu-

tation, the dual Hahn polynomials are scaled by using

the square norm and the weighting function. The set of

normalized dual Hahn polynomials is defined as follows:

dh
(c)
n (s, a, b) = dh(c)

n (s, a, b)

√

wdh(s)

ρdh(n)

[

�X

(

s − 1

2

)]

,

n = 0, 1, . . . ,N − 1.

(20)

In order to decrease the computational cost in Eq. (16)

based on generalized hypergeometric function, we use the

recursive formula with respect to n proposed by Zhu et al.

in [19] that is denoted by the following formula:

dh
(c)
n (s, a, b) = A

√

ρdh(n − 1)

ρdh(n)
dh

(c)
n−1(s, a, b)

+ B

√

ρdh(n − 2)

ρdh(n)
dh

(c)
n−2(s, a, b)

dh
(c)
0 (s, a, b) =

√

wdh(s)

ρdh(0)

[

�X

(

s − 1

2

)]

dh
(c)
1 (s, a, b) = − 1

wdh(s)

w1(s) − w1(s − 1)

X
(

s + 1
2

)

− X
(

s − 1
2

)

√

wdh(s)

ρdh(1)

[

�X

(

s − 1

2

)]

, (21)

where:

A =1

n

[

s(s + 1) − ab + ac − bc − (b − a − c − 1)(2n − 1)

+2(n − 1)2
]

,

B = − 1

n
(a + c + n − 1)(b − a − n + 1)(b − c − n + 1),

and

wn(s) = Ŵ(a + s + n + 1)Ŵ(c + s + n + 1)

Ŵ(s − a + 1)Ŵ(b − s − n)Ŵ(b + s + 1)Ŵ(s − c + 1)
.

2.1.4 Racah discrete orthogonal polynomial

In this subsection, we will present the Racah polynomi-

als defined in the non-uniform lattice. This set of discrete

orthogonal polynomials has been firstly used in image

analysis by Zhu et al. in [18], where the nth order of Racah

polynomials are defined as follows:

r(α,β)
n (s, a, b) = (a − b + 1)n(β + 1)n(a + b + α + 1)n

n!

× 4F3(−n,α + β + n + 1, a − s, a + s

+ 1;β + 1, a + 1 − b, a + b + α + 1; 1),

(22)

where the parameters a, b,α, β , n, and s are restricted to

− 1
2 < a < b, α > −1, −1 < β < 2a + 1, b = a + N ,

n = 0, 1, . . . n − 1, and s = a, a + 1, . . . , b − 1 and 4F3 is

the generalized hypergeometric function given by

4F3(a1, a2, a3, a4; b1, b2, b3; z) =
∞
∑

k=0

(

(a1)k(a2)k(a3)k(a4)kz
k

(k! )(b1)k(b2)k(b3)k

)

.

(23)

The Racah polynomials satisfy the following orthogo-

nality property:

b
∑

s=a

wr(s)

[

�X

(

s − 1

2

)]

r(α,β)
n (s, a, b)r(α,β)

m (s, a, b)

= ρr(n)δnm; 0 ≤ n, m ≤ N − 1,

(24)

where �X(s) = X(s + 1) − X(s), with X(s) = s(s + 1) and

wr , is the weight function:

wr(s) =
Ŵ(a + s + 1)Ŵ(s − a + β + 1)Ŵ(a + α − s)Ŵ(b + α + s + 1)

Ŵ(a − β + s + 1)Ŵ(s − a + 1)Ŵ(b − s)Ŵ(b + s + 1)
,

(25)

and the square norm is given by the following formula:

ρr(n) = Ŵ(α + n + 1)Ŵ(β + n + 1)Ŵ(b − a + α + β + n + 1)

(α + β + 2n + 1)n! (b − a − n − 1)!Ŵ(α + β + n + 1)

× Ŵ(a + b + α + n + 1)

Ŵ(a + b − β − n)
, n = 0, 1, . . . ,N − 1.

(26)
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To avoid numerical instability in polynomial computa-

tion, the Racah polynomials are scaled by using the square

norm and weighting function. The set of normalized

Racah polynomials is defined as follows:

r(α,β)
n (s, a, b) = r(α,β)

n (s, a, b)

√

wr(s)

ρr(n)

[

�X

(

s − 1

2

)]

,

n = 0, 1, . . . ,N − 1.

(27)

In order to reduce the problem of high computation cost

of Racah polynomials using Eq. (22), we use the recursive

formula with respect to n proposed by Zhu et al. in [19],

which is denoted by the following formula:

Anr
(α,β)
n (s, a, b) = Bn

√

ρr(n − 1)

ρr(n)
r
(α,β)
n−1 (s, a, b)

+ Cn

√

ρr(n − 2)

ρr(n)
r
(α,β)
n−2 (s, a, b),

r
(α,β)
0 (s, a, b) =

√

wr(s)

ρr(0)

[

�X

(

s − 1

2

)]

,

r
(α,β)
1 (s, a, b) = − 1

wr(s)

w1(s) − w1(s − 1)

X(s + 1
2 ) − X(s − 1

2 )
√

wr(s)

ρr(1)

[

�X

(

s − 1

2

)]

, (28)

where:

An = n(α + β + n)

(α + β + 2n − 1)(α + β + 2n)
,

Bn =x − (a2 + b2 + (a − β)2 + (b + a)2 − 2)

4

+ (α + β + 2n − 2)(α + β + 2n)

8

−
(β2 − α2)

[

(

b + α
2

)2 −
(

a − β
2

)2
]

2(α + β + 2n − 2)(α + β + 2n)
,

Cn = (α + n − 1)(β + n − 1)

2(α + β + 2n − 2)(α + β + 2n)

[

(

a + b + α − β

2

)2

−
(

n − 1 + α + β

2

)2
] [

(

b − a + α + β

2

)2

−
(

n − 1 − α + β

2

)2
]

and

wn(s) =
Ŵ(a + s + n + 1)Ŵ(s − a + β + n + 1)Ŵ(b + α − s)Ŵ(b + α + s + n + 1)

Ŵ(a − β + s + 1)Ŵ(s − a + 1)Ŵ(b − s − n)Ŵ(b + s + 1)
.

2.2 Proposed new separable orthogonal discrete

moments

This section is devoted to present a new set of bivari-

ate discrete orthogonal polynomials, using the classical

polynomials cited previously. Inspired from the method

proposed by Xu in [22, 23], we can produce new sev-

eral bivariate discrete orthogonal polynomials based on

the product tensor of Racah polynomials with Tchebichef,

Krawtchouk, and dual Hahn polynomials; the list of this

new series is presented in the following subsections.

2.2.1 Separable Racah-Tchebichef orthogonal discrete

moments

The product of Racah and Tchebichef discrete orthog-

onal polynomials defined on uniform and non-uniform

lattice r
(α,β)
n (s, a, b) and tm(y;N) is given by the following

formula:

RT (α,β)
nm (s, y, a, b,N) = r(α,β)

n (s, a, b)tm(y;N),

0 ≤ n, m ≤ N − 1.
(29)

These proposed polynomials are orthogonal on the set

V = {(i, j) : 0 ≤ i, j ≤ N − 1}, with respect to the weight

function, that is defined as follows:

w
(α,β)
rt (s, y, a, b,N) = w(α,β)

r (s, a, b,N)wt(y,N) (30)

With these bivariate orthogonal polynomials, the gen-

eral computation of RTM, from an N × N image having

intensity function f (s, y), is defined as follows

RTMnm = 1

β(m,N)

b−1
∑

s=a

N
∑

y=1

RT(α,β)
nm (s, y, a, b,N)f (s, y).

(31)

An approximation of the original image can be recon-

structed, using a finite number of computed Racah-

Tchebichef moments up to a specific order nmax, by

applying the inverse moments formula, that is defined as

follows:

f̂ (s, y) =
nmax
∑

i=0

nmax
∑

j=0

RT
(α,β)
ij (s, y, a, b,N)RTMij. (32)

2.2.2 Separable Racah-Krawtchouk orthogonal discrete

moments

The products of the Racah and Krawtchouk polynomials

defined on non-uniform and uniform lattice r
(α,β)
m (s, a, b)

and kn(x; p,N − 1), respectively, are defined as follows:

RK(α,β)
nm (s, y, a, b, p,N) = r(α,β)

m (s, a, b)kn(y; p,N − 1),

0 ≤ n, m ≤ N − 1.

(33)

Similarly, they are orthogonal on the set V = {(i, j) :

0 ≤ i, j ≤ N − 1}, where the weight function is defined as

follows:
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w
(α,β)

rk (s, y, a, b, p,N) = w(α,β)
r (s, a, b,N)wk(y; p,N)

(34)

With these bivariate orthogonal polynomials, the gen-

eral computation of RKM from an N × N image having

intensity function f (x, y) is defined as follows:

RKMnm =
b−1
∑

s=a

N
∑

y=1

RK(α,β)
nm (s, y, a, b, p,N)f (s, y). (35)

The reconstruction of the image function using a finite

number of computed Racah-Krawtchouk moments up to

a specific order nmax can be done by applying the inverse

moments formula that is defined as follows:

f̂ (s, y) =
nmax
∑

i=0

nmax
∑

j=0

RK
(α,β)
ij (s, y, a, b, p,N)RKMij. (36)

2.2.3 Separable Racah-dual Hahn orthogonal discrete

moments

The products of Racah and dual Hahn polynomials,

both defined on non-uniform lattice r
(α,β)
m (s, a, b) and

dh
(c)

n (t, a, b), respectively, are defined as follows:

RdH(α,β ,c)
nm (s, y, a, b,μ,ϑ ,N) = r(α,β)

m (s, a, b)dh
(c)
n (t,μ,ϑ),

0 ≤ n, m ≤ N − 1.

(37)

Consequently, these proposed polynomials are orthog-

onal on the set V = {(i, j) : 0 ≤ i, j ≤ N − 1}, with respect

to the weight function, that is defined as follows:

w
(α,β ,c)
rdh (s, y, a, b,μ,ϑ ,N) = w(α,β)

r (s, a, b,N)w
(c)
dh(t,μ,ϑ ,N) =

(38)

With these bivariate orthogonal polynomials, the gen-

eral computation of Racah-dual Hahn moments from an

N × N image having intensity function f (s, t) is given by

RdHMnm =
b−1
∑

s=a

ϑ−1
∑

t=μ

RdH(α,β ,c)
nm (s, t, a, b,μ,ϑ ,N)f (s, t).

(39)

The reconstruction of the image function can be carried

out, using a finite number of computed Racah-dual Hahn

moments (RdHM) up to a specific order nmax, by applying

the inverse moments formula as follows:

f̂ (s, t) =
nmax
∑

i=0

nmax
∑

j=0

RdH(α,β ,c)
nm (s, t, a, b,μ,ϑ ,N)RdHMij.

(40)

When nmax = N − 1, The reconstructed image using

the computed Racah-Tchebichef, Racah-Krawtchouk and

Racah-dual Hahn moments, by applying Eqs. (32, 36, 40),

can be optimal with a minimal reconstruction error.

3 Moment invariants
The usual method for obtaining RST invariants is to

express the image moments as a linear combination of

geometric ones and then makes use of RST geometric

invariants instead of geometric moments.

The geometric moments Gnm of an image with the

size N × M pixels are defined using the discrete sum

approximation as follows:

Gnm =
N−1
∑

x=0

M−1
∑

y=0

xnymf (x, y). (41)

And the translation invariants of geometric moments

Unm are defined by

Unm =
N−1
∑

x=0

M−1
∑

y=0

(x − x̄)n(y − ȳ)mf (x, y). (42)

with x̄ = G10
G00

and ȳ = G01
G00

.

Then, the GMI (geometric moment invariants) of order

n + m, noted Vnm, which is independent of rotation,

scaling, and translation, can be written as follows:

Vnm=G
−γ
00

N−1
∑

x=0

M−1
∑

y=0

[

[(x − x̄)cosθ + (y − ȳ)sinθ ]n

×[(y − ȳ)cosθ − (x − x̄)sinθ ]m

]

f (x, y).

(43)

with γ = n+m
2 + 1 and θ = 1

2 tan
−1

(

2U11
U20−U02

)

.

3.1 Separable Racah-Tchebichef moment invariants

Similar to the presented methodology in [24], where the

authors proposed a generalized expression of the dual

Hahn polynomials (defined on the non-uniform lattice) in

terms of monomials xr . The nth order of discrete Racah

polynomials can be written as follows:

r(α,β)
n (s, a, b) = R(α,β)

n (a, b)

n
∑

t=0

B
(α,β)
nt (a, b)

2t
∑

r=0

Ctrx
r

(44)

where R
(α,β)
n (a,b)= (a−b+1)n(β+1)n(a+b+α+1)n

n! ,B
(α,β)
nm (a,b)=

(−n)m(α+β+n+1)m(−1)n

(β+1)m(a−b+1)m(a+b+α+1)mm! ,
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Cmr =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C(m−1)(r−2)+[am − (m − 1)]

×C(m−1)(r−1) − (m − 1)amC(m−1)r ∀m ≥ 2, 2 ≤ r ≤ 2m − 2

C(m−1)(2m−3)+[am − (m − 1)] ∀m ≥ 2, r = 2m − 2

C(m−1)(2m−3)

+a1 − (m − 1)amC(m−1)1 ∀m ≥ 2, r = 1

1 ∀m ≥ 0, r = 2m

0 ∀m ≥ 1, r = 0

(45)

and C00 = 1, C10 = 0, C11 = a1, and C12 = 1 with

an = 2a + n.

From the work [16], Tchebichef polynomials can be

rewritten in the form:

t̃n(x;N) = 1

β(n,N)

n
∑

t=0

Bnt(N)

t
∑

r=0

s(t, r)xr (46)

with Bnm(N) = (1−N)m(−n)m(1+n)m(−1)m

(k!)2(1−N)m
, and s(t, r) is

the Stirling numbers of the first kind, obtained by the

following recurrence relations:

s(t, r) = s(t − 1, r − 1) − (t − 1)s(t − 1, r), t ≥ 1, r ≥ 1,

(47)

with s(t, 0) = s(0, r) = 0 and s(0, 0) = 1.

The Racah and Tchebichef polynomial expansions given

in Eqs. (44) and (46) are useful in writing the Racah-

Tchebichef moments in terms of geometric moments;

hence, the RTM of an image f (x, y) can be expressed as

follows:

RTMnm = R
(α,β)
n (a, b)

ρr(n)β(n,N)

n
∑

k=0

B
(α,β)

nk (a, b)

2k
∑

z=0

Czk

m
∑

t=0

Bmt(N)

t
∑

r=0

s(t, r)Gzr (48)

where ρr(n) and β(n,N) are the normalization constants

of Racah and Tchebichef polynomials relative to Eq. (26)

and Eq. (7), respectively.

Finally, in order to compute the RTMI of n+m order, the

geometric moments Gzr in the previous equation can be

replaced by Vzr geometric moment invariants as follows:

RTMInm = R
(α,β)
n (a, b)

ρr(n)β(n,N)

n
∑

k=0

B
(α,β)

nk (a, b)

2k
∑

z=0

Czk

m
∑

t=0

Bmt(N)

t
∑

r=0

s(t, r)Vzr

(49)

3.2 Separable Racah-Krawtchoukmoment invariants

As presented in [17], the Krawtchouk polynomials

kn(x; p,N) can be expressed as a polynomial of x as

follows:

kn(x; p,N) =
n

∑

k=0

ak,n,px
k =

n
∑

t=0

Qnt(p,N)

t
∑

r=0

s(t, r)xr

(50)

with Qnt(p,N) = (−n)t
(−N)tt!

(

−1
p

)t
, and s(t, r) is the Sterling

number of the first kind from Eq. (47).

Basically, from Eq. (44) and Eq. (50), the RKM of

an image f (x, y) can be written in term of geometric

moments Gnm as follows:

RKMnm = R
(α,β)
n (a, b)

ρr(n)ρk(n, p,N)

n
∑

k=0

B
(α,β)

nk (a, b)

2k
∑

z=0

Czk

m
∑

t=0

Qmt(p,N)

t
∑

r=0

s(t, r)Gzr

(51)

where ρr(n) and ρk(n, p,N) are the normalization con-

stants of Racah and Krawtchouk polynomials relative to

Eq. (26) and Eq. (13), respectively.

Eventually, by replacing Gzr by Vzr in Eq. (51), we obtain

the RKMI of order n + m:

RKMInm = R
(α,β)
n (a, b)

ρr(n)ρk(n, p,N)

n
∑

k=0

B
(α,β)

nk (a, b)

2k
∑

z=0

Czk

m
∑

t=0

Qmt(p,N)

t
∑

r=0

s(t, r)Vzr

(52)

3.3 Separable Racah-dual-Hahnmoment invariants

As demonstrated in [24], the nth order of dual Hahn poly-

nomials can be represented as polynomial of xr as follows:

DH(c)
n (μ,ϑ) = R(c)

n (μ,ϑ)

n
∑

t=0

B
(c)
nt (μ,ϑ)

2t
∑

r=0

Ctrx
r (53)

where R
(c)
n (μ,ϑ) = (a,−ϑ+1)n(μ+c′+1)n

n! , B
(c)
nt (μ,ϑ) =

B
(c)
n(t−1)(μ,ϑ) n−m+1

(a−b+m)(a+c+m)m
, ∀n ≥ 0, 0 ≤ m ≤ n with

B
(c)
00 (μ,ϑ) = 1.

And Ctr is given by the Eq. (45) with an = 2μ + n.
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Therefore, the RdHM of an image f (x, y) can be

expanded in terms of geometric moments as follows:

RdHMnm = R
(α,β)
n (a, b)R

(c)
m (μ,ϑ)

ρr(n)ρdh(n)

n
∑

k=0

B
(α,β)

nk (a, b)

2k
∑

z=0

Czk

m
∑

t=0

B
(c)
mt(μ,ϑ)

2t
∑

r=0

CtrGzr

(54)

where ρr(n) and ρdh(n) are the normalization constants of

Racah and dual Hahn polynomials relative to Eqs. (26) and

(19), respectively.

Finally, in order to compute the RdHMI of order n + m,

the geometric moments Gzr in the previous equation can

be replaced by the geometric moment invariants Vzr as

follows:

RdHMInm = R
(α,β)
n (a, b)R

(c)
m (μ,ϑ)

ρr(n)ρdh(n)

n
∑

k=0

B
(α,β)

nk (a, b)

2k
∑

z=0

Czk

m
∑

t=0

B
(c)
mt(μ,ϑ)

2t
∑

r=0

CtrVzr

(55)

4 Results and discussion
In this section, several experimental results are provided

to validate the theoretical study of our new separable

discrete orthogonal moments developed in the previous

sections. This section is presented through four subsec-

tions. In the first subsection, the reconstruction capability

of the whole noisy and noise-free image is addressed.

The experimental study on the local feature extraction

has been depicted in the second subsection. Then, the

invariability of the proposed moment invariants is exam-

ined under different geometric transforms and their noise

robustness are also investigated. Finally, in the fourth sub-

section, image classification accuracy is presented with a

comparison between the new sets of separable moment

invariants and the existing ones.

A set of eight images having different natures, as shown

in Fig. 1, is used as test images in our experiments.

All images are standard test image from the waterloo

image repository database (http://links.uwaterloo.ca/

Repository.html), unless texture image which has been

chosen from Multi Band Texture database (http://

multibandtexture.recherche.usherbrooke.ca/normalized_

brodatz.html), and the duck image that has been used

by Zhu in [20] for local feature extraction. Furthermore,

the Butterfly_37 image is chosen from Butterfly database

and used for invariability testing. In addition, three

well-known image databases Caltech-101 [25], Corel [26],

and Outex (http://www.outex.oulu.fi/) are introduced in

order to demonstrate the image classification accuracy of

the new proposed invariants.

4.1 Global features reconstruction

In this subsection, the global feature extraction capability

of the proposed moments is evaluated by the reconstruc-

tion of the whole image. For that, we present some criteria

commonly used for measuring image quality reconstruc-

tion. In fact, we use MSE (mean squared error) and PSNR

(peak signal-to-noise ratio) to quantitatively measure the

fidelity of the decoded images. The PSNR of a gray-level

image of size N × N is defined as follows:

PSNR = 10log10

(

Max2

MSE

)

, (56)

where Max is the peak image amplitude and equal to 255

for gray-level images and MSE value is defined as follows:

MSE = 1

N2

N
∑

x=1

N
∑

y=1

[ f (x, y) − f̂ (x, y)]2 , (57)

with f (x, y) and f̂ (x, y) denote the original and the recon-

structed image, respectively. In order to complete this

comparison, another measure index has been used in the

current work. This index is called SSIM (Structural SIMi-

larity) that attempts to measure the change in luminance,

contrast, and structure between two images. The SSIM

has been firstly presented by Z. Wang in [27].

The proposed methods are expected to achieve a bet-

ter estimation of original image using only a few number

of moments, which should minimize the MSE value, con-

versely maximize PSNR value. Moreover, the SSIM index

is used to evaluate the preservation of structural informa-

tion in the reconstructed image. In this case, we expect

that we obtain high SSIM values that indicate better

reconstruction performance.

So as to exhibit a global comparison between different

set of proposed separable discrete orthogonal moment,

the Krawtchouk p parameter is restricted on 0.5, to obtain

a global reconstruction taken from the image center, as

presented by Yap et al. in [17]. While the dual Hahn

parameters are restricted on μ = 8, ϑ = N + μ, and

c = −8, Racah parameters are restricted on a = 256,

α = 256, β = 160, and b = N + a.

To evaluate the global features extraction, we use Lena,

Man, and Texture images with size 64×64. Figure 2 shows

the reconstruction results of Lena image for the three

proposed methods (RTM, RKM, RdHM) with different

orders: 60, 80, 100, and 120. It is clearly seen in Fig. 2 that

the quality of the reconstructed image becomes closer to

the original image for higher orders.

To further illustrate the performance of different meth-

ods in terms of image quality reconstruction, Fig. 3

http://links.uwaterloo.ca/Repository.html
http://links.uwaterloo.ca/Repository.html
http://multibandtexture.recherche.usherbrooke.ca/normalized_brodatz.html
http://multibandtexture.recherche.usherbrooke.ca/normalized_brodatz.html
http://multibandtexture.recherche.usherbrooke.ca/normalized_brodatz.html
http://www.outex.oulu.fi/
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Fig. 1 Test images

and Tables 1, 2, 3 depict a comparison, based on MSE,

PSNR, and SSIM index, between our proposed moments

(RTM, RKM, and RdHM) and the classical known discrete

moments. As a result derived from the above experiments,

we can deduce that the reconstructed image by the RKM

is closer to the original image especially for high orders

and perform better starting from the order 88. More-

over, the most important result presented in Fig. 3a, b,

c and Tables 1, 2, 3 is that RTM gives satisfying results,

in terms of reconstruction accuracy, for lower and higher

order moments in comparison with other methods. In

fact, these results obtained by RTM are justified by the

combination of the property of better reconstruction for

lower order guaranteed by Tchebichef moments [16] with

the good quality reconstruction for higher orders obtained

by Racah moments [18].

In Fig. 4, we compare the reconstruction quality of the

proposed moments (RTM, RKM, and RdHM) with the

Fig. 2 Reconstruction of Lena image by using our proposed methods, the orders from left to right are 60, 80, 100, and 120, respectively
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Fig. 3 Comparative analysis of reconstruction errors (MSE) using RTM, RKM, RdHM, TTM, KKM, dHdHM, and RdHM for a Lena, bMan, and c Texture images

existingmoments (TTM, KKM, dHdHM, and RRM) using

the same test images presented above and a reconstruc-

tion order fixed on 110. As can be seen from the figure,

the reconstructed images show more visual resemblance

to the original images; also this experiment can depict the

capability of the proposed discrete orthogonal moments

in the global feature extraction.

As a main conclusion of these experiments, the pro-

posed RTM and RKM perform competitively with other

methods in terms of gray-level image representation

Table 1 Comparative results in terms of PSNR (db) and SSIM values of test images (Lena)

PSNR and SSIM’s values of Lena image

Orders
RTM RdHM RKM TTM dHdHM RRM KKM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0 8.00 0.04 5.87 0.01 6.16 0.02 14.11 0.11 5.86 0.00 6.14 0.03 6.08 0.00

6 8.88 0.04 6.31 0.04 6.64 0.03 15.12 0.14 6.50 0.04 6.53 0.01 6.63 0.05

18 11.69 0.30 8.37 0.19 8.63 0.17 16.91 0.26 8.56 0.18 8.79 0.22 8.34 0.18

26 13.30 0.38 9.87 0.27 10.24 0.30 18.08 0.41 10.09 0.27 10.25 0.30 9.81 0.22

38 15.94 0.48 13.61 0.47 13.33 0.45 19.31 0.53 14.91 0.50 13.26 0.44 13.40 0.51

72 22.68 0.80 21.90 0.77 22.69 0.80 22.26 0.75 21.77 0.77 22.36 0.79 22.94 0.80

78 22.92 0.81 22.57 0.79 23.43 0.82 22.79 0.78 22.24 0.79 23.32 0.81 23.57 0.83

88 24.45 0.84 23.50 0.83 24.55 0.85 24.05 0.83 23.02 0.82 24.55 0.85 24.65 0.86

92 25.77 0.88 23.94 0.84 25.03 0.86 24.59 0.86 23.46 0.83 25.02 0.86 25.16 0.87

98 26.86 0.92 24.45 0.86 26.05 0.89 25.73 0.89 23.99 0.85 25.99 0.88 25.93 0.89

108 28.97 0.94 25.58 0.89 28.16 0.93 27.81 0.93 24.92 0.87 28.24 0.93 27.76 0.93

112 29.90 0.96 26.28 0.90 29.55 0.94 29.58 0.95 25.64 0.88 29.58 0.94 28.91 0.94
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Table 2 Comparative results in terms of PSNR (db) and SSIM values of test images (Man)

PSNR and SSIM’s values of Man image

Orders
RTM RdHM RKM TTM dHdHM RRM KKM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0 8.62 0.04 6.56 0.00 6.85 0.00 14.20 0.08 6.63 0.01 6.88 0.00 6.72 0.00

6 9.92 0.07 7.28 0.06 7.60 0.02 15.36 0.11 7.03 0.01 7.67 0.05 7.51 0.04

18 11.82 0.30 9.35 0.26 10.01 0.19 16.99 0.20 8.89 0.15 10.16 0.25 9.87 0.22

26 13.20 0.39 11.01 0.28 11.75 0.35 17.91 0.29 11.43 0.29 11.70 0.33 11.48 0.34

38 15.58 0.44 14.45 0.44 14.34 0.51 19.22 0.47 15.78 0.46 14.16 0.48 14.05 0.51

72 22.15 0.74 21.40 0.73 21.82 0.76 21.80 0.71 21.44 0.73 21.52 0.75 22.22 0.77

78 22.65 0.76 22.02 0.76 22.63 0.78 22.44 0.76 21.81 0.75 22.44 0.78 22.85 0.79

88 23.90 0.83 23.04 0.80 23.70 0.83 23.56 0.82 22.44 0.78 23.79 0.83 23.81 0.83

92 24.19 0.85 23.41 0.82 24.17 0.85 24.14 0.84 22.78 0.80 24.28 0.85 24.29 0.85

98 25.26 0.88 23.96 0.84 25.05 0.88 24.97 0.87 23.27 0.82 25.16 0.88 24.99 0.87

108 27.52 0.93 25.14 0.87 26.64 0.91 26.88 0.92 24.15 0.85 26.80 0.92 26.73 0.91

112 28.23 0.95 25.86 0.89 27.66 0.93 27.81 0.94 24.73 0.86 27.80 0.93 27.82 0.93

capability that can justify their usefulness as a global

descriptors in the field of image reconstruction, in other

hand, the proposed RdHM does not perform well in these

experiments.

4.2 Robustness to different kind of noises

The robustness and sensitivity to noise are generally con-

sidered as essential indicator for image moments. In order

to evaluate the robustness of our proposed separable

orthogonal discrete moments against different kind of

noises, we use three original gray-level images (Camera-

man, Pepper, and Mandrill) corrupted by Gaussian and

salt-and-pepper noise. Figure 5 depicts the reconstructed

noisy images using RTM, RKM, RdHM, and RRM, with

order up to 100. Firstly, the original images are corrupted

by Gaussian noise with zero mean and variance (ν = 0.01)

as shown in the first three columns of Fig. 5. Secondly, the

effect of salt-and-pepper noise with the density of 3% is

displayed in the last three columns of Fig. 5.

Table 4 presents comparative results between our pro-

posed moments and Racah moment for different noisy

images in terms of PSNR values. Based on the results pro-

vided by Table 4 and Fig. 5, it can be concluded that our

proposed orthogonal moments are less sensitive to the

noisy effects.

4.3 Local feature extraction by RKM and KRM discrete

orthogonal moments

In the following experiments, we will investigate the capa-

bility of the proposed KRM and RKM to capture the

Table 3 Comparative results in terms of PSNR (db) and SSIM values of test images (Texture)

PSNR and SSIM’s values of Texture image

Orders
RTM RdHM RKM TTM dHdHM RRM KKM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0 7.20 0.01 5.14 0.00 5.36 0.00 11.55 0.01 5.08 0.00 5.37 0.00 5.34 0.00

6 7.98 0.01 5.55 0.00 5.86 0.00 11.83 0.01 5.51 0.00 5.88 0.01 5.78 0.00

18 10.72 0.02 6.94 0.01 7.34 0.01 11.92 0.02 6.92 0.01 7.47 0.01 7.11 0.01

26 10.68 0.02 8.13 0.04 8.48 0.02 11.96 0.02 8.10 0.03 8.62 0.06 8.12 0.02

38 11.84 0.05 10.26 0.07 9.89 0.02 12.08 0.04 10.64 0.08 10.09 0.07 9.70 0.07

72 12.90 0.23 12.57 0.20 12.59 0.21 13.09 0.23 12.46 0.15 12.60 0.23 12.68 0.24

78 13.91 0.29 12.76 0.24 12.87 0.28 13.31 0.28 12.60 0.19 12.90 0.29 13.18 0.34

88 13.98 0.41 13.62 0.43 13.98 0.46 13.91 0.40 13.24 0.35 13.79 0.45 14.01 0.47

92 14.34 0.49 14.09 0.51 14.25 0.51 14.24 0.46 13.39 0.37 14.31 0.54 14.21 0.50

98 15.13 0.62 14.79 0.59 14.93 0.59 14.78 0.54 13.74 0.43 15.10 0.62 14.88 0.58

108 18.96 0.87 17.80 0.83 19.27 0.88 17.41 0.78 14.31 0.52 18.93 0.87 19.19 0.88

112 20.52 0.92 18.54 0.86 20.34 0.91 19.61 0.88 14.64 0.55 19.76 0.90 20.38 0.91
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Fig. 4 Reconstructed images using RTM, RKM, RdHM, RRM, TTM, KKM,

and dHdHM, the orders of reconstruction is fixed to 110

local information of an image. This study is based on the

ability of Krawtchouk moments to extract the local fea-

ture by adjusting the p parameter [17, 20]. This property

can be very useful in the context of pattern classification

in order to extract and recognize a part of scene contain-

ing a specific object to classify [28]. Therefore, we focus

in this subsection on the choice of adaptable parameters

for the proposed separable discrete moments. In the case

of RKM, if we set the parameters p = 0.1, a = 0, b = N ,

α = 0, and β = 0, then, the region of interest will be

extracted horizontally from left to right on the top of an

image. If we set the parameters p = 0.9, a = 0, b = N ,

α = 0, and β = 0, then, the region of interest will be

extracted horizontally from left to right on the bottom of

an image. If we set the parameters p = 0.5, a = 0, b = N ,

α = 0, and β = 0, then, the region of interest will be

extracted horizontally from left to right on the center of

an image. In the case of KRM, if we set the parameters

p = 0.1, a = 0, b = N , α = 0, and β = 0, then, the region

of interest will be extracted vertically from top to bottom

on the left of an image. If we set the parameters p = 0.9,

a = 0, b = N , α = 0, and β = 0, then, the region of inter-

est will be extracted vertically from top to bottom on the

right of an image. Finally, if we set the parameters p = 0.5,

a = 0, b = N , α = 0, and β = 0, then, the region of inter-

est will be extracted vertically from top to bottom on the

center of an image.

In the current study, the local feature of an image can be

easily extracted using the capability of Krawtchouk poly-

nomials to capture the ROI. This property is verified by

several reconstructions of duck image via RKM and KRM

with different parameter values, as shown in Fig. 6.

4.4 Invariability

In order to verify the rotation, scaling, and translation

invariance of the proposed two-dimensional separable

moment invariants RTMI, RKMI, and RdHMI, the test

image Butterfly_37 of size 128 × 128, shown in Fig. 1,

is translated by vector varying from (−16, −16) to (16,

16) with step (2, 2), scaled by factors starting from 0.7 to

1.3 with step 0.05 and finally rotated by a rotation angle

varying between 0◦ and 360◦ with interval 10◦. Then, the
moment invariant coefficients of each transformed image

are computed up to the 6th order (n + m ≤ 6) using the

proposed separable moment invariants, and the relative

error of Eq. (58) betweenmoment invariant coefficients of

the original image and the transformed one is computed.

relativeError(f , g) = ‖MI(f ) − MI(g)‖
‖MI(f )‖ (58)

where ‖ · ‖, f, and g denote the Euclidean norm, the orig-

inal and the transformed image, respectively, where low

relative error leads to good precision.

Figure 7a, b depicts the relative error of RTMI, RKMI,

and RdHMI for scale and rotation transforms, respec-

tively. Although, moment invariant coefficients for all

translation vectors remain unchangeable that leads to

relative error equals to zero.

Furthermore, to understand the effect of noise on the

proposed moment invariants, in a similar way to the pre-

vious experiment, the test image has been corrupted by

different kind of noise. Firstly, distorted by different den-

sities of salt-and-pepper noise varying from 0% to 5% with

interval 0.25%, secondly, corrupted by Gaussian noise

with zero mean and standard deviation varying between 0

and 0.5 with step 0.05.

Figure 8a, b depicts the robustness of RTMI, RKMI,

and RdHMI against salt-and-pepper and Gaussian noise,

respectively.
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Fig. 5 Image reconstruction of gray-level noisy image. The first three columns show the reconstructed images using Gaussian noise with zero mean

and ν = 0.01. The last three columns show the reconstructed images using salt-and-pepper noise-contaminated images with density of 3%. With a

maximum order up to 100

It is clear from Figs. 7 and 8 that the relative error

rate is very low (10−10), which indicates that the pro-

posed moment invariants exhibit good performance and

express high numerical stability under different geomet-

ric transformations, as well as in presence of noisy effects.

Therefore, the new set of invariants can be very useful in

the field of pattern recognition and image classification.

4.5 Image classification

In this experiment, the classification accuracy of the

proposed separable moment invariants is verified by

using the three well-known image databases, is Outex

texture database (Outex_TC_00010-r) (http://www.outex.

oulu.fi/), and contains 4320 gray-level images of 24 tex-

ture class with 180 instance per class. Moreover, Outex

database offers several variations of acquisition conditions

(illumination, spatial resolution, and camera rotation),

where all images are of size 128 × 128 pixels. The sec-

ond database is Caltech-101 [25], which contains a total

of 8677 images, split between 101 distinct object cate-

gories, with from 40 to 800 images per category, each

image is about 300×200 pixels. Finally, the third database

Table 4 Comparative results of noisy image reconstruction in terms of PSNRs (db)

Gaussian noise (ν = 0.01) Salt-and-pepper noise (3%)

Cameraman Mandrill Peppers Cameraman Mandrill Peppers

Methods PSNR values PSNR values

RTM 20.2458 20.2244 20.8964 20.3689 20.4726 20.465

RKM 20.1001 20.2059 20.7613 20.2028 20.5158 20.4371

RdHM 20.3312 20.2564 21.0734 20.4353 20.564 20.5085

RRM 20.2346 20.1725 20.8658 20.324 20.4288 20.4396

The maximum order used is 100 for each method

http://www.outex.oulu.fi/
http://www.outex.oulu.fi/
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Fig. 6 Reconstructed images (threshold) up to order 66. a RKM (p = 0.1, a = 256, α = 256, β = 160, and b = N + a), b RKM (p = 0.5, a = 256,

α = 256, β = 160, and b = N + a), c RKM (p = 0.9, a = 256, α = 256, β = 160, and b = N + a), d KRM (p = 0.1, a = 256, α = 256, β = 160, and

b = N + a), e KRM (p = 0.5, a = 256, α = 256, β = 160, and b = N + a), and f KRM (p = 0.9, a = 256, α = 256, β = 160, and b = N + a)

is Corel photo gallery [26], contains 80 object categories,

with about 100 images per object category. Each image has

the size of 120×80 or 80×120. In addition, Corel database

covers a variety of topics, such as airplane, buses, cars,

sunset, buildings, trains. Some examples from the three

databases are shown in Fig. 9.

In fact, three testing subsets of four classes, six classes,

and ten classes have been extracted from each database, in

order to demonstrate the discrimination capability of the

proposed RTMI, RKMI, and RdHMI in comparison with

the existing moment invariants GMI, TTMI (Tchebichef-

Tchebichef moment invariants), KKMI (Krawtchouk-

Krawtchouk moment invariants), RRMI (Racah-Racah

moment invariants), and dHdHMI (dual Hahn-dual Hahn

moment invariants). Furthermore, we used the conven-

tional 1-NN (k-nearest neighbors with k = 1) classifier

Fig. 7 Relative error of the proposed RTMI, RKMI, and RdHMI using Butterfly_37 image affected by a set of scaling factors (a) and transformed by

different rotation angle (b)
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Fig. 8 Relative error of RTMI, RKMI, and RdHMI using Butterfly_37 image affected by different salt-and-pepper density (a) and by additive Gaussian

noise zero mean and several standard deviation values (b)

Fig. 9 Some examples from the used databases: Caltech-101 (a), Corel (b), and Outex (c)
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Table 5 Image classification rate (%) using GMI, RTMI, RKMI, RdHMI, RRMI, TTMI, KKMI, and dHdHMI

Number of classes
Outex Caltech-101 Corel

4 6 10 4 6 10 4 6 10 Mean

GMI 76.11 67.87 62.56 78.56 68.64 54.89 77.5 52.83 39.7 64.30

RTMI 79.44 78.61 68.83 85.62 71.42 59.78 89.25 76.32 47.10 72.93

RKMI 79.72 79.35 70.33 86.15 73.17 60.52 89.50 77.60 48.20 73.84

RdHMI 79.26 79.17 69.83 85.08 71.89 59.69 89.00 75.17 48.20 73.03

RRMI 75.69 66.57 58.72 81.49 70.61 59.13 89.25 77.5 55.7 70.52

TTMI 75.14 58.8 57.83 82.02 69.57 58.27 88.75 73.5 47.0 67.88

KKMI 77.64 59.17 58.5 82.15 68.75 57.2 89.25 74.17 48.6 68.38

dHdHMI 78.89 61.94 57.33 80.16 70.27 58.67 88.25 76.67 46.3 68.72

The data in italic present the performance of our proposed methods in the image classification

with 5-folds cross validation and a moment invariants

order up to 10 with (n ≤ 5,m ≤ 5).

Regarding the comparison between the new moment

invariants and the traditional ones presented in Table 5,

the classification rate of the proposed invariants performs

significantly better than the classical ones for many cases.

Eventually, these new sets show sufficient stability to be

used as pattern feature for image classification.

5 Conclusions
In this paper, we have proposed a new set of bivariate

discrete orthogonal polynomials based on the product

of Racah polynomials by Tchebichef, Krawtchouk, and

dual Hahn polynomials. Using these bivariate discrete

orthogonal polynomials, we have defined three new sep-

arable 2D discrete orthogonal moments named: RTM,

RKM, and RdHM. Several experimental studies have been

introduced for measuring the performance of the pro-

posed methods in comparison with the classical known

moments in terms of image reconstruction quality (under

noisy and noise-free conditions), local feature extraction,

and image classification accuracy. It should be highlighted

that in most experiments, the proposed moments provide

better results than classical methods and their invariability

is highly confirmed.

As a conclusion, considering all presented performances

and robustness of this new set of moments, we are assured

of their ability to give a better representation of the image

content that can be extremely helpful in the fields of

image analysis. Thus, in our future works, we will focus

on improving the numerical stability of the proposed

moments and presenting a fast algorithm for computa-

tion of large size images, instead of the straightforward

algorithm.
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