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A computationally rapid image analysis method, weighted overdetermined regression, is presented for two-
dimensional (2D) Gaussian fitting of particle location with subpixel resolution from a pixelized image of light intensity.
Compared to least-squares Gaussian iterative fitting, which is most exact but prohibitively slow for large data sets, the
precision of this new method is equivalent when the signal-to-noise ratio is high and approaches it when the signal-to-
noise ratio is low, while enjoying a more than 100-fold improvement in computational time. Compared to another
widely used approximation method, nine-point regression, we show that precision and speed are both improved.
Additionally, weighted regression runs nearly as fast and with greatly improved precision compared to the simplest
method, the moment method, which, despite its limited precision, is frequently employed because of its speed.
Quantitative comparisons are presented for both circular and elliptical Gaussian intensity distributions. This new image
analysis method may be useful when dealing with large data sets such as those frequently met in astronomy or in single-
particle and single-molecule tracking using microscopy and may facilitate advances such as real-time quantification of
microscopy images.

Introduction

The images of objects, as recorded by cameras, are most

conveniently represented by two-dimensional (2D) circular or
elliptical Gaussian distributions of light intensity. Some cases
represent diffraction-limited point sources, for which 2D Gaus-

sians are themost computationally tractable representation of the
Airy disk, and deviations from the quality of being an Airy disk
are minor in practice.1 This is so for observations of stars and

other elliptical features in digital images,2-4 fluorescent mole-
cules,5-8 and quantum dots.9 Cases involving larger objects do
not involve diffraction and produce images naturally modeled

using Gaussians. This is so for particle image velocimetry (PIV),
colloids, and bubbles.10-12This paper concerns how to determine
the parameters of 2D Gaussian intensity distributions in a
computationally efficient fashion.

The best accuracy and precision currently comes from optimiz-
ing the parameters using least-squares iterativeGaussian fitting;13

this is so especially at low signal-to-noise levels, but this iterative

method is computationally expensive. It requires on the order of
tens ofmilliseconds per object when using current state-of-the-art

desktop personal computers. For applications such as single-
particle tracking and single-molecule tracking, the total number

of fits needed to analyze one data set may be on the order of 1
million, which currently can require hours of computation.
Similar considerations are present in the astronomy community.

This is why, to analyze large data sets, it is common to use the

centroid and moment methods,2,12,13 which are computationally
quicker but sacrifice precision. These methods do not determine
all the parameters of Gaussian distributions, neither their width

nor amplitude. Some other estimators have been developed that
retain much of the computational efficiency of the centroid
method, while giving results comparable to iterative methods;

but they hold only at very high levels of signal-to-noise ratio or are
otherwise limited.11,14 They are standard in applications where
the signal-to-noise ratio is high, such as PIV. For applications
where noise cannot be ignored yet precision is critical, iterative

methods remain standard.5,8,13

In the method we develop below, the computational demands
approach those of the fastest methods, yet the resulting precision

approaches that of least-squares Gaussian iterative fitting, even
when the signal-to-noise ratio is low, and equals it when the
signal-to-noise ratio is high. Even for the lowest signal-to-noise

ratios, where the iterative method maintains some advantage
regarding precision, our new method may represent a desirable
alternative when working on large data sets, as it runs over 2

orders of magnitude faster than iterative methods.

Simulation and Methods

Image Models. Data similar to that expected from typical
microscopy experiments were simulated in order to compare
quantitatively the efficacy of various fitting methods. For some

applications, such as PIV, a circular or elliptical Gaussian
intensity distribution is almost an exact representation of the
expected signal. For other applications, most notably single-

molecule microscopy, the true signal is the diffraction-limited
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Airy spot. When pixelation and noise are considered, the Airy
spot is close to being a 2DGaussian, so that, for fitting purposes,

the 2D Gaussian is an almost universally employed approxima-
tion. For simplicity, the signals simulated here were 2D circular
and elliptical Gaussians. At the end of this paper, we compare
them explicitly to calculations that consider the full Airy spot.

EllipticalGaussians were generatedwith theirmajor andminor
axes aligned with the x and y directions of the pixelated image.
This method could be trivially extended by adding an additional

parameter θ, the angle at which the major axis forms with the
x-axis. However, bear in mind that a common application of
elliptical Gaussians is to fit the images of fluorescent particles to

which astigmatism has been applied using a cylindrical lens to
encode z-dimension information.6 In such cases, the orientation
of the cylindrical lens is known, and generally it is alignedwith the

detector. Then θ is an unnecessary parameter, and better fits are
obtained using fewer parameters. In the discussion that follows,
while many different aspect ratios were tested, for clarity, the
majority of the analysis shown here refers to a set aspect ratio,

widths of 1 and 1.5 for x and y, respectively.
In order to represent actual measurements, for each trial, a 2D

Gaussian was generated at a random position not necessarily

centered on a pixel. For circular Gaussians, the peak width or
standard deviation of the Gaussian was fixed to 1 pixel. Addi-
tional simulations not included here reveal that results were

qualitatively similar, evenwhen thewidthwas varied significantly.
One exception of course is when thewidth is small enough that the
intensity is limited to a single pixel, at which point no subpixel
methods can be employed. Another exception is the method

developed by Nobach et al.,11 which depends strongly on peak
width, and for which the 1-pixel standard deviation of the
Gaussian was near the optimum anyway. Both the number of

photons incident upon a pixel and the shot noise typical in charge-
coupled detector (CCD) gain are Poisson processes. This noise
was incorporated by selecting a random value from a Poisson

distribution of mean N, where N was the number of counts for
that pixel. To determine the effect of varying the signal-to-noise,
the number of total counts in the pristine signal was varied, and a

constant background noise, normally distributed with a standard
deviation of 25,was added.Thus, therewas a constant noise of 25,
and additional noise where signal was present, scaling as the
square root of N, N being the number of incident photons or

photoelectrons. The analysis here assumes that the constant
background level, which is generally easily obtainable, has
already been subtracted and that the background noise level is

known. Each trial was generated independently, then fit with all
the fitting methods to allow direct comparison of results. Addi-
tionally, when calculating the signal-to-noise ratio, for simplicity,

this article considers only the background noise.
To further mimic typical experimental conditions, the initial

imagewas generated usingmore pixels thanwould be analyzed by
the fitting methods whose efficacy would subsequently be com-

pared.The portion towhich the fit was appliedwas determined by
selecting the brightest pixel in this image, then selecting a regionof
the appropriate size centered around that pixel. Some fitting

methods, particularly at low signal-to-noise levels, have a ten-
dency to localize to the center of the region selected for fitting. By
selecting the region to be fit in this fashion, rather than on the true

center of the signal, which is known for simulations but not
experiments, the fits we obtained were representative of actual
experimental constraints.

Simulations were also run with shot noise absent by applying
normally distributed noise whose level was the same everywhere
in the image. While not included here, these simulations showed

efficacy, regarding reliability of the fit and dependence of the fit
on the signal-to-noise ratio, qualitatively similar to the simulated

images reported below that better approximate microscopy
images.

Finally,while the 2DGaussian is a nearly universally employed
approximation of the full Airy spot pattern, simulationswere also

run to determine to what extent this approximation affects the
precision. For these simulations, the background and shot noise
were applied as usual, but this time they were applied to the Airy

spot:
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where r is the distance from the origin, NA is the numerical
aperture of the objective (0.75), λ is the wavelength of the light
(570 nm), and J1 is the Bessel function.

13 Each pixel represented

100 nm, a common experimental resolution. These simulations
were only run for the two leadingmethods, iterative optimization,
and the weighted regression method developed here.

Fitting Methods. The algorithms employed split into two

categories: those that directly solve for the parameters, and those
that employ iterative optimization to find their best values. Three
of the methods compared here;the moment method, the regres-

sion method employed by Nobach, and the weighted overdeter-
mined regression method we develop in this article;fall into the
first category. For a circular Gaussian, four parameters suffice to
describe the Gaussian: the x and y positions, the width of the

Gaussian, and the amplitude. Another parameter, the total or
integrated brightness of the Gaussian, frequently used in tracking
algorithms, is a combination of the width and the amplitude. For

elliptical Gaussians, either one or two additional parameters are
needed; if the major and minor axes are aligned with the x and y

coordinates, splitting the width parameter into two parameters,

one for the width in each direction, suffices. If the orientation is
unknown, an additional parameter must be introduced for that
term.

Moment Method. The moment method is a computationally
simple method to calculate the position. For each dimension, the
center is given by

Cx ¼

P

i

P

jðxi 3 IijÞ
P

i

P

j Iij

where xi is the position in that dimension, and Iij is the intensity of
a given pixel.12 Because of its extreme computational simplicity

and reasonable accuracy, this method is one of the most widely
used methods when analyzing large quantities of data.2 Com-
pared to the other methods compared here, the moment method

does not determine exactly the sameparameters.While it finds the
position, it finds neither the width of the Gaussian nor its
amplitude; instead, complementary methods determine related
parameters. One such parameter, the total brightness of the

particle, combines information from the amplitude and the
widths, and is simply determined by adding up the intensity of
all nearby pixels. The width is indirectly related to another

parameter, the radius of gyration, and a final parameter, the
ellipticity, provides a measure of whether the Gaussian is circular
or elliptical, though it does not distinguish the orientation.12 Of

these, only the total brightness lends itself to direct comparison
with parameters determined by the other techniques, and hence is
the only one explored in this paper.
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As an aside, it is helpful to be aware that the literature is
inconsistent regarding the name of this method. While it is often

referred to as the moment method, it is also frequently referred to
as the centroid method.13 Despite the fact that the moment
method is often referred to as the centroidmethod, it is important
to distinguish this from a similarmethod, also sometimes referred

to as the centroid method, which is similar except that the
intensity term, Iij, is replaced with a constant. This paper does
not employ the latter.

Nine-Point Regression. This method, developed by Nobach
and Honkanen,11 represents one of the latest in a series of
methods developed for PIV. As time has progressed, methods

have evolved to correct for deficiencies caused by pixel-locking,
diffraction-limited lenses, and other deviations from ideal Gaus-
sian intensity distributions. Fully described elsewhere,11 this

method applies regression to the nine point region that includes
the brightest pixel, exactly solving for the ellipticalGaussian in the
absence of noise. This method works admirably for the high
signal-to-noise ratio problems for which it is designed, but

struggles with noise. The implementation described inherently
treats all Gaussians as elliptical with unknown orientation.
Iterative Optimization. The optimization method employed

here is the downhill simplex method,13 commonly used for
particle tracking. The specific implementation employed here
uses Matlab’s fminsearch.m function. Simplex methods are both

significantly simpler to implement andmore commonly available,
so they tend to be employed frequently. However, quasi-Newton
optimization methods are almost always the most computation-
ally efficient,15 so, for comparison, an implementation of the

quasi-Newtonmethod, available in lsqnonlin.m, part ofMatlab’s
Optimization Toolbox, was similarly tested, as well as the related
Levenberg-Marquardt optimization. Simulation confirmed that

quasi-Newton optimization is faster for this problem, frequently
requiring approximately 30% less computational time, but with
results otherwise identical to the downhill simplex method.

Results for Levenberg-Marquardt were comparable. However,
all optimization methods were found to occasionally fail to
converge, returning infinite or undefined results for some para-

meters. Additionally, while the downhill simplex method would
generate these values and continue running, the quasi-Newton
and Levenberg-Marquardt methods would instead crash, termi-
nating the simulation. The lesser computation time using the

quasi-Newton method is negligible compared to the computa-
tional benefits of all the noniterative methods. Since all iterative
optimization results were identical apart from minor differences

in computational time, the decision was made to employ the
downhill simplex method in the comparisons that follow.

We also note that iterative optimization depends somewhat

upon the initial guesses of the parameters. The initial estimates
employed here were the position of the brightest pixel and the
intensity of the brightest pixel for that amplitude, and the
standard deviation of the peak is used as proxy of the width.

Experimentation revealed that even providing the actual values
(before noise) altered the computation time by a factor of only
2 or less. For applications where this were significant, hybrid

methods might be desirable, employing the best of the other
computationally simplermethods to generate the initial estimates.
OverdeterminedWeighted Regression. This method, devel-

oped in this paper, takes advantage of a computationally simpler
least-squares estimator and incorporates additional features to

compensate for noise. Sample implementations in Matlab are
included in the Supporting Information. For the case of a circular

Gaussian, the intensity of the image is described by

Ixy ¼ A 3 e
-ððx-x0Þ

2 þðy-y0Þ
2Þ=ð2

3
w2Þ þ εxy

where Ixy is the intensity of the pixel, A is the peak amplitude, x
and y are the coordinates of the individual pixels, x0 and y0 are the

position of the center of the Gaussian,w is the standard deviation
or width, and εxy corresponds to noise. An additional relatively
constant background term may also be included; generally it is
possible to determine the background intensity of an image and

subtract that, a necessary step for employing this algorithm. In the
absence of noise, it is possible to exactly transform this to a linear
equation through use of the logarithm

x2 þ y2 ¼ ð2 3x0Þ 3 x þ ð2 3 y0Þ 3 y þ ð-2 3w
2Þ 3 ðlnðIxyÞÞþ

ð2 3w
2
3 lnðAÞ-x0

2
-y0

2Þ

which can equivalently be expressed as a linear equationwith four
unknowns:

x2 þ y2 ¼ a1 3 x þ a2 3 y þ a3 3 ðlnðIxyÞÞ þ a4

In this case, we already know for each point the values of x, y, and
Ixy. As long as more pixels are included than the number of
unknowns, the system is overdetermined, and it is possible to
directly determine estimates for the coefficients an using linear

least-squares regression, after which one can substitute for the
desired values.

A similar equation describes the elliptical Gaussian:

Ixy ¼ A 3 exp -
ðx-x0Þ

2

2 3wx
2

þ
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When transformed by the logarithm, this yields

lnðIxyÞ ¼
-1
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Again this is a linear equation, in this case with five unknowns:

lnðIxyÞ ¼ a1 3 x
2 þ a2 3 x þ a3 3 y

2 þ a4 3 y þ a5

While simple to implement, these transformations neglect the
influence of noise, for which it is necessary to compensate. First,
notice that noise, while approximately symmetrically distributed

originally, is asymmetrically transformed when one takes the
logarithm. Second, one must recognize that the various compo-
nents of noise per pixel generally are constant (background noise,

etc.), or else scale at a rate lower than the number of counts (
√
N

for Poisson shot noise). As such, pixels with greater intensity (on
average, as some are higher due to noise) have a higher signal-to-

noise ratio. When working on the logarithmic scale, the pixels
with greater intensity have both higher signal-to-noise ratios and
more symmetric noise. Therefore, it is better to assign more
relative weight to the brighter pixels. Further, it is helpful to

employ a threshold, such that pixels below a given intensity are
not counted, particularly as it is necessary to exclude any pixels

(15) Press,W.H.; Teukolsky, S. A.; Vetterling,W. T.; Flannery, B. P. Numerical
Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press:
New York, 2007; p 1235.
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with negative intensity with respect to the background, which
cannot appropriately be transformed to our logarithmic scale.

The approximate mean noise level for the entire image is
generally easy to obtain; for images with large regions of back-
ground, the standard deviation of the background regions suf-
fices. Assuming this level of noise for each pixel, it is possible to

determine an estimate of the noise level of each pixel on the
logarithmic scale, which is then used to assign the appropriate
weighting. While this weighting ignores contributions from shot

noise, shot noise is only significant relative to background noise
for the brightest pixels, which anyway have the highest overall
signal-to-noise ratios. This then alters slightly the relative weight-

ings of those pixels but this was found to have minimal signifi-
cance.

Two additional steps were important for elliptical Gaussian

distributions. When a square region of the original image was
selected to be fit, for elliptical Gaussians this contains manymore
pixels that contain no signal. Hence, it is important to exclude
contributions from points that contain only noise. To do so, we

first quickly determine which rectangular subregion of the image
contains some signal from the object, and restrict the algorithm to
that region. Additionally, a higher-than-usual threshold is em-

ployed tominimize the contribution of remaining points with low
signal-to-noise.

Results and Discussion

Convergence Failure. In order to accurately compare the
methods, it must be recognized that some of the methods fail to
converge upon a solution sometimes. This ratio, the fraction of

instances that a givenmethodoutright failed, is plotted against the
signal-to-noise ratio in Figure 1a for circular Gaussian distribu-
tions. Outright failure is considered to be when the position was
off by more than 2 pixels, or the width, amplitude, or total

brightness is off by more than 200% from the actual value.
Infinite and undefined values are also considered to be failures. If
even a single parameter was not found properly, the fit for that

object using that method was disregarded.
Unsurprisingly, the moment method, due to its simplicity,

demonstrates the greatest stability, continuing to generate results

even at the lowest signal-to-noise ratios. Iterative optimization is
the next most stable method, exhibiting failure to converge a few
percent of the time for signal-to-noise ratios less than 5. Our
weighted regressionmethod is not muchworse for signal-to-noise

ratios larger than 5, failing marginally more often (less than 0.5%
additional failure, none above a signal-to-noise ratio of 7.5).
Results below a signal-to-noise ratio of 5 are worse, skyrocketing

to near complete failure when the signal-to-noise ratio was less
than 4. This is a consequence of the thresholds employed; at
higher signal-to-noise ratios, they serve to exclude noisy points,

improving the fit, but when the signal-to-noise ratio is low, not
enough points are left to solve the linear regression problem. As
such, no data is reported for weighted regression with a signal-to-

noise ratio below 4. Themethod of nine-point regression fares the
worst, failing more than 1% of the time even at a signal-to-noise
ratio of 15, and more than 50% of the time for signal-to-noise
ratios less than 5. However, as some fraction of the objects are fit

at all levels, in the discussion below we report results for all levels.
When elliptical Gaussians are analyzed (Figure 1b), several

differences are observed. The failure rates for the moment and

iterative optimization methods are nearly the same; however, the
threshold signal-to-noise ratio below which our weighted regres-
sionmethod has difficulty increases to roughly 8, belowwhich the

method does not dowell. Neither does nine-point regression do as

well as previously. In this case, the essential difference is not the
switch to elliptical Gaussians, as the method inherently treats all
Gaussians as elliptical, but that the method performs less well

when widths deviate from their optimum values.
In addition to the four methods compared in depth in this

article, the 2D Gaussian fitting package in Research Systems

Incorporated (RSI) IDL Version 6.3, gauss2dfit.pro, is also
included because of empirical observations that the failure rate
for this program is high, despite widespread usage of this
program. The outputs and error messages for gauss2dfit.pro

reveal that this program is an implementation of iterative opti-
mization. When the example implementation included in IDL’s
online help is run, catastrophic failures occur at least 1% of the

time. To provide a more direct comparison with the simulations
run here, the example implementation was modified slightly to
have comparable widths and image sizes. These simulations were

not a direct match to the other comparisons in this paper, as they

Figure 1. The fraction of objects for which fitting fails to converge
appropriately for the various methods, as a function of the ratio of
the signal-to-noise. Signal is considered to be the amplitude of the
Gaussian intensity distribution. The background shot noise is not
included in this ratio but was included in the calculations. (a) The
failure fraction for circular Gaussian intensity distributions calcu-
lated using the momentmethod (black squares), nine-point regres-
sion (green circles), iterative optimization (red triangles), and
weighted overdetermined regression (blue stars). (b) The failure
fraction for the same methods but using elliptical Gaussian in-
tensity distributions. As described in the text, comparisonwas also
made to the 2D ellipticalGaussian fittingmethod included in IDL,
which is a commercially available program (pink open triangles).
Symbols are the same in both panels.
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did not include the Poisson distributed shot noise, and as the
Gaussians were always perfectly centered in the image; both

differences should, if anything, have decreased the number of
fitting failures. Despite this, the failure rate for the built-in IDL
function gauss2dfit.pro is typically the largest or nearly so. While
its precision, accuracy, and computation time were not examined

in depth as were the other methods in this article, there is no
obvious improvement relative to the other iterative methods, and
frequent catastrophic failures. At least one drop-in replacement

for gauss2dfit.pro is available for IDL, which uses Levenberg-
Marquardt least-squares optimization.16

Systematic Deviations.When systematic deviations from the

true result are known to hold, one can adjust for this. Systematic
deviations are shown in Figure 2 for circular Gaussians and in
Figure 3 for elliptical Gaussians. So long as the signal-to-noise

ratio is known, it is possible to determine this systematic deviation
and to compensate for it as follows. The background noise level
was already determined, so for each object, the approximate
signal-to-noise level is known, as the fitting itself determines the

signal. At the same time, for cases where compensation involves
multiplying by a constant that depends on the signal-to-noise
ratio, the uncertainty must be similarly multiplied. All precisions

determined in this article have been compensated this way.
The possibility of pixel-locking is not included here, though

previous analysis shows this to be a significant problem for the

moment method but not for iterative optimization methods.13

Tests on our part confirmed that pixel-locking is not significant
for ourweighted regressionmethod.As anticipated on grounds of
symmetry, no systematic offset is observed in position. Similarly,

no systematic offset is observed in the amplitude for the three
methods capable of determining it.

In contrast, bias is observed regarding thewidthof theGaussians

(Figure 2a) and also regarding the total brightness (Figure 2b). Bias
using the iterative optimization and moment methods is compara-
tively negligible, while nine-point regression shows more bias, and

our weighted regression method shows significantly more, particu-
larly as the signal-to-noise ratio decreases.

Equivalent relations hold for elliptical Gaussians, shown in

Figure 3, with the exception of the nine-point regression. For
elliptical Gaussians, the data shown here refer to a width in x of
1 pixel, and a width in y of 1.5 pixels. As noted earlier, the nine-
point regression is optimized for a width of 1 pixel and is

increasingly inaccurate otherwise, as demonstrated in Figure 3b.
As the total brightness (Figure 3c) depends upon the width, the
effect propagates to inaccuracy regarding brightness.

CircularGaussianPrecision. InFigure 4, precision is plotted
as a function of signal intensity at fixed background noise level.
Position. Figure 4a shows that subpixel resolution is easily

obtained with all methods, but that the resolution depends on the
analysis method. The iterative optimization method provides the
best results; however, our weighted regression method achieves
nearly the same level of precision. When the signal-to-noise ratio

is at least 30, a level not uncommon for even single-molecule
fluorescent dyes, the precision of weighted regression is only 5%
worse. Even for a signal-to-noise ratio of only 20, weighted

regression is only 15%off of the level of the iterative optimization.
For ratios above 100, the results for the two are virtually
indistinguishable. In contrast, the precision of nine-point regres-

sion is uniformly at least 50% worse, even for ratios above 500.
The moment method demonstrates the worst resolution, never
giving a better resolution than approximately 0.01 pixels. This is

not unexpected, as the moment method suffers from flaws

including bias toward the center of the image, and has significant
problems at low signal-to-noise.13

Width. Figure 4b shows the uncertainty of the width of the
Gaussian as a function of the signal-to-noise. Here the compar-
ison is slightly more subtle, with iterative optimization and

weighted regression each faring well. At signal-to-noise ratios
above 50, those twomethods are indistinguishable. As the signal-
to-noise ratio decreases, iterative optimization pulls ahead, reach-

ing a lead of nearly 13% at a signal-to-noise ratio of 8. Beyond
that, weighted regression narrows the lead, surpassing iterative
optimization at a signal-to noise ratio of 5. The probable reason is
that, as this behavior parallels with the cases when weighted

regression begins to fail to fit some objects, the hardest to fit
objects are discarded by weighted regression, whereas iterative
optimization fit them but imprecisely. The method of nine-point

regression is not even in contention, as it is generally at least

Figure 2. Offset values plotted as a function of the ratio of the
signal-to-noise for circularGaussian intensity distributions. Signal
is considered to be the amplitude of the Gaussian intensity dis-
tribution. Note that once this systematic deviation has been
determined, it can be compensated if desired. (a) The systematic
offset in width for circular Gaussian intensity distributions ob-
tained using the three methods that determine it: nine-point
regression (green circles), iterative optimization (red triangles),
and weighted overdetermined regression (blue stars). (b) The
systematic offset in the total brightness for circular Gaussian
intensity distributions, compared using fourmethods: the moment
method (black squares), nine-point regression (green circles), itera-
tive optimization (red triangles), and weighted overdetermined
regression (blue stars). Symbols are the same in both panels.

(16) http://www.physics.wisc.edu/∼craigm/idl/fitting.html.
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4 times less precise. The moment method is not capable of

determining the width of a distribution.
Total Brightness. Figure 4c shows the total intensity of the

peak, which is the signal strength integrated over all pixels. In

Figure 3. Offset values plotted as a function of the ratio of the
signal-to-noise for elliptical Gaussian intensity distributions. Sig-
nal is considered to be the amplitude of the Gaussian intensity
distribution. (a) The systematic offset in width for elliptical Gaus-
sian intensity distributions for the three methods that determine it:
nine-point regression (green circles), iterative optimization (red
triangles), and weighted overdetermined regression (blue stars).
(b) The comparable systematic deviation in the width y. (c) The
systematic offset in the total brightness for elliptical Gaussian
intensity distributions for four methods: the moment method
(black squares), nine-point regression (green circles), iterative
optimization (red triangles), and weighted overdetermined regres-
sion (blue stars). Symbols are the same in all panels.

Figure 4. Precision and brightness uncertainty plotted as a func-
tion of the signal-to-noise ratio for circular Gaussian intensity
distributions. The values shown here incorporate the corrections
needed to compensate for systematic deviations. (a) The uncer-
tainty in locating the center of a circular Gaussian intensity
distribution for the moment method (black squares), nine-point
regression (green circles), iterative optimization (red triangles), and
weighted overdetermined regression (blue stars). (b) The uncer-
tainty in the determination of the width of the Gaussian intensity
distribution. (c) The uncertainty in the determination of the total
brightness. Symbols are the same in all panels.
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reality, the fourth independent variable is the amplitude, not the
total brightness, as the total brightness depends upon both the

amplitude and the width. However, the total brightness is com-
monly used in tracking, and for comparison purposes is more
convenient, as this can be determined for all four methods,
whereas amplitude as such is not determined by the moment

method. While not shown separately, precision in amplitude is
virtually equivalent for iterative optimization and weighted re-
gression regardless of the signal-to-noise ratio. As such, the

differences here between iterative optimization and weighted
regression stem almost entirely from the difference in precision
of the width. With respect to brightness, for the first time greater

precision can sometimes be obtained with a method other than
iterative optimization. Anywhere below a signal-to-noise of about
20, themomentmethod is themost precise. Above that value, both

iterative optimization and weighted regression surpass it by an
ever-increasing margin. As a result, since the moment method is
computationally the simplest, for any signal-to-noise ratio below
20, the moment method should be run in addition to any other

method employed, and the brightness from the moment method
used. Nine-point regression is by far the least precise, being
generally at least 5 times less accurate than the other methods.

Elliptical Gaussian Precision. Results for elliptical Gaus-
sians, shown in Figure 5, are similar. While simulations were run
for a wide range of aspect ratios, the representative results

displayed here are for widths of 1 and 1.5 pixels for x and y,
respectively. As usual, the weighted regression method asympto-
tically approaches the precision of iterative optimization as the
signal-to-noise increases. The nine-point regression method re-

veals further troubles, due to its reliance on the width of the
Gaussians being approximately 1. Recall that our weighted
regression method fails for a significant fraction of objects with

a signal-to-noise ratio below 8, so results obtainedbelow that level
likely only represent the cases that are easiest to fit, hence the
relative improvement of weighted regression at those levels.

When examining the effect of varying the aspect ratio at a fixed
signal-to-noise ratio, for the most part the relative results are
independent of the aspect ratio. Results at a fixed signal-to-noise

ratio of 20, with a width in x of 1 pixel and varying the width in y,
are shown in Figure 6. All methods other than the simplest, the
moment method, begin to break down when any width decreases
below 1 pixel, sometimes from outright failing to determine the

parameters and sometimes from showing rapid decrease in
precision (Figure 6a). In general, as the aspect ratio increases,
the precision increases slightly, as more pixels are available to be

fit, but the increases in precision are comparable for most
methods. The nine-point regression method, unsurprisingly,
is the major exception, clearly demonstrating an optimum width

of 1 pixel. Additionally, iterative optimization exhibits higher
uncertainty as the aspect ratio approaches 3.

On a side note, it is also helpful to remember that, because of
the definition of signal-to-noise ratio employed in this paper, peak

amplitude relative to background noise, when the total number of

Figure 5. Precision andbrightness uncertainty plotted as a function
of the signal-to-noise ratio for elliptical Gaussian intensity distribu-
tions. (a) The uncertainty in locating the center of an elliptical
Gaussian intensity distribution for the moment method (black
squares), nine-point regression (green circles), iterative optimization
(red triangles), and weighted overdetermined regression (blue stars).
(b) The uncertainty in determining the width in x, which was set at
1 pixel. (c) The uncertainty in determining the width in y, which was
set to be 1.5 pixels. (d) The uncertainty in determining the total
brightness. Symbols are the same in all panels.
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counts is held constant but one of the widths changes, the signal-
to-noise ratio varies accordingly.

Airy Spot. 2D Gaussians are nearly universally employed as
substitutes for the full Airy spot pattern for purposes of image
analysis, and simulations confirm that for the most part, differ-
ences are negligible. The uncertainties at low signal-to-noise ratio

are virtually indistinguishable for width, position, or amplitude,
regardless of whether the data being fit is a 2D Gaussian or an
equivalent Airy spot, differing by only a few percent, roughly the

accuracy of these simulations. Intuitively, this makes sense, as at
low signal-to-noise ratios, the differences between a 2D Gaussian
and an Airy spot are trivial relative to the noise level. In contrast,

differences begin to manifest at higher signal-to-noise ratios of
several hundred. Here, while the overall uncertainty is low, due to
thehigh signal-to-noise ratio, the quality of the fits slowlydiverges,

with themethods not fitting theAiry spot quite as precisely as they
do the2DGaussian.Thedifferences arenot very significant for the
width or the amplitude, not even 20% larger even at a signal-to-
noise ratio of 3000. The most significant differences are seen for

position, where the uncertainty for the iterative optimization is
nearly 80% greater for the Airy spot and the uncertainty for
weighted regression is nearly 40% larger (Figure 7).

Computational Time. When only one single object is fit, all
methods examined here run in under 20 ms on a 2.4 GHz Core 2
Duo. The processes are CPU limited, and use only one core. As

such, computational time is not a consideration for some applica-
tions, if a limited number of objects are going to be fit. However,
for many other applications, such as movies of how the positions
of fluorescent particles changewith time, it is not uncommon to fit

hundreds of thousands or millions of objects and the needed
computational time adds up significantly. For systems such as
stochastic optical reconstruction microscopy (STORM), which

often requires fitting millions of objects, Gaussian fitting is
currently the most time intensive component of data analysis.5

The improvement in computational time seen here for the

weighted regression method would facilitate advances such as
real-time analysis of such microscopy images.

Computational time does not depend significantly upon the

signal-to-noise ratio. Themoment method is the fastest, requiring
18 μs per object on average. Weighted regression and nine-point
regression are comparable, requiring 83 and 104 μs, respectively.
As expected, iterative optimization is costly, requiring 16 ms

per object. Even when the slight performance boost that the
quasi-Newton method would enjoy (roughly 30% faster) is
considered, our weighted regression method is easily 2 orders of

magnitude faster than iterative optimization. When considering
elliptical Gaussians, the results are similar for most methods, with

Figure 6. Various quantities plotted as a function of the aspect
ratio (widthy/widthx), at a fixed signal-to-noise ratio of 20 and
width in x of 1 pixel. (a) The fraction of objects for which fitting
fails to converge appropriately for the various methods for the
moment method (black squares), nine-point regression (green
circles), iterative optimization (red triangles), and weighted over-
determined regression (blue stars). (b) The uncertainty in the
location of the center of the Gaussian intensity distribution;
symbols same as above. The sawtooth pattern observed in the
moment method occurs because whenever the aspect ratio in-
creases by 0.5, the subregion of the image selected for fitting also
increases. The increased uncertainty for iterative optimization and
weighted regression may also correspond to the larger number of
pixels used, which due to the lower signal-to-noise of many of the
pixels, may effectively decrease the true signal-to-noise ratio.
(c) The uncertainty in determining thewidth, y. (d) The uncertainty
in determining the brightness. Symbols are the same in all panels.
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the exception that the addition of an additional parameter slows
the iterative optimization significantly.

Conclusions

Themethodwe developed here, weighted regression, represents
an alternative to existing methods and offers vast improvement
for a wide range of applications. Its computational efficiency is
sufficient to make it a viable alternative even to the moment

method for large data sets, with substantial improvements in
precision. When precision is important, at all except the lowest
signal-to-noise ratios, weighted regression represents a direct

replacement for any other method, having equivalent or greater
precision, and running more than 2 orders of magnitude faster
than any method generating comparable results.

Weighted regression asymptotically approaches the preci-
sion of the leading method, iterative optimization, as the
signal-to-noise ratio increases, yet even at low signal-to-noise,

it does not deviate substantially from it. Further, even at low
signal-to-noise, the slight loss in precision of weighted regres-
sion compared to iterative optimization may be worthwhile
due to its hundred-fold reduction in computational time. If

precision is of the utmost importance, weighted regression can
be employed as a first-round fitting, completely determining
one parameter, the amplitude, and providing near-optimum

initial estimates for the other parameters. While this will still
run substantially slower thanweighted regression on its own, it
will generally represent a 2-fold increase in speed over iterative

optimization on its own.
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Figure 7. The uncertainty in position for simulations of both the
Airy spot pattern and its equivalent 2DGaussian approximation. (a)
Abscissa is the signal-to-noise range, from 3 to 3000, for Gaussian
iterative optimization (red triangles), Airy spot iterative optimization
(black open triangles), Gaussianweighted regression (blue stars), and
Airy spot weighted regression (green open stars). (b) Abscissa is
expanded to more clearly show the region at highest signal-to-noise.
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