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Abstract

Image processing and computer vision on mobile devices have a wide range of applications such as digital image enhancement

and augmented reality. While images acquired by cameras on mobile devices can be processed with generic image processing

algorithms, there are numerous constraints and external issues that call for customized algorithms for such devices. In

this paper, we survey mobile image processing and computer vision applications while highlighting these constraints and

explaining how the algorithms have been modified/adapted to meet accuracy and performance demands. We hope that this

paper will be a useful resource for researchers who intend to apply image processing and computer vision algorithms to

real-world scenarios and applications that involve mobile devices.

Keywords Mobile devices · Computer vision · Image processing

1 Introduction

In general terms, a mobile device is an electronic device

that can easily be moved from one place to another. Early

mobile devices had limited functionality and performance

when compared to their non-mobile counterparts. An exam-

ple is the portable wireless handset (walkie-talkie). With the

miniaturization of computing hardware and advances in bat-

tery technology, however, this gap has been closing. The
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category of mobile devices has now expanded to include

a variety of gadgets such as laptops, mobile phones, game

consoles, smartphones, tablets, and smart watches.

Digital cameras were a later addition to most mobile

devices. The first consumer laptop [103] was made in 1982,

and the first webcam [44] made it to the market only in 1994.

Even then, it was not a built-in-device but a peripheral. The

first mobile device with a built-in camera was the mobile

phone. In 2000, Samsung and Sharp released mobile phones

with built-in rear cameras [20]. Interestingly, it took another

6 years before a laptop with a built-in camera was made.

Convenience of carrying and use, and the ability to quickly

share photographs, resulted in quick early adoption of cam-

era phones [24]. By the time smartphones arrived, built-in

cameras on a mobile phone were an expected feature.

The early cameras on mobile devices were much more

limited in functionality and image quality than analog cam-

eras, or even digital cameras. The common form factors of

mobile devices [39] required the lenses and image sensors

to be small, resulting in a relatively small amount of light

available for capturing a photograph. With ordinary digital

cameras, this can be compensated by increasing the expo-

sure time. However, mobile devices are mostly held in hand

during use. The camera is very likely to shake during a long

exposure, resulting in blurry photographs. As a consequence

of these limitations, the early mobile phone cameras were
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mostly used in situations where it is difficult to use a larger

camera.

However, even the early mobile devices had one advantage

over other digital cameras. Camera phones had more com-

puting power when compared to low-end digital cameras.

The presence of a digital camera and computing power on

the same device provided an opportunity for processing the

photographs before the user got to see them. Digital image

processing techniques had been used in several application

areas as early as in 1960s [65] and were already an established

field of research by the time the first camera phones arrived.

Therefore, it did not take much time before computer vision

and image processing algorithms started getting deployed in

mobile devices.

Images acquired using mobile devices can—in theory—be

processed with generic image processing algorithms. How-

ever, there are numerous constraints and external issues that

make such algorithms less effective when directly applied.

Most mobile devices still have less computing power when

compared to computers that are specifically designed for

image and video processing. They are also battery-powered,

and the limited energy contained in the battery has to be

conserved for the primary function of the device (in case of

a mobile phone, connectivity, and communication). Smart-

phones in particular are bringing in additional challenges to

mobile image processing. Market competition has resulted in

smartphones with cameras that have very high resolutions,

having a large number of pixels to process calls for efficient

algorithms. Another important, non-technical factor is the

need to meet the user expectations. Smartphone users expect

high-quality photographs and videos from their devices, and

they also want the processed content to be available very

quickly.

In this paper, we survey image processing and computer

vision algorithms that are used on mobile devices, explain-

ing how the algorithms have been modified/adapted to work

under the constraints and requirements mentioned above. As

industry researchers whose primary focus is mobile image

processing, we believe that we have a good grasp of research

advances, device limitations, and user needs, all of which are

key factors in selecting the right algorithm for a given task.

Focusing the survey on mobile devices will help researchers,

who intend to apply image processing and computer vision

algorithms to mobile applications, to identify the critical

issues and select algorithms that are more effective for the

intended usage scenarios.

While drones and autonomous vehicles are not mobile

devices in the above context, the technology surveyed in this

paper can also be deployed in these two device categories.

This is because they share several characteristics and limita-

tions that mobile devices do. Examples are limited processing

power, use of battery power, and unstable photography due

to movement.

The rest of this paper is organized as follows: Sect. 2

describes the evolution of mobile devices to their current

state, in terms of hardware, features, and software libraries.

Section 3 surveys in detail the algorithms for still image pro-

cessing, while Sect. 4 covers video processing techniques.

Section 5 introduces image processing techniques that make

use of multiple cameras, or cameras supported by other mul-

tidimensional sensors, that have an overlapping view of the

same scene. Section 6 is a brief but broad survey of image

analysis, with particular emphasis on machine learning-

based techniques. After a quick look at recent trends (Sect. 7),

we conclude the paper in Sect. 8.

2 Mobile devices as image processors

As mentioned in Sect. 1, the cameras in mobile devices lack

larger lenses and sensors, requiring image processing tech-

niques to improve image quality. The present-day mobile

devices contain both hardware and software that support

faster and more efficient image processing. This section is

a brief survey of such hardware and software.

2.1 Processing units

According to the von Neumann architecture [79] for dig-

ital computing devices, the central processing unit (CPU)

of a computer handles all computational tasks. However,

by the time camera phones were developed, this architec-

ture had already evolved to distribute computing tasks in

multiple ways. Multiple cores within the CPU operate in

parallel to speed up computations. Graphics processing units

(GPUs) handle the display of content at high resolution and

frame rates. Digital signal processors (DSPs) are used where

extensive signal processing is required. These hardware tech-

nologies were already available when the first smartphones

were introduced to the market. While von Neumann archi-

tecture is based on serial data processing, parallel processing

of image data was an active research topic by the time com-

mercial digital cameras became available [19].

Due to the large number of pixels in an image that has

visually pleasing resolution, image processing algorithms are

computationally intensive. The presence of multiple CPU

cores can allow the device to make sure that the CPU is not

fully occupied with image processing, allowing the device to

perform other required tasks. This is especially useful since

image processing is not the primary function of many con-

sumer mobile devices; for instance, the primary function of

a smartphone is to keep the user connected to a mobile com-

munication network. Surveys by Georgescu [30] and Singh

et al. [93] demonstrate how mobile CPUs became more pow-

erful and feature-rich over time.
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GPUs were originally designed to relieve the CPU from

the burden of rendering high-quality graphics on display

devices. They consist of a large number of smaller com-

puting units, so that graphics operations on pixels could be

carried out in parallel. Almost all present-day mobile devices

have GPUs in them. However, it was soon observed that

the computing power of a GPU was not fully utilized at all

times, depending on what has been displayed on the device.

This resulted in general-purpose computing on graphics pro-

cessing units (GPGPU), allowing computing tasks that are

normally carried out on a CPU to be performed on the GPU

[57]. Given that images contain a large number of pixels,

and most image processing techniques require a repetition of

operations on some or all of these pixels, a GPU is a good can-

didate for handling image processing tasks. Consequently, it

is quite common to use the GPU of a present-day mobile

device for image processing tasks. Software libraries such

as OpenCL can be used for using GPUs for general purpose

computing tasks.

Deep neural networks (DNNs) are an AI technology that

is very effective in a variety of image processing and anal-

ysis tasks. DNNs benefit from the ability to process image

pixels in parallel, and therefore the parallel architecture of

GPUs. On mobile devices, the already-present GPU could

be used for deep neural inference (processing or analyzing

data using DNNs) when the workload of rendering graphics is

low. Hardware manufacturers have also designed AI accel-

erators that are dedicated for implementing DNNs. Some

mobile device makers such as Apple (Bionic AI Processor),

Google (PixelCore), and Qualcomm (Hexagon 780) have

added hardware AI accelerators to their devices [5,84].

2.2 Cameras and additional sensors

Cameras in mobile devices have improved in terms of sensor

resolution; ten Megapixel smartphone cameras are common

at the time of writing. Given the constraints due to form

factor, however, it has been difficult to improve the optics of

mobile cameras. Multiple cameras facing the same direction

(see Sect. 5) have been added to smartphones as a solution

to this problem.

Mobile devices also contain other sensors that are either

essential for their main function (for example, microphone

for a mobile phone), or auxiliary (such as gyrosensors and

accelerometers on a smart phone). Data from some of these

sensors can be used for improving the quality of photographs

and enable more accurate analysis of the scene captured in

the photograph.

2.3 Software Neural engines

Software libraries (middleware) that cater for faster deep neu-

ral inference are another new addition to mobile devices.

NVIDIA’s CuDNN library is one of the earliest of such

libraries, though it was not specifically designed for mobile

devices. ARM Compute Library [7], Qualcomm’s Snap-

dragon Neural Processing engine(SNPE) [83], and Apple’s

CoreML [3] library are some examples that are specifically

designed for the platforms of the respective makers. Tensor-

flow Lite [51] and Morpho’s SoftNeuro [74], on the other

hand, provide support for multiple platforms. Tensorflow

Lite is open-source and provides a high-level applica-

tion programming interface (API) for several programming

languages, facilitating quick development. SoftNeuro has

industry-oriented features such as model encryption and the

ability to apply device specific tuning to trained machine

learning models, for faster inference.

3 Image processing

This section focuses on still image processing for mobile

devices. An image processing algorithm accepts an image

as input and outputs a modified version of the input image.

A common example for image processing on a smartphone

is to improve the visual quality of a photograph taken by

its user. The rest of this section highlights the motivation for

mobile image processing and describes a few techniques that

are widely used.

3.1 Characteristics of mobile image processing
compared to DSLR Cameras

One of the most significant differences of hardware speci-

fications between mobile devices and DSLR (digital single

lens reflex) cameras is the size of image sensors. DSLRs

are equipped with image sensors with sizes such as full

frame (36×24 mm), APS-H (28.7×19 mm), APS-C (22.2×

14.8 mm), and so on. All of these are more than ten times

larger in surface area than those for mobile devices. Pixels

in a larger sensor can receive a larger amount of light. This

contributes not only to capture bright images with less noise

even in dark scenes but also to enlarge the dynamic range,

thereby preventing over-exposure and under-exposure.

Ability to attach a variety of lenses is another functionality

of DSLRs. Lenses with large aperture facilitate capturing

bright images as well as a more impressive bokeh effect.

On the other hand, lenses with long focal lengths provide

optical zoom with high zoom ratio. Such lenses tend to be

thick because they consist of systems of multiple lenses. The

form factors of mobile devices do not allow for thick lenses,

limiting their optical zoom potential. Hence, most cameras

for mobile devices need to rely on digital zooming.

From the early days of mobile image processing in fea-

ture phones, engineers have taken efforts to improve image

quality using software. Improved image quality due to image
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processing combined with other advantages (portability, and

all-in-one functionality including image editing and net-

work connectivity) has helped mobile devices to successfully

establish themselves as alternatives to digital cameras. More

and more people take photographs with their smartphones

instead of carrying around a digital camera, not only in their

daily lives but also for trips and other events.

3.2 Basics of mergingmultiple images

In order to overcome the limitations of mobile devices with

respect to noise, dynamic range and zoom quality, one of the

most powerful approaches by software is to capture multiple

images in a short interval and merge them to synthesize into a

result image [98]. Multi-frame noise reduction (MFNR), high

dynamic range (HDR) compression, and super-resolution

are techniques to reduce noise, enlarge dynamic range, and

increase resolution, respectively.

There are three advantages in smartphone hardware, when

compared to DSLRs: (1) faster shutter speed and frame rate

due to electronic shutters, (2) large amount of RAM, and (3)

powerful processors.

Using electronic shutters enables capture at extreme high

speed such as 1/32,000 s, while mechanical shutters generally

max out at 1/4000 or 1/8000 s. The faster the shutter speed is,

the more robust the image is to motion blur, which is difficult

to be removed by post-processing. Because of the absence of

moving mechanism in electronic shutters, the frame rate can

be increased, shortening the interval between captures. Elec-

tronic shutters enable us to shoot with 30 frames per second

(fps), while mechanical shutters support around 10 fps. It is

highly important for merging images to shorten the interval

of captures in order to reduce ghosting artifacts. Therefore,

smartphones have more potential in terms of capturing mul-

tiple images for post-processing than DSLRs.

Recent image sensors have resolutions of higher than

ten megapixels, which sometimes requires more than 100

Megabytes of memory to hold multiple captured images.

Smartphones are equipped with several Gigabytes of RAM

because they are designed to run rich applications such as

web browsers, media players, and games. In addition, such

large size of RAM is embedded in SoC (System-on-a-chip),

not as an external storage, providing smartphones with suffi-

cient data throughput to store images capture with high frame

rates.

Recent smartphones also have powerful processors, which

are comparable with those for desktop and laptop computers.

As mentioned in Sect. 2, other types of hardware resources

are also available for image processing.

In conclusion, smartphones have mechanisms and com-

putational resources to compensate for the disadvantages of

the optical system by image processing. In the following sub-

sections, we will deep dive into some algorithms to enhance

image quality of smartphones by merging multiple images.

3.3 Blur and image alignment

When we take a picture without using a tripod, the camera

may move slightly due to hand jitter during capture even if

we take as much care as possible. Such movement causes

two kinds of blur [82].

One is called motion blur, which results in a streaking of

moving objects. Because motion blur occurs when a cam-

era or objects in a scene move during capture, it tends to

occur when capturing with long exposure time. Motion blur

is hardly removed once caused. Therefore, keeping exposure

time short is an important factor to prevent from motion blur.

The other is ghosting artifacts, which is caused by the syn-

thesis of the same object to different positions, while merging

objects in multiple images taken with intervals. Ghosting arti-

facts are caused by both global motion due to hand jitter and

local motion due to moving objects in a scene. The former

can be reduced by aligning images to be merged to cancel

out global motions. The latter should be treated in merging

algorithms, but it can be made easier by shortening intervals

of continuous shooting.

In the early development of cameras for feature phones,

manufacturers considered embedding a motion sensor in the

phone. However, it was difficult to install a motion sensor in

addition to a camera mechanism in a small housing due to

space constraints and was also unprofitable in terms of price.

SOFTGYRO® [76], which was developed by Morpho Inc.

in 2004, is a software-based estimator for motion between

images. The offset between similar image features on adja-

cent frames of a multi-frame sequence was used to estimate

camera motion.

3.4 MFNR—Multi-frame noise reduction

As described above, it is important to take pictures with

high shutter speed to prevent motion blur. The drawback of

increasing shutter speed is the need to gain up pixel values

to obtain bright images, which results in noisy images (espe-

cially in night scenes). Denoising filters are typical solutions

to reduce noise, but they also lose some texture in the scene.

Noise reduction in images is a well-researched topic, and

a variety of techniques is available to choose from [35].

Multi-frame noise reduction (MFNR) is a technique to reduce

noise by merging multiple images taken within short intervals

under the same capture parameter. Assuming that additive

independent and identically distributed (i.i.d) noise contami-

nates an original image, averaging pixel values is the simplest

and the most effective approach to reduce noise. As described

above, image alignment is mandatory for MFNR to prevent

ghosting artifacts. In addition, MFNR needs to detect moving
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objects in a scene. When moving objects are detected, they

should be either aligned locally before merging or excluded

from merging.

MFNR is a common noise reduction scheme on recent

smartphones, especially for night scenes. While some smart-

phone manufacturers research in-house MFNR algorithms,

others use MFNR products licensed by software vendors.

Morpho’s PhotoSolid® [76] is an example MFNR-capable

product that has been widely used in smartphones globally.

3.5 High dynamic range (HDR) imaging

Dynamic range of a scene is a relative scale of irradiance in

the entirety of the captured scene. On the other hand, dynamic

range of an image sensor is a relative scale of a signal that

one pixel element of the sensor can detect. If the dynamic

range of an image sensor is narrower than that of a scene,

high irradiance exceeds the capacity of the pixel element to

white out (over-exposure), and/or low irradiance falls below

the threshold of the pixel element to detect a signal to black

out (under-exposure).

Because over- and under-exposed pixel values cannot be

recovered from a single capture, one of the most effective

ways to store the information in high dynamic range scenes

is to take multiple captures with different amount of expo-

sure [16]. If parameters of an image acquisition pipeline can

be obtained, we can estimate the true radiance values in the

scene. Because estimated radiance values at the same posi-

tion of a scene are proportional to the exposure levels of the

captures, they can be merged to compensate lost information

by over- or under-exposure. A good survey on HDR imag-

ing is available in [27]. Recent research has also focused on

HDR imaging for mobile devices, due to more challenging

requirements [38].

Images merged with multiple exposures should be basi-

cally stored using a data format with more bits than the

number of bits used during capture, in order to preserve both

their dynamic range and tone. On the other hand, displays

and commonly used image file formats only support images

with a lower number of bits (for example, 8 bits per channel).

A technique called tone mapping is used to map the levels in

the merged image to the output. Local tone mapping, which

adapts mapping to local appearance, is commonly used to

emphasize local contrasts (textures) while limiting the global

dynamic range.

Figure 1 shows an example of HDR merge. Three images

at the top row are the input images to HDR algorithm, which

are sequentially taken with different exposures. In Fig. 1b,

while the stained glasses are over-exposed, the other areas are

relatively dark. HDR algorithm compensates the textures of

the stained glasses from the low exposure input (Fig. 1a) and

brightens the other areas by merging the middle exposure

(Fig. 1b) and the high exposure (Fig. 1c) images with the

optimal weight ratios with respect to the local brightness.

One problem in the above approach is that the parameters

of the image acquisition pipeline in smartphones are rarely

available to those outside the companies involved in device

manufacture. Image processing software vendors therefore

use methods that do not depend on such parameters. Morpho

HDR™ [76] is one such product that directly merges images

taken with different exposures and performs tone mapping

to synthesize an output image without using the linearized

relation of radiance values.

3.6 Super-resolution

Pixels in an image sensor sum up the number of incoming

photons; therefore, taking a photograph with a digital camera

amounts to applying a low-pass filter to a scene. Tiny textures

(such as characters that measure a few pixels) are observed

blurry. This loss of resolution is increasingly noticeable when

performing digital zoom. Conventional image resizing algo-

rithms, such as bilinear interpolation, cannot recover the

high-frequency information of a scene once lost.

Super-resolution imaging, [99] a technique to increase

the resolution of an image, is not just a interpolation of

signals. Super-resolution algorithms are classified into two

categories: (1) approaches that reconstruct a high resolution

image from itself and (2) approaches that register multiple

low-resolution images to interpolate sub-pixel information.

Super-resolution from a single image exploits prior infor-

mation about images of natural scenes such as fractals, which

assumes that there are large-scale structures in an image

that are similar to the small structures to be super-resolved.

Registration-based approaches assume that input images are

misaligned to each other due to hand jitter and thus sub-pixel

information can be derived. Some cameras have a func-

tionality named pixel shift, which captures multiple images

while shifting the image sensor. Such active and controlled

shift of images enables registration-based super-resolution

even if a camera is mounted on a tripod. We have devel-

oped Morpho Super-Resolution™, [76] a registration-based

super-resolution product that does not require pixel shift.

Image alignment at sub-pixel level, using the motion estima-

tor software SOFTGYRO® [76], contributes to the increase

of resolution of tiny textures.

Figure 2 shows a comparison between the images upsam-

pled by bilinear interpolation (Fig. 2a) and super-resolution

(Fig. 2b). Bilinear interpolation results in blurry edges

because it cannot reproduce the high-frequency components

by interpolation. Super-resolution, on the other hand, can

reproduce the sharp edges and the textures.
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Fig. 1 HDR merge. a Low

exposure input. b Middle

exposure input. c High exposure

input. d Result of HDR

algorithm

Fig. 2 Comparison between

bilinear upsampling and

super-resolution. a Upsampled

image by bilinear interpolation.

b Upsampled image by

super-resolution
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3.7 Remarks

The algorithms that we described in this section are based

on Computational Photography (CP). CP-based techniques

try to model optical processes using computations on the

captured image data. While this has been the established

method for image processing until recently, machine learn-

ing (ML) methods are increasingly being applied to solve the

same problems. Machine learning methods use statistical pat-

terns learned from a collection of training data, to process

previously unseen data. For instance, an ML-based super-

resolution image processor infers finer details from learned

patterns while enlarging an image. Machine learning-based

methods require a larger amount of computing resources

when applied to high-resolution images. Also, their black

box nature makes it difficult to explain and correct problems

that occur with specific input data. Due to these limitations,

CP-based techniques are still more popular for still image

processing on mobile devices.

4 Video processing

A video consists of a series of image frames. Applying a

single frame image processing algorithm to each frame, we

obtain a solution for videos. Then, a question arises: Do

we really need special algorithms for videos? The answer

is “yes.” We will justify this answer with four reasons.

The first reason is an obvious one. Some quantities are

defined only for videos. An important example is inter-frame

camera shake, which leads to shaky videos. Video stabiliza-

tion, an algorithm to suppress it, has no counterpart in still

image technologies, because they have no inter-frame values.

Note that still image stabilization is for suppressing intra-

frame camera shake.

The second is the difference between spatial and tempo-

ral processing. Simply put, the goal of still image algorithms

is to create clear and natural images. The point here is that

“natural” means natural as a single frame. A natural video

consists of natural frames, but a sequence of natural frames

does not always form a natural video. There are many “natu-

ral as a still image, but not as a video” examples. For instance,

suppose that there is an apple in a given video frame. If this

apple disappears in the following frame, that looks unnatu-

ral as a video, but the frame may still be natural as a single

photograph. Because still image algorithms only make use

of spatial information, temporal naturalness cannot be guar-

anteed. Therefore, we need to design algorithms that look

after the naturalness of video. Further, if we take temporal

information into consideration, results of processing will be

better.

The third is processing time. Think about shooting a 60

FPS video. Then, any real-time video processing solution

must finish its process for each frame within 1/60th of a sec-

ond. For the still image case, we do not have this kind of strict

processing time limit. For this reason, we should develop

much faster algorithms than their still image counterparts.

The fourth and the last reason is power consumption.

Think of a fast enough, but power-consuming algorithm. Tak-

ing a still image is a one-shot process. A single peak in the

power consumption graph might not cause any severe prob-

lem to the device, or the user. However, shooting a video is a

continuous and relatively long process. A power-consuming

algorithm can cause a smartphone to heat up. Because this is

not an acceptable situation for many phone or device makers,

we have to keep algorithms lite, or less power consuming.

Video stabilization [107], noise reduction, [88] frame rate

conversion [81], and motion blur reduction, to name a few,

are widely used video processing algorithms. At the time of

writing, most video processing algorithms are based on con-

ventional image processing approaches rather than machine

learning-based approaches. This is because conventional

vision technologies have so far been faster and more stable.

However, this situation is changing rapidly. The challenge

we are facing at the moment is to find effective approaches

that can process video using the current machine learning

techniques.

In the following subsections, we will briefly explain two

typical video solutions: video stabilization and noise reduc-

tion.

4.1 Video stabilization

In this subsection, we abbreviate inter-frame camera shake

as camera shake. As stated above, video stabilization is an

algorithm only for video. Hence, this is a suitable exam-

ple to begin with. Stabilization algorithms are classified into

either 3D or 2D models. In the 3D algorithm, both scenes

and camera positions/orientations are reconstructed in 3D

world coordinates. Then, we virtually recapture a video with

a smoothed trajectory to obtain a stabilized output. In theory,

it is an ideal algorithm. However, for mobile video process-

ing, it is too unstable and heavy.

In the 2D algorithm, there is no reconstruction. We approx-

imate camera movement as 2D homographies between

frames and smooth them out using a filter. Suppose that

xi ∈ P
2 is coordinates of i-th frame, and Hi is the approxi-

mated homography between first and i-th frames:

xi = Hi x1. (1)

Think about a transformation of i-th frame xi → x
′
i :

x
′
i = H−1

i xi . (2)
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This transformation is equivalent to the alignment of the i-th

frame to the first. Thus, every single frame can be aligned

to the first frame. In some sense, this is perfect stabilization,

because there is no camera motion left in the output. The

problem of this simple algorithm, however, is that it also

wipes out intentional camera motion such as panning and

tilting. We need to design a filter f to separate camera shake

from intentional motion and suppress only the former:

x
′
i = f

(

H−1
i

)

xi . (3)

This equation shows what 2D video stabilization does in the

simplest form. The 2D model has only limited stabilization

capability, but it is robust and fast. Hence, in the mobile field,

the 2D algorithm is a more realistic choice. Morpho’s video

stabilization product, MovieSolid® [76], is an example video

processing solution based on 2D video stabilization.

One drawback of the 2D model is the smaller angle of

view in the stabilized video. The shape of input frames is

rectangular, but warping of the 2D model changes this. For

many use cases, non-rectangular video is not acceptable. To

retain rectangular shape, we have to crop the output, and this

results in a smaller angle of view.

Naively thinking, the most important ingredient of 2D

video stabilization seems to be filtering of homographies. Of

course, it is important, because a better filter results in more

smooth output. However, in practice, there is a more critical

issue that has to be handled during processing. To avoid arti-

facts, or unnaturalness, is top priority in video acquisition for

consumer devices. To the human eye, a stabilized video with

artifacts looks much worse than a video with no stabiliza-

tion. Here, the main causes of artifacts are lens and rolling

shutter distortion. Figures 3 and 4 show examples of them in

extreme cases. Because it is impossible to describe them as

2D homographies, thinking of an algorithm handling them

properly is essential for 2D video stabilization development.

4.2 Noise reduction

In order to perform noise reduction, we need to manipulate

all the pixels in image frames. Hence, this kind of algorithm

tends to be slow and power consuming. A technique widely

used to mitigate this difficulty is infinite impulse response

(IIR) filters. IIR filters utilize not only the input frame but

also the output of past frames. The simplest example is as

follows:

x̂i = α x̂i−1 + (1 − α)xi , (4)

where xi and x̂i are pixel values of input and output of i-th

frame, respectively. The coefficient α is for controlling the

strength of the filter. This simple filter is equivalent to a more

complicated one:

x̂i = (1 − α)

(

xi + αxi−1 + α2xi−2 + · · ·

)

. (5)

This is a filter for summing up input values over an infinite

number of frames, and α determines the weight of the past

frames. It is difficult to implement filter (5) directly. How-

ever, using IIR filter (4), an effectively identical filter can be

implemented easily. In this way, IIR filters enable us to real-

ize fast and lightweight noise reduction, compared with still

image-based techniques.

For temporal filtering, it is important to compare pixels

corresponding to the same 3D world coordinates. For exam-

ple, pixel values x̂i−1 and xi in filter (4) must point to the

same 3D coordinates. Hence, image frames must be aligned.

There are two types of alignment: global and local. The global

alignment is for compensating camera motion and usually

approximated by a 2D homography. The local one is for

subject motion, such as walking or waving hands. When mis-

alignment occurs, pixels of different 3D points are added up

to create output, and the image gets blurred. Local misalign-

ment is particularly problematic, since it leads to ghosting, as

shown in Fig. 5. Therefore, an accurate alignment algorithm

and a mechanism to suppress blurring artifacts are necessary

to develop video noise reduction algorithms.

In Fig. 6, we show a result of Morpho’s video noise reduc-

tion technology, Morpho Video Denoiser™ [76].

5 Multi-camera image processing

As mentioned in earlier sections, it is difficult to fit a good

lens with a wide range of variable focus on most mobile

devices. One simple solution to this problem is to add multi-

ple cameras that are facing the same direction. Each camera

can have a different lens, providing the device with a good

combination of lenses such as tele, normal, and wide. The

camera that is most appropriate for the current scene can be

used for taking the photograph.

However, in practice, using multiple cameras leads to

additional complications. A user should be able to use a

single zoom control to zoom in and out, while the cam-

era is automatically selected in a way that is transparent

to the user. Additional software support is required for

smooth transition between cameras, especially when captur-

ing videos.

The presence of multiple cameras sharing the field of view

also brings in the ability to estimate distances to the objects in

the scene. By estimating the relative depth between objects,

a depth map of the scene can be constructed. The most com-

mon use for a depth map is applying a bokeh effect, something

that is difficult to achieve using small lenses in mobile phone
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Fig. 3 Lens distortion. Because

of the un-homographic nature of

lens distortion, a straight object

(pole) appears curved

Fig. 4 Rolling shutter is a

widely used shutter mechanism

for mobile imaging. It induces

artifacts, because the image is

captured line by line. In this

example, the pole appears

unnaturally bent

Fig. 5 Ghosting artifacts.

Moving subjects, namely the

metronomes and the Ferris

wheel, are strongly blurred

because of local misalignment
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Fig. 6 Input and output of a

video denoising algorithm. a A

frame from an input video. b

The output of the corresponding

frame. The IIR filter reduced

noises in the frame (see the

building wall), and suppressed

artifacts (the woman is waving

her hand)

cameras. This effect occurs when the depth of field pro-

duced by the lens setting of the camera is shallower than

the depth range of the scene that is being photographed. The

objects near the distance of focus appear sharp, while other

objects appear blurry. Most flagship smartphones apply vari-

able amounts of blur to objects depending on their depth

inferred from the depth map, to achieve fairly realistic bokeh

effects.

Estimating depth using multiple cameras had already

been researched well before the invention of mobile phones

[10,91]. Camera calibration is a necessary step for enabling

depth estimation using computational imaging techniques.

Metric calibration Zhang et al. [105] uses a reference cal-

ibration object of which the feature dimensions are known

with very high precision. Online calibration [43] using infor-

mation derived by image processing can be used to get rid of

errors in initial calibration during manufacture and also cater

for errors in degradation.

5.1 Light field cameras

Light field cameras record both the intensity of light in a

scene and the direction that the light rays are traveling in

space. They are implemented by placing a microlens array

in front of a conventional image sensor. The arrangement of

lenses and the resulting data enable “post-focusing” images,

that is focusing images at multiple distances after capturing

them. The concept of the light field camera was proposed by

Gabriel Lippmann in 1908, but the first digital implementa-

tions with post-focusing ability arrived much later [70,80].

Several manufacturers (Adobe, Lytro, Pelican Imaging) have

produced consumer-level light field cameras.

Despite their ability to produce photographs with variable

focus and depth of field, light field cameras have not been

deployed on mobile devices at the time of writing. The key

reasons behind this are their low spatial resolution and high

cost. If further research and development facilitate overcom-
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ing these two weaknesses, they will be a valuable addition to

mobile devices.

5.2 Image-like data from other sensors

Several other alternatives to using multiple cameras have also

been researched. Structured light had been used for recording

depth information since the early days of machine vision

[33]. Structured infrared (IR) is a better alternative for use

with ordinary photographs, since it is not visible to the human

eye. Microsoft Kinect used structured IR to sense depth and

motion for gaming applications [73]. Apple’s iPhone uses a

structured IR grid of approximately 30,000 points for true

depth estimation.

Coded light technology is an extension of structured light.

With coded light, a rapidly changing series of infra-red pat-

terns are projected onto the scene while recording an image

sequence. The resulting image sequence can be used for

deriving more accurate depth information than with struc-

tured IR. Some models of Intel’s RealSense depth cameras

use coded light for depth estimation [53].

Time of flight (ToF)-based systems have been used in radar

and other distance measurement applications for more than

30 years [1]. The basic principle behind these systems is to

send a signal from the device, receive its reflection from an

object and calculate the distance to the object based on the

time between sending and reception. ToF sensors are now

used in several smartphone models, for depth estimation and

tracking subjects while capturing video.

Light detection and ranging (LiDAR) is a variant of ToF-

based systems that uses a laser or a grid of lasers for depth

map creation. LiDAR sensors are widely used on automo-

biles, but their recent adoption to Apple’s iPad Pro suggests

the possibility of them being used in other mobile devices.

Both ToF and LiDAR sensors capture low resolution and

sparse depth data due to the limited sensing range and power

consumption constraints. This calls for additional image pro-

cessing where a smooth depth map over all image pixels is

required [9,11,77,104].

6 Image analysis

In image analysis, symbolic information regarding the image

content is extracted from the image. While such information

can be used for a variety of purposes, we herein discuss appli-

cations of image analysis on mobile devices, with emphasis

on image enhancement.

6.1 Face image analysis

Faces are one of the most common types of content in pho-

tographs taken using smartphone cameras. Automatic face

detection in digital images has been researched since 1970s,

and there is a large amount of published work available

[46]. Digital cameras that employ face detection for control-

ling focus and exposure were commercially available even

before smartphones were made. These devices mostly used

techniques based on Haar cascade classifiers [100]. Addi-

tional features such as facial expression (particularly smile)

recognition [61] and age estimation [2] followed, allowing

customization of image processing parameters to produce

better photographs.

Face landmark detection enabled further localization of

different regions of a face, enabling different filtering param-

eters for skin, facial hair, eyes, lips, etc. A number of

techniques, including active shape modeling, Haar cascade

classifiers, regression trees and deep neural networks can

be used for fast and accurate face landmark detection [56].

Several smartphone makers include face landmark detection

software in their devices.

With the advances in machine learning technologies, fur-

ther detailed face analysis has become possible in smart

phones. Face mesh modeling [4,55] and portrait-relighting

[34] with good accuracy are now available in high-end smart-

phones.

6.2 Image classification

In this section, we discuss image classification and object

detection. Image classification and object detection are tech-

niques that may focus not only on local features of a specific

region of an image but also on global features, and in some

cases, context. In recent years, methods using convolutional

neural networks (CNN) or transformers have become the

mainstream methods to capture both local and global fea-

tures of an image and utilize them for recognition.

Image classification is a technology that aims to esti-

mate the category to which the image belongs. It has various

applications. Some digital cameras and smartphones auto-

matically classify images in albums or change shooting

settings based on the result of image classification. Some

advanced driver assistance systems (ADASs) recognize road

signs in images captured by dash-cams via image classifica-

tion techniques.

A typical benchmark dataset for image classification is

ImageNet [17], where neural-network-based methods con-

tinue to have the highest accuracy since AlexNet [60]

in 2012. Continuously, researchers proposed new state-of-

the-art models with the new network structures following

AlexNet, which proposed ReLU and Dropout. GoogLeNet

[95] proposed the inception module, ResNet [40] showed

the effectiveness of the skip connections, SENet [49] pro-

posed the squeeze and excitation module, and EfficientNet

[96] aims to optimize the network depth, width and reso-

lution of the input images. Recently, structures based on
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attention, such as Vision Transformer [21], have also been

proposed. Besides, normalization of features, learning meth-

ods and new data augmentations also contribute to improving

the accuracy, for example, Batch Normalization [54], Layer

Normalization [8], Dropout [94], DropConnect [101], Cutout

[18], Random Erasing [108], mixup [106], and others.

In the context of neural networks, image classification is

essential not only for its use but also as a backbone for net-

work architectures used in other tasks. For mobile and edge

applications, the efficiency of performance versus computa-

tional complexity is important. MobileNet series [47,48,90]

are human-designed models with low computational com-

plexity, while NASNet [109] and EfficientNet [96] use the

model architecture search techniques to obtain good accuracy

versus computational complexity properties.

Also, techniques to reduce the number of parameters of

the trained models, such as pruning [36,37], quantization [50,

85], tensor decomposition [58] and distillation [45], make

models more suitable for mobile and edge inference. For

practical use, it is necessary to adjust the kernel size, the size

of intermediate features and other parameters to fit specific

hardware.

6.3 Object detection

Neural networks have also become the mainstream tech-

nology for object detection tasks in recent years. Object

detection, as the basis of image understanding and computer

vision, supports image-based applications in various fields

such as automatic driving, robot vision and security. Typical

benchmark datasets include PASCAL VOC [25,26] and MS

COCO [64], while Cityscapes [14] is a well-known dataset

for automotive applications.

In the past, handcrafted image features [histogram of

gradients (HoG) [15], SIFT [69] and others] and repre-

sentations such as the deformable part model (DPM) [28]

have been successful in the field of object detection. How-

ever, in recent years, detection techniques using neural

networks have outperformed them in terms of accuracy.

Neural network architectures for object detection have been

continuously evolving. Conventional R-CNN [31] architec-

ture performs classification on cropped object proposals;

Faster R-CNN [89] proposed end-to-end trainable 2-stage

architectures, whereas SSD [66] and YOLO [12,86,87] pro-

posed anchor-based one-stage architectures. Cornernet [63]

and Centernet [22] estimate object regions by heat map and

do not use anchors. DETR [13] uses the transformer struc-

ture.

In some applications, there are situations where it is

required to produce individual masks of object areas in addi-

tion to detecting them as rectangles. Instance segmentation

covers such tasks, and Mask R-CNN [42] and SOLOv2 [102]

are well-known examples.

For mobile and edge devices, the challenge is to reduce the

computational complexity of the neural network architecture.

In many cases, one-stage models such as SSD and Centernet

are advantageous. However, there are cases where relatively

lightweight inference can be made using two-stage methods

than one-stage methods. Therefore, when using object detec-

tion in edge devices, it is necessary to start by selecting the

backbone and the detection architecture depending on the

application.

6.4 Single image depth estimation

Using machine learning-based methods, it is possible to

analyze a single image and construct a depth map for the cor-

responding scene. Distance information and patterns learned

from the training data facilitate this, despite the complete

absence of depth information in the input image. In addition

to the applications of its multi-camera counterpart, single

image depth estimation provides a more convenient solution

for in-vehicle vision systems and drones. Using a single cam-

era eliminates the need for calibration and may require less

processing power if an efficient depth estimation algorithm

is used.

Many methods for directly estimating depth values using

deep neural networks (DNNs) have been proposed [23], [62],

and their accuracy has improved. Depth estimation is an ill-

posed problem because the depth map for a given input image

is not unique. Therefore, in order to obtain a reasonable solu-

tion, it is necessary to select appropriate training data for the

intended application. For research use, the KITTI Dataset

[29] and NYU Depth Dataset v2 [92] are commonly used.

Researchers in the industry often create their own datasets,

to match the application and the desired accuracy.

In general, it is costly to obtain sufficient depth data.

Therefore, in recent years, various methods that are capable

of training without ground-truth depth data have emerged.

For example, a method that indirectly obtains depth values

by estimating disparity map [32] and a self-supervised learn-

ing method by reconstructing images from time series images

have been proposed [71].

6.5 Image segmentation

The task of assigning a semantic label to each pixel of an

image is called semantic segmentation. The result of image

segmentation leads to a more detailed understanding of image

content. On a mobile device, such information can be used to

process each pixel differently according to its semantic label.

On a smartphone, accurate image segmentation can be used

for fine-level photo-enhancements.

Various methods using CNNs for semantic segmentation

have been proposed. For example, FCN [68] in which the

entire network is composed of convolution layers, is well
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known. Recently, a method that combines multi-scale seg-

mentation structure with an attention mechanism [97] has

achieved high accuracy. Another task that is similar to seman-

tic segmentation is to assign different labels to multiple

objects of the same class in an image, which is called Instance

Segmentation. Mask R-CNN [41] which is an extension of

Faster R-CNN [89] is well known as a representative method

for object detection. Another noteworthy technology is the

transformer [67]. This was originally invented in the field of

natural language processing, but has recently been applied to

a variety of vision tasks too. More recently, the task of adding

“Stuff” labels such as “sky” and “road” to Instance Segmen-

tation has been attracting attention. This is called panoptic

segmentation [59] and is currently a growing research topic.

Morpho Inc. recently published the results of a joint

research project with Denso Corporation that combines depth

estimation and semantic segmentation [78] for use in ADAS

applications. The depth map and the results of scene segments

can be combined to create a 2.5-dimensional scene. Fig-

ure 7a, b shows such a scene from two different viewpoints.

We expect that such multitask approaches that simultane-

ously infer different types of information will be actively

researched by various companies in future.

6.6 Remarks

With the recent advances in DNN technology, the state-of-

the-art accuracy for most image analysis tasks now comes

from machine learning-based methods. The presence of

GPUs and neural processing hardware in mobile devices has

allowed mobile devices to deploy these methods within them.

While the large size of some machine learning models makes

them less suitable for mobile devices, researchers have iden-

tified this as a problem and are working on possible solutions

such as creating lightweight models and compressing exist-

ing models.

7 Recent trends

Mobile devices are a relatively new category of computing

hardware and have been evolving fast. In this section, we

will have a quick look at some of the recent trends in mobile

devices and mobile image processing.

7.1 Sensing and capture

Ability to take better photographs can make subsequent pro-

cessing tasks much easier; while mobile devices are not going

to get any larger, camera and camera module manufacturers

have been working on acquiring images with better quality

under the given constraints.

Dual pixel auto-focus (DPAF) is one approach for improv-

ing images and video captured by mobile devices. On DPAF

image sensors, each pixel has two photodiodes that can oper-

ate either separately or together. Each diode has a separate

lens over it. When light goes through the lenses and hits the

diodes, the processor analyzes each diode’s signal for focus,

and once focus is achieved, the signals are combined to record

the image. DPAF can greatly enhance the quality of video,

since it facilitates quick and accurate focus without the need

for adjusting the main camera lens for focus. It also makes

following and keeping focus on moving subjects much easier

and more accurate. Originally developed as DSLR cameras

the main target, dual pixel AF sensors are now available in

high-end smartphones like Samsung Galaxy S7.

7.2 Semantic filtering

Another trend in smartphone image processing is to filter

different parts of an image using different parameters, to pro-

duce a photograph that is aesthetically more pleasing than the

original. For example, a selfie can be enhanced by smoothing

the skin on faces to diffuse wrinkles, freckles, etc., while still

keeping the eyes, hair and facial hair sharp. The background

can be blurred to create a visually pleasing portrait. Color

correction on skin regions, to achieve better skin tones, is

also possible. Such processing that depends on the semantics

of the scene can be collectively called “semantic filtering.”

Semantic-based filtering can be performed by segmenting the

image to identify regions corresponding to different objects,

and automatically selecting the most appropriate filtering

technique to enhance each region [75]. Most high-end smart-

phones apply some sort of semantic filtering techniques to

refine photographs [52].

7.3 Recent trends due to the COVID-19 pandemic

The COVID-19 pandemic (ongoing at the time of writing)

resulted in the emergence of new market needs that could be

fulfilled using image processing techniques. The increase of

remote work resulted in extensive use of video conferencing

software. This posed several challenges to the users. Expos-

ing the home environment to business meetings became a

considerable burden to the user, since the user has to either

clear up the camera’s field of view or locate in a way that

his/her privacy is not offended. The offset between the cam-

era position and the center of the computer display resulted

in perceived lack of eye contact.

The industry responded fairly quickly, using existing tech-

nology. Background replacement is now available in major

video conferencing software such as Zoom and Google Meet.

Gaze correction to emulate better eye contact is provided

by Apple iPhone models with depth-sensing capability, and
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Fig. 7 A 2.5D scene created by

combining depth and

segmentation information. a

While the result looks like an

image from this viewpoint, it is

made of voxels and therefore

contains depth information as

well. b When seen from a

different viewpoint, it can be

seen that the result contains

depth data and occluded regions

of the scene are missing in the

final result

Microsoft Surface Pro X [6,72]. Zoom also provides seman-

tic filtering functionality to make faces look better.

8 Concluding remarks

With increasing versatility of mobile devices equipped with

cameras, the types of image processing and analysis tasks

that they carry out have also increased. We presented a some-

what broad survey of such tasks, while highlighting how the

constraints and requirements differ from their non-mobile

counterparts. Due to the constraints in camera optics and

sensors, and also the power consumption, the algorithms

used have to be robust, yet efficient. They also require high

accuracy and speed and good output quality when it comes

to smartphones.

In order to achieve these objectives, researchers and

developers in the industry use a combination of algorithms,

heuristics, refinements and knowhow. Some of these are not

always novel, and some others are unpublished. Therefore, it

might be difficult for readers to find a lot of details on image

processing pipelines for mobile devices. We hope that this

survey provided the reader with some insights on potential

challenges in solving mobile computer vision problems and

possible approaches to solve them.
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