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Abstract. Mean shift is a nonparametric estimator of density which has
been applied to image and video segmentation. Traditional mean shift
based segmentation uses a radially symmetric kernel to estimate local
density, which is not optimal in view of the often structured nature of
image and more particularly video data. In this paper we present an
anisotropic kernel mean shift in which the shape, scale, and orientation
of the kernels adapt to the local structure of the image or video. We
decompose the anisotropic kernel to provide handles for modifying the
segmentation based on simple heuristics. Experimental results show that
the anisotropic kernel mean shift outperforms the original mean shift
on image and video segmentation in the following aspects: 1) it gets
better results on general images and video in a smoothness sense; 2) the
segmented results are more consistent with human visual saliency; 3) the
algorithm is robust to initial parameters.

1 Introduction

Image segmentation refers to identifying homogenous regions in the image. Vi-
deo segmentation, in this paper, means the joint spatial and temporal analysis
on video sequences to extract regions in the dynamic scenes. Both of these tasks
are misleadingly difficult and have been extensively studied for several decades.
Refer to [9,10,11] for some good surveys. Generally, spatio-temporal video seg-
mentation can be viewed as an extension of image segmentation from a 2D to a
3D lattice. Recently, mean shift based image and video segmentation has gained
considerable attention due to its promising performance.

Many other data clustering methods have been described in the literature,
ranging from top down methods such as K-D trees, to bottom up methods such
as K-means and more general statistical methods such as mixtures of Gaussians.
In general these methods have not performed satisfactorily for image data due
to their reliance on an a priori parametric structure of the data segment, and/or
estimates of the number of segments expected. Mean shift’s appeal is derived
from both its performance and its relative freedom from specifying an expected
number of segments. As we will see, this freedom has come at the cost of having
to specify the size (bandwidth) and shape of the influence kernel for each pixel
in advance.

The difficulty in selecting the kernel was recognized in [3,4,12] and was ad-
dressed by automatically determining a bandwidth for spherical kernels. These

T. Pajdla and J. Matas (Eds.): ECCV 2004, LNCS 3022, pp. 238–249, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Image and Video Segmentation by Anisotropic Kernel Mean Shift 239

approaches are all purely data driven. We will leverage this work and extend it
to automatically select general elliptical (anisotropic) kernels for each pixel. We
also add a priori knowledge about typical structures found in video data to take
advantage of the extra freedom in the kernels to adapt to the local structure.

1.1 Mean Shift Based Image and Video Segmentation

Rather than begin from an initial guess at the segmentation, such as seeding
points in the K-means algorithm, mean shift begins at each data point (or pixel
in an image or video) and first estimates the local density of similar pixels (i.e.,
the density of nearby pixels with similar color). As we will see, carefully defining
“nearby” and “similar” can have an important impact on the results. This is the
role the kernel plays.

More specifically, mean shift algorithms estimate the local density gradient
of similar pixels. These gradient estimates are used within an iterative procedure
to find the peaks in the local density. All pixels that are drawn upwards to the
same peak are then considered to be members of the same segment.

As a general nonparametric density estimator, mean shift is an old pattern
recognition procedure proposed by Fukunage and Hostetler [7], and its efficacy
on low-level vision tasks such as segmentation and tracking has been extensively
exploited recently. In [1,5], it was applied for continuity preserving filtering and
image segmentation. Its properties were reviewed and its convergence on lattices
was proven. In [2], it was used for non-rigid objects tracking and a sufficient
convergence condition was given. Applying mean shift on a 3D lattice to get a
spatio-temporal segmentation of video was achieved in [6], in which a hierarchical
strategy was employed to cluster pixels of 3D space-time video stack, which were
mapped to 7D feature points (position(2), time(1), color(3), and motion(1)).

The application of mean shift to an image or video consists of two stages. The
first stage is to define a kernel of influence for each pixel xi. This kernel defines
a measure of intuitive distance between pixels, where distance encompasses both
spatial (and temporal in the case of video) as well as color distance. Although
manual selection of the size (or bandwidth) and shape of the kernel can produce
satisfactory results on general image segmentation, it has a significant limitation.
When local characteristics of the data differ significantly across the domain, it is
difficult to select globally optimal bandwidths. As a result, in a segmented image
some objects may appear too coarse while others are too fine. Some efforts have
been reported to locally vary the bandwidth. Singh and Ahuja [12] determine
local bandwidths using Parzen windows to mimic local density. Another variable
bandwidth procedure was proposed in [3] in which the bandwidth was enlarged
in sparse regions to overcome the noise inherent with limited data.

Although the size may vary locally, all the approaches described above used a
radially symmetric kernel. One exception is the recent work in [4] that describes
the possibility of using the general local covariance to define an asymmetric
kernel. However, this work goes on to state, “Although a fully parameterized
covariance matrix can be computed.., this is not necessarily advantageous..”
and then returns to the use of radially symmetric kernels for reported results.
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The second iterative stage of the mean shift procedure assigns to each pixel a
mean shift point, M(xi), initialized to coincide with the pixel. These mean shift
points are then iteratively moved upwards along the gradient of the density fun-
ction defined by the sum of all the kernels until they reach a stationary point (a
mode or hilltop on the virtual terrain defined by the kernels). The pixels associa-
ted with the set of mean shift points that migrate to the (approximately) same
stationary point are considered to be members of a single segment. Neighboring
segments may then be combined in a post process.

Mathematically, the general multivariate kernel density estimate at the point,
x, is defined by

f̂(x) =
1
n

n∑

i=1

KH(x− xi) (1)

where the n data points xi represent a sample from some unknown density f ,
or in the case of images or video, the pixels themselves.

KH(x) = |H|−1/2K(H−1/2x) (2)

where K(z) is the d-variate kernel function with compact support satisfying the
regularity constraints as described in [13], and H is a symmetric positive definite
d× d bandwidth matrix. For the radially symmetric kernel, we have

K(z) = c k(||z||2) (3)

where c is the normalization constant. If one assumes a single global spherical
bandwidth, H = h2I, the kernel density estimator becomes

f̂(x) =
1

n(h)d

n∑

i=1

K

(
x− xi

h

)
(4)

For image and video segmentation, the feature space is composed of two inde-
pendent domains: the spatial/lattice domain and the range/color domain. We
map a pixel to a multi-dimensional feature point which includes the p dimen-
sional spatial lattice (p = 2 for image and p = 3 for video) and q dimensional
color (q = 3 for L*u*v color space). Due to the different natures of the domains,
the kernel is usually broken into the product of two different radially symmetric
kernels (superscript s will refer to the spatial domain, and r to the color range):

Khs,hr (x) =
c

(hs)p(hr)q
ks

(∥∥∥∥
xs

hs

∥∥∥∥
2
)

kr

(∥∥∥∥
xr

hr

∥∥∥∥
2
)

(5)

where xs and xr are respectively the spatial and range parts of a feature vector,
ks and kr are the profiles used in the two domains, hs and hr are employed
bandwidths in two domains, and c is the normalization constant. With the kernel
from (5), the kernel density estimator is

f̂(x) =
c

n(hs)p(hr)q

n∑

i=1

ks

(∥∥∥∥
xs − xs

i

hs

∥∥∥∥
2
)

kr

(∥∥∥∥
xr − xr

i

hr

∥∥∥∥
2
)

(6)
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As apparent in Equations (5) and (6), there are two main parameters that
have to be defined by the user for the simple radially symmetric kernel based
approach: the spatial bandwidth hs and the range bandwidth hr. In the variable
bandwidth mean shift procedure proposed in [3], the estimator (6) is changed to

f̂(x) =
1
n

n∑

i=1

c

(hs
i )p (hr

i )q
ks

(∥∥∥∥
xs − xs

i

hs
i

∥∥∥∥
2
)

kr

(∥∥∥∥
xr − xr

i

hr
i

∥∥∥∥
2
)

(7)

There are now important differences between (6) and (7). First, potentially dif-
ferent bandwidths hs

i and hr
i are assigned to each pixel, xi, as indicated by the

subscript i. Second, the different bandwidths associated with each point appear
within the summation. This is the so-called sample point estimator [3], as oppo-
sed to the balloon estimator defined in Equation (6). The sample point estimator,
which we will refer to as we proceed, ensures that all pixels respond to the same
global density estimation during the segmentation procedure. Note that the sam-
ple point and balloon estimators are the same in the case of a single globally
applied bandwidth.

1.2 Motivation for an Anisotropic Kernel

During the iterative stage of the mean shift procedure, the mean shift points
associated with each pixel climb to the hilltops of the density function. At each
iteration, each mean shift point is attracted in varying amounts by the sample
point kernels centered at nearby pixels. More intuitively, a kernel represents a
measure of the likelihood that other points are part of the same segment as
the point under the kernel’s center. With no a priori knowledge of the image
or video, actual distance (in space, time, and color) seems an obvious (inverse)
correlate for this likelihood; the closer two pixels are to one another the more
likely they are to be in the same segment.

We can, however, take advantage of examining a local region surrounding
each pixel to select the size and shape of the kernel. Unlike [3], we leverage the
full local covariance matrix of the local data to create a kernel with a general
elliptical shape. Such kernels adapt better to non-compact (i.e., long skinny) local
features such as can be seen in the monkey bars detail in Figure 2 and the zebra
stripes in Figure 5. Such features are even more prevalent in video data from
stationary or from slowly or linearly moving cameras. When considering video
data, a spatio-temporal slice (parallel to the temporal axis) is as representative
of the underlying data as any single frame (orthogonal to the temporal axis).
Such a slice of video data exhibits stripes with a slope relative to the speed at
which objects move across the visual field (see Figures 3 and 4). The problems
in the use of radially symmetric kernels is particularly apparent in these spatio-
temporal slice segmentations. The irregular boundaries between and across the
stripe-like features cause a lack of temporal coherence in the video segmentation.

An anisotropic kernel can adapt its profile to the local structure of the data.
The use of such kernels proves more robust, and is less sensitive to initial pa-
rameters compared with symmetric kernels. Furthermore, the anisotropic kernel
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provides a set of handles for application-driven segmentation. For instance, a
user may desire that the still background regions be more coarsely segmented
while the details of the moving objects to be preserved when segmenting a vi-
deo sequence. To achieve this, we simply expand those local kernels (in the
color and/or spatial dimensions) whose profiles have been elongated along the
time dimension. By providing a set of heuristic rules described below on how
to modulate the kernels, the segmentation strategy can be adapted to various
applications.

2 Anisotropic Kernel Mean Shift

2.1 Definition

The Anisotropic Kernel Mean Shift associates with each data point (a pixel in an
image or video) an anisotropic kernel. The kernel associated with a pixel adapts
to the local structure by adjusting its shape, scale, and orientation. Formally,
the density estimator is written as

f̂(x) =
1
n

n∑

i=1

1
hr(Hs

i )q
ks (g(xs, xs

i , H
s
i )) kr

(∥∥∥∥
xr − xr

i

hr(Hs
i )

∥∥∥∥
2
)

(8)

where g(xs, xs
i , H

s
i ) is the Mahalanobis metric in the spatial domain:

g(xs, xs
i , H

s
i ) = (xs

i − xs)T Hs
i

−1(xs
i − xs) (9)

In this paper we use a spatial kernel with a constant profile, ks(z) = 1 if
|z| < 1, and 0 otherwise. For the color domain we use an Epanechnikov kernel
with a profile kr(z) = 1−|z| if |z| < 1 and 0 otherwise. Note that in our definition,
the bandwidth in color range hr is a function of the bandwidth matrix in space
domain Hs

i . Since Hs
i is determined by the local structure of the video, hr thus

varies from one pixel to another. Possibilities on how to modulate hr according
to Hs will be discussed later.

The bandwidth matrix Hs
i is symmetric positive definite. If it is simplified

into a diagonal matrix with equal diagonal elements, (i.e., a scaled identity), then
Hs

i models the radially symmetric kernels. In the case of video data, the time
dimension may be scaled differently to represent notions of equivalent “distance”
in time vs. image space. In general, allowing the diagonal terms to be scaled
differently allows for the kernels to take on axis aligned ellipsoidal shapes. A full
Hs

i matrix provides the freedom to model kernels of a general ellipsoidal shape
oriented in any direction. The Eigen vectors of Hs

i will point along the axes of
such ellipsoids. We use this additional freedom to shape the kernels to reflect
local structures in the video as described in the next section.

2.2 Kernel Modulation Strategies

Anisotropic kernel mean shift give us a set of handles on modulating the kernels
during the mean shift procedure. How to modulate the kernel is application re-
lated and there is not an uniform theory for guidance. We provide some intuitive
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heuristics for video data with an eye towards visually salient segmentation. In
the case of video data we want to give long skinny segments at least an equal
chance to form as more compact shapes. These features often define the salient
features in an image. In addition, they are often very prominent features in the
spatio-temporal slices as can be seen in many spatio-temporal diagrams. In parti-
cular, we want to recognize segments with special properties in the time domain.
For example, we may wish to allow static objects to form into larger segments
while moving objects to be represented more finely with smaller segments.

An anisotropic bandwidth matrix Hs
i is first estimated starting from a stan-

dard radially symmetric diagonal Hs
i and color radius hr. The neighborhood of

pixels around xi is defined by those pixels whose position, x, satisfies

ks(g(x, xi, H
s
i )) < 1; kr

(∥∥∥∥
x− xi

hr(Hs
i )

∥∥∥∥
2
)

< 1 (10)

An analysis of variance of the points within the neighborhood of xi provides a
new full matrix H̄s

i that better describes the local neighborhood of points.
To understand how to modulate the full bandwidth matrix H̄s

i , it is useful
to decompose it as

H̄s
i = λDADT (11)

where λ is a global scalar, D is a matrix of normalized Eigen vectors, and A is
a diagonal matrix of Eigen values which is normalized to satisfy:

p∏

i=1

ai = 1 (12)

where ai is the ith diagonal elements of A, and ai ≥ aj , for i < j. Thus, λ defines
the overall volume of the new kernel, A defines the relative lengths of the axes,
and D is a rotation matrix that orients the kernel in space and time.

We now have intuitive handles for modulating the anisotropic kernel. The
D matrix calculated by the covariance analysis is kept unchanged during the
modulation process to maintain the orientation of the local data. By adjusting
A and λ, we can control the spatial size and shape of the kernel. For example,
we can encourage the segmentation to find long skinny regions by diminishing
the smaller Eigen values in A as

a′
i =

{
a
3/2
i : ai <= 1√
ai : ai > 1

, i = 2, ..., p (13)

In this way the spatial kernel will stretch more in the direction in which the
object elongates. To create larger segments for static objects we detect kernels
oriented along the time axis as follows. First, a scale factor st is computed as

st = α + (1− α)
p−1∏

i=1

d1(i)2 (14)
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where d1 is the first Eigen vector in D, which corresponds with the largest Eigen
value a1. d1(i) stands for the ith element in d1, which is the x, y and t component
of the vector when i = 1, 2, 3, respectively. α is a constant between 0 and 1. In
our system, we set α to 0.25. The product in the above equation corresponds to
the cosine of the angle between the first Eigen vector and the time axis. If the
stretch direction of the kernel is close to the time axis, the scale factor is close
to a small value α. Otherwise if the stretch direction is orthogonal to the time
axis, then st is close to 1. The matrix A is thus changed as

a′
i = ai · st, i = 2, ..., p (15)

After the matrix A is modified by (13) and/or (14), the global scalar λ is
changed correspondingly as

λ′ = λ

p∏

i=1

(
ai

a′
i

)
(16)

To keep the analysis resolution in the color domain consistent with that in
space domain, the bandwidth in the color domain is changed to

hr(Hs
i ) ←

√
λ′

λ
· hr(Hs

i ) (17)

The effect is to increase the color tolerance for segments that exhibit a large
stretch, typically along the time axis (i.e., are static in the video).

2.3 Algorithm

The anisotropic mean shift segmentation is very similar to the traditional mean
shift segmentation algorithm. The only difference is that a new anisotropic spa-
tial kernel and space dependent kernel in the color domain are determined in-
dividually for each feature point prior to the main mean shift procedure. Recall
that when kernels vary across feature points, the sample point estimator should
be used in the mean shift procedure (note subscripts j within summation in
step 4. The sample point anisotropic mean shift algorithm is formally described
below. Steps 1-3 are the construction of kernels and steps 4-6 is the main mean
shift procedure for these kernels.

1. Data and kernel initialization.
– Transfer pixels into multidimensional (5D for image, 6D for video) fea-

ture points, xi.
– Specify initial spatial domain parameter hs

0 and initial range domain
parameter hr

0.
– Associate kernels with feature points, initialize means to these points.
– Set all initial bandwidth matrices in the spatial domain as the diagonal

matrix Hs
i = (hs

0)
2I. Set all initial bandwidths in the range domain as

hr(Hs
i ) = hr

0.
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2. For each point xi, determine the anisotropic kernel and related color radius:
– Search the neighbors of xi to get all the points xj , j = 1, ..., n that satisfy

the constraints of kernels:

ks(g(xi, xj , H
s
i )) < 1; kr

(∥∥∥∥
xi − xj

hr(Hs
i )

∥∥∥∥
2
)

< 1

Update the bandwidth matrix Hs
i as:

Hs
i ←

Σn
j=1

∥∥∥ xr
i −xr

j

hr(Hs
i
)

∥∥∥
2
(xs

j − xs
i )(x

s
j − xs

i )
T

Σn
j=1

∥∥∥
xr

i
−xr

j

hr(Hs
i
)

∥∥∥
2

– Modulate Hs
i as discussed in the previous section. For image segmenta-

tion, apply the modulations for exaggerating eccentricity (13) and mo-
difying overall scale (16) sequentially; for video segmentation, sequenti-
ally apply the modulations for eccentricity (13), scaling for static seg-
ments (15), and overall scale (16).

– Modulate color tolerance hr(Hs
i ) as described in (17).

3. Repeat step (2) a fixed number of times (typically 3).
4. Associate a mean shift point M(xi) with every feature point (pixel), xi, and

initialize it to coincide with that point. Repeat for each M(xi)
– Determine the neighbors, xj , of M(xi) as in (18) replacing xi with M(xi).
– Calculate the mean shift vector summing over the neighbors:

Mv(xi) =
Σn

j=1(xj −M(xi))
∥∥∥M(xr

i )−xr
j

hr(Hs
j
)

∥∥∥
2

Σn
j=1

∥∥∥
M(xr

i
)−xr

j

hr(Hs
j
)

∥∥∥
2

– Update the mean shift point:
M(xi)←M(xi) + Mv(xi)

until Mv(xi) is less than a specified epsilon.
5. Merge pixels whose mean vectors are approximately the same to produce

homogenous color regions.
6. Optionally, eliminate segments containing less than a given number of pixels.

2.4 Initial Scale Selection

As in traditional mean shift image segmentation, the anisotropic kernel mean
shift segmentation algorithm also relies on two initial parameters: the initial
bandwidths in space and range domain. However, since the bandwidth matrices
Hs

i and the bandwidth in range domain hr(Hs
i ) are adaptively modulated, the

proposed algorithm is more robust to the initial parameters.
To further increase the robustness, one may also adopt the semiparametric

scale selection method described in [3]. The system automatically determines
an initial spatial bandwidth for each kernel associated with a point. The user is
thus required to set only one parameter: the bandwidth hr

0 in range domain. The
local scale is given as the bandwidth that maximizes the norm of the normalized
mean shift vector. Refer to [3] for the detailed description and proof.
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3 Results

We have experimented with the anisotropic mean shift procedure outlined above
on a number of video and still imagery. The first set of images are taken from a
short 10 second video of a girl swinging on monkey bars taken from a stationary
camera. We first examine a ten frame sequence. We segmented the frames in
three ways: 1) each individually with a standard radially symmetric kernel, 2)
segmenting the 3D block of video with radially symmetric kernels, and 3) with
3D anisotropic kernels. The results are shown in Figure 1 along with summed
pairwise differences between frames. The expected temporal coherence from the
stationary camera is faithfully captured in the anisotropic case. A detail of the
monkey bars (Figure 2) shows how salient features such as the straight bars
are also better preserved. Finally, we show the comparison of symmetric vs.
anisotropic kernels on spatio-temporal slices from the monkey bars sequence
(Figure 3) and the well known garden sequence (Figure 4) that show much
improved segmentation along the trajectories of objects typically found in video.
A last example run on a zebra image shows improvement as well in capturing
long thin features.

3.1 Robustness

The anisotropic kernel mean shift is more robust to initial parameters than the
traditional mean shift. To test this, we correlated the number of segmented regi-
ons to the analysis resolution on the monkey bars spatio-temporal slice. We fixed
hr to be 6.5 (in the 0 to 255 color space) in both cases. The analysis resolution
is then defined as hs for the fixed symmetric kernels, and the average λ value
from the decomposition of the Hs

i in equation (11). As expected, the number
of segments increases as the analysis resolution decreases in both cases (see Fi-
gure 2). However, the slope is almost twice as steep in the radially symmetric
case as with the anisotropic kernel. This indicates that the traditional algorithm
is more sensitive to initial parameters than the proposed algorithm. Further-
more, by incorporating the scale selection method, the algorithm automatically
selects initial spatial bandwidth.

4 Discussion

Mean shift methods have gained popularity for image and video segmentation
due to their lack of reliance on a priori knowledge of the number of expected
segments. Most previous methods have relied on radially symmetric kernels. We
have shown why such kernels are not optimal, especially for video that exhibits
long thin structures in the spatio-temporal slices. We have extended mean shift
to allow for anisotropic kernels and demonstrated their superior behavior on
both still images and a short video sequence.

The anisotropic kernels plus the sample point density estimation both make
the inner loop of the mean shift procedure more complex. We are currently
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Fig. 1. First row: Segmentation for 2D radially symmetric kernel, 3D symmetric kernel,
3D anisotropic kernel. Note the larger background segments in the anisotropic case
while preserving detail in the girl. Second row: total absolute differences across nine
pairs of subsequent frames in a ten frame sequence, 2D, 3D radially symmetric, 3D
anisotropic. Note the clean segmentation of the moving girl from the background.

Fig. 2. Left: Robustness results. Right: Monkey Bar detail between 3D radially sym-
metric kernel result (top) and anisotropic result (bottom).

working on ways to make this more efficient by recognizing pixels that move
together early in the iterative process.

It would be nice to have a formal way to objectively analyze the relative
success of different mean shift segmentation procedures. Applications such as
determining optical flow directly from the kernel orientations might provide a
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Fig. 3. Spatio-temporal slice of 10 second video segmented by radially symmetric kernel
mean shift (left, 384 segments) and anisotropic kernel mean shift (right, 394 segments).
Note the temporal coherence indicated by the straight vertical segmentation.

Fig. 4. Well known garden sequence frame and an epipolar slice. Radially symmetric
and Anisotropic segmentation (267 and 266 segments).

useful metric. We also look forward to applying our methods to one of our original
motivations; automatically producing cartoon-like animations from video.
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Fig. 5. Zebra photograph. Segmentation with radially symmetric and anisotropic ker-
nels (386 and 387 segments).
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