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Abstract. Automatic image annotation aims at predicting a set of tex-
tual labels for an image that describe its semantics. These are usually
taken from an annotation vocabulary of few hundred labels. Because
of the large vocabulary, there is a high variance in the number of im-
ages corresponding to different labels (“class-imbalance”). Additionally,
due to the limitations of manual annotation, a significant number of
available images are not annotated with all the relevant labels (“weak-
labelling”). These two issues badly affect the performance of most of the
existing image annotation models. In this work, we propose 2PKNN,
a two-step variant of the classical K-nearest neighbour algorithm, that
addresses these two issues in the image annotation task. The first step
of 2PKNN uses “image-to-label” similarities, while the second step uses
“image-to-image” similarities; thus combining the benefits of both. Since
the performance of nearest-neighbour based methods greatly depends on
how features are compared, we also propose a metric learning frame-
work over 2PKNN that learns weights for multiple features as well as
distances together. This is done in a large margin set-up by generaliz-
ing a well-known (single-label) classification metric learning algorithm
for multi-label prediction. For scalability, we implement it by alternating
between stochastic sub-gradient descent and projection steps.

Extensive experiments demonstrate that, though conceptually sim-
ple, 2PKNN alone performs comparable to the current state-of-the-art
on three challenging image annotation datasets, and shows significant
improvements after metric learning.

1 Introduction

Automatic image annotation is a labelling problem which has potential appli-
cations in image retrieval [5,11,16], image description [23], etc. Given an unseen
image, the goal is to predict multiple textual labels describing that image. Re-
cent outburst of multimedia content has raised the demand for auto-annotation
methods, thus making it an active area of research [5,11,16,19,20]. Several meth-
ods have been proposed in the past for image auto-annotation which try to
model image-to-image [5,11,16], image-to-label [10,20] and label-to-label [11,20]
similarities. Our work falls under the category of the supervised annotation mod-
els such as [4,5,10,11,13,16,19,22] that work with large annotation vocabularies.
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Among these, K-nearest neighbour (or KNN) based methods such as [5,11,16]
have been found to give some of the best results despite their simplicity. The
intuition is that “similar images share common labels” [11]. In most of these
approaches, this similarity is determined only using image features. Though
this can handle label-to-label dependencies to some extent, it fails to address
the “class-imbalance” (large variations in the frequency of different labels) and
“weak-labelling” (many available images are not annotated with all the relevant
labels) problems that are prevalent in the popular datasets (Sec. 4.1) as well as
real-world databases. E.g., in an experiment on the Corel 5K dataset, we found
that for the 20% least frequent labels, JEC [11] achieves an F-score of 19.7%,
whereas it gives reasonably good performance for the 20% most frequent labels
with F-score being 50.6%.

As per our knowledge, no attempt has been made in the past that directly
addresses these issues. An indirect attempt was made in TagProp [16] to address
class-imbalance, which we discuss in Sec. 2. To address these issues in a nearest-
neighbour set-up, we need to make sure that (i) for a given image, the (subset
of) training images that are considered for label prediction should not have large
differences in the frequency of different labels; and (ii) the comparison criteria
between two images should make use of both image-to-label and image-to-image
similarities (image-to-image similarities also capture label-to-label similarities
in a nearest-neighbour scenario). With this motivation, we present a two-step
KNN-based method. We call this 2-Pass K-Nearest Neighbour (or 2PKNN)
algorithm. For an image, we say that its few nearest neighbours from a given class
constitute its semantic neighbourhood, and these neighbours are its semantic
neighbours. For a particular class, these are the samples that are most related
with a new image. Given an unseen image, in the first step of 2PKNN we identify
its semantic neighbours corresponding to all the labels. Then in the second step,
only these samples are used for label prediction. This relates with the idea of
“bottom-up pruning” common in day-to-day scenarios such as buying a car,
or selecting a cloth to wear; where first the potential candidates are short-listed
based on quick analysis, and then another set of criteria is used for final selection.

It is well-known that the performance of KNN based methods largely depends
on how two images are compared [11]. Usually, this comparison is done using a
set of features extracted from images and some specialized distance metric for
each feature (such as L1 for colour histograms, L2 for Gist) [11,16]. In such a
scenario, (i) since each base distance contributes differently, we can learn ap-
propriate weights to combine them in the distance space [11,16]; and (ii) since
every feature (such as SIFT or colour histogram) itself is represented as a multi-
dimensional vector, its individual elements can also be weighted in the feature
space [12]. As the 2PKNN algorithm works in the nearest-neighbour setting, we
would like to learn weights that maximize the annotation performance. With this
goal, we perform metric learning over 2PKNN by generalizing the LMNN [12]
algorithm for multi-label prediction. Our metric learning framework extends
LMNN in two major ways: (i) LMNN is meant for single-label classification (or
simply classification) problems, while we adapt it for images annotation which
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is a multi-label classification task; and (ii) LMNN learns a single Mahalanobis
metric in the feature space, while we extend it to learn linear metrics for multi-
ple features as well as distances together. Since we need to learn large number
of weights, and iteratively perform pair-wise comparisons between large sample
sets, scalability appears as one of the major concerns. To address this, we im-
plement metric learning by alternating between stochastic sub-gradient descent
and projection steps (similar to Pegasos [9]). This allows to optimize the weights
iteratively using small number of comparisons at each iteration, thus making our
learning easily scalable for large datasets with samples represented in very high
dimensions. In our experiments on three benchmark image annotation datasets,
our method (i.e., 2PKNN with metric learning) significantly outperforms the
previous results.

In the next section, we discuss some of the notable contributions in the field
of image annotation. In Sec. 3, we formalize 2PKNN and the metric learning
model; in Sec. 4, we discuss the experiments; and finally conclude in Sec. 5.

2 Related Work

The image annotation problem was initially addressed using generative models;
e.g. translation models [2,3] and nearest-neighbour based relevance models [4,5].
Recently, a Markov Random Field [13] based approach was proposed that can
flexibly accommodate most of the previous generative models. Though these
methods are directly extendable to large datasets, they might not be ideal for
the annotation task as their underlying joint distribution formulations assume
independence of image features and labels, whereas recent developments [17]
emphasize on using conditional dependence to achieve Bayes optimal prediction.

Among discriminative models, SML [10] treats each label as a class of a multi-
class multi-labelling problem, and learns class-specific distributions. However, it
requires large (class-)balanced training data to estimate these distributions. Also
label interdependencies might result into corrupted distribution models. Another
nearest-neighbour based method [19] tries to benefit from feature sparsity and
clustering properties using a regularization based algorithm for feature selection.
JEC [11] treats image annotation as retrieval. Using multiple global features, a
greedy algorithm is used for label transfer from neighbours. They also performed
metric learning in the distance space but it could not do any better than using
equal weights. This is because they used a classification-based metric learning
approach for the annotation task which is multi-label classification by nature.
Though JEC looks simple at the modelling level, it reported the best results on
benchmark annotation datasets when it was proposed. TagProp [16] is a weighted
KNN based method that transfers labels by taking a weighted average of key-
words’ presence among the neighbours. To address the class-imbalance problem,
logistic discriminant models are wrapped over the weighted KNN method with
metric learning. This boosts the importance given to infrequent labels and sup-
presses it for frequent labels appearing among the neighbours.

Nearly all image annotation models can be considered as multi-label clas-
sification algorithms, as they associate multiple labels with an image. Recent
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methods such as [14,21] treat it as a multi-label ranking problem. Given an im-
age, instead of predicting some fixed number of labels, they generate a ranked
list of all the labels based on their chances of getting assigned to that image.
E.g., in [21] an algorithm was proposed to learn from incompletely labelled data;
i.e., only a subset of the ground-truth labels of each training image is used at the
time of learning. Of late, some annotations methods such as [15,20] have been
proposed that try to model image features and labels as well as dependencies
among them, but most of these work on small vocabularies containing few tens
of labels, and hence class-imbalance and weak-labelling are not a big concern.
Our work is more comprehensive and falls under the category of previous works
on image annotation [5,10,11,13,16,19,22] that address a more realistic and chal-
lenging scenario where the vocabulary contains few hundreds of labels and the
datasets seriously suffer from class-imbalance and weak-labelling issues.

3 Label Prediction Model

Here, first we describe the 2PKNN algorithm, and then formulate the metric
learning over it.

3.1 The 2PKNN Algorithm

Let {I1, . . . , It} be a collection of images and Y = {y1, . . . , yl} be a vocabulary
of l labels (or semantic concepts). The training set T = {(I1, Y1), . . . , (It, Yt)}
consists of pairs of images and their corresponding label sets, with each Yi ⊆
Y. Similar to SML [10], we assume the conditional probabilities P (A|yi) that
model the feature distribution of an image A given a semantic concept yi ∈ Y.
Using this, we model image annotation as a problem of finding the posterior
probabilities

P (yi|A) =
P (A|yi)P (yi)

P (A)
, (1)

where P (yi) is the prior probability of the label yi. Then, given an unannotated
image J , the best label for it will be given by

y∗ = arg max
i

P (yi|J) . (2)

Let Ti ⊆ T , ∀i ∈ {1, . . . , l} be the subset of training data that contains all the
images annotated with the label yi. Since each set Ti contains images with one
semantic concept (or label) common among them, we consider it as a semantic
group (similar to [20]). It should be noted that the sets Ti’s are not disjoint, as an
image usually has multiple labels and hence belongs to multipe semantic groups.
Given an unannotated image J , from each semantic group we pick K1 images
that are most similar to J and form corresponding sets TJ,i ⊆ Ti. Thus, each TJ,i

contains those images that are most informative in predicting the probability
of the label yi for J . The samples in each set TJ,i are the semantic neighbours
of J corresponding to yi. These semantic neighbours incorporate image-to-label
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similarity. Once TJ,i’s are determined, we merge them all to form a set TJ = {TJ,1⋃
. . .

⋃
TJ,l}. This way, we obtain a subset of the training data TJ ⊆ T specific

to J that contains its semantic neighbours corresponding to all the labels in the
vocabulary Y. This is the first pass of 2PKNN. It can be easily noted that in
TJ , each label appears (at least) K1 times, thus addressing the class-imbalance
issue. To understand how this step also handles the issue of weak-labelling, we
analyze the cause of this. Weak-labelling occurs because “obvious” labels are
often missed by human annotators while building a dataset, and hence many
images depicting any such concept are actually not annotated with it. Under
this situation, given an unseen image, if we use only its few nearest neighbours
from the entire training data (as in [11,16]), then such labels may not appear
among these neighbours and hence not get apt scores. In contrary, the first pass
of 2PKNN finds a neighbourhood where all the labels are present explicitly.
Therefore, now they (i.e., the “obvious” labels) have better chances of getting
assigned to a new image, thus addressing the weak-labelling issue.
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Fig. 1. For a test image from the IAPR TC-12 dataset (first column), the first row
on the right section shows its 4 nearest images (and their labels) from the training
data after the first pass of 2PKNN (K1 = 1), and the second row shows the 4 nearest
images using JEC [11]. The labels in bold are the ones that match with the ground-
truth labels of the test image. Note the frequency (9 vs. 6) and diversity ({sky, house,
landscape, bay, road, meadow} vs. {sky, house}) of matching labels for 2PKNN vs.
JEC.

Figure 1 shows an example from the IAPR TC-12 dataset (Sec. 4.1) illus-
trating how the first pass of 2PKNN addresses both class-imbalance and weak-
labelling. For a given test image (first column) along with its ground-truth labels,
we can notice the presence of rare labels {“landscape”, “bay”, “road”,“meadow”}
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among its four nearest images found after the first pass of 2PKNN (first row
on the right), without compromising with the frequent labels {“sky”, “house”}.
In contrary, the neighbours obtained using JEC [11] (second row) contain only
the frequent labels. It can also be observed that though the labels {“landscape”,
“meadow”} look obvious for the neighbours found using JEC, these are actually
absent in their ground-truth annotations (weak-labelling), whereas the first pass
of 2PKNN explicits their presence among the neighbours.

The second pass of 2PKNN is a weighted sum over the samples in TJ to
assign importance to labels based on image similarity. This gives the posterior
probability for J given a label yk ∈ Y as

P (J |yk) =
∑

(Ii,Yi)∈TJ

θJ,Ii .P (yk|Ii) =
∑

(Ii,Yi)∈TJ

exp(−D(J, Ii)).δ(yk ∈ Yi), (3)

where θJ,Ii = exp(−D(J, Ii)) (see Eq. (4) for the definition of D(J, Ii)) denotes
the contribution of image Ii in predicting the label yk for J depending on their
visual similarity; and P (yk|Ii) = δ(yk ∈ Yi) denotes the presence/absence of
label yk in the label set Yi of Ii, with δ(·) being 1 only when the argument
holds true and 0 otherwise. Assuming that the first pass of 2PKNN will give
a subset of the training data where each label has comparable frequency, we
set the prior probability in Eq. (1) as a uniform distribution; i.e., P (yi) = 1

|T | ,
∀i ∈ {1, . . . , l}. Putting Eq. (3) in Eq. (1) generates a ranking of all the labels
based on their probability of getting assinged to the unseen image J . Note that
along with image-to-image similarities, the second pass of 2PKNN implicitly
takes care of label-to-label dependencies, as the labels appearing together in the
same neighbouring image will get equal importance.

Both conceptually as well practically, 2PKNN is entirely different from the
previous two-step variants of KNN such as [1,7]. They use few (global) nearest
neighbours of a sample to apply some other more sophisticated technique such as
linear discriminant analysis [1] or SVM [7]. Whereas, the first pass of 2PKNN
considers all the samples but in localized semantic groups. Also, the previous vari-
ants were designed for the classification task, while 2PKNN addresses the more
challenging problem of image annotation (which is multi-label classification by
nature), where the datasets suffer from high class-imbalance and weak-labelling
(note that weak-labelling is not a concern in classification problems).

3.2 Metric Learning (ML)

Most of the classification metric learning algorithms try to increase inter-class
and reduce intra-class distances, thus treating each pair of samples in a bi-
nary manner (recall that similar approach was used in JEC [11] but could not
improve the annotation performance). Since image annotation is a multi-label
classification task, here two samples relate in the continuous space [0, 1]; hence
classification metric learning cannot be applied directly. As part of metric learn-
ing, our aim is to learn (non-negative) weights over multiple features as well as
base distances that maximize the annotation performance for 2PKNN. For this
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purpose, we extend the classical LMNN [12] algorithm for multi-label prediction.
Let there be two images A and B, each represented by n features {f1A, . . . , fnA}
and {f1B, . . . , fnB} respectively. Each feature is a multi-dimensional vector, with
the dimensionality of a feature f i being Ni, i.e. f i ∈ RNi for i = 1, . . . , n. We de-
note an entry of a vector x as x(·). The distance between two images is computed
by finding the distance between their corresponding features using some special-
ized distance measure for each feature (such as L1 for colour histograms, χ2 for
SIFT features, etc.), and then combining them all. In order to learn weights in
the feature space, it should be noted that some of the popular distance measures
such L1, (squared) L2 and χ2 can be written as a dot product of two vectors. E.g.,
given any two corresponding feature vectors f iA and f iB, if we consider a vector
di

AB ∈ RNi
+ such that di

AB(j) = |f iA(j) − f iB(j)|, ∀j ∈ {1, . . . ,Ni}, then the L1

distance between the two feature vectors can be written as L1(f iA, f iB) = vi ·di
AB;

where | · | gives the absolute value, and vi ∈ RNi
+ is usually taken as a normalized

unit vector1. Note that vi can replaced by any non-negative real-valued normal-
ized vector that assigns appropriate weights to individual dimensions of a feature
vector in the feature space. Moreover, we can also learn weights w ∈ Rn

+ in the
distance space to optimally combine multiple feature distances. Based on this,
we write the distance between A and B as

D(A, B) =
n∑

i=1

w(i).
Ni∑

j=1

vi(j).di
AB(j) . (4)

Now we describe how to learn the weights appearing in Eq. (4). For a given
labelled sample (Ip, Y p) ∈ T , we define its (i) target neighbours as its K1 nearest
images from the semantic group Tq, ∀q s.t. yq ∈ Yp, and (ii) impostors as its K1

nearest images from Tr, ∀r s.t. yr ∈ Y \ Yp. Our objective is learn the weights
such that the distance of a sample from its target neighbours is minimized, and
is also less than its distance from any of the impostors (i.e., pull the target
neighbours and push the impostors). In other words, given an image Ip along
with its labels Yp, we want to learn weights such that its nearest (K1) semantic
neighbours from the semantic groups Tq’s (i.e., the groups corresponding to its
ground-truth labels) are pulled closer, and those from the remaining semantic
groups are pushed far. With this goal, for sample image Ip, its target neighbour
Iq and its impostor Ir, the loss function will be given by

Eloss =
∑

pq

ηpqD(Ip, Iq) + μ
∑

pqr

ηpq(1 − λpr)[1 + D(Ip, Iq) − D(Ip, Ir)]+ . (5)

Here, μ > 0 handles the trade-off between the two error terms. The variable ηpq

is 1 if Iq is a target neighbour of Ip and 0 otherwise. λpr = |Yp∩Yr|
|Yr| ∈ [0, 1], with

Yr being the label set of an impostor Ir of Ip. And [z]+ = max(0, z) is the hinge
loss which will be positive only when D(Ip, Ir) < D(Ip, Iq) + 1 (i.e., when for a
sample Ip, its impostor Ir is nearer than its target neighbour Iq). To make sure

1 di
AB can similarly be computed for other measures such as squared L2 and χ2.
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that a target neighbour Iq is much closer than an impostor Ir, a margin (of size 1)
is used in the error function. Note that λpr is in the continuous range [0, 1], thus
scaling the hinge loss depending on the overlap between the label sets of a given
image Ip and its impostor Ir. This means that for a given sample, the amount of
push applied on its impostor varies depending on its conceptual similarity with
that sample. An impostor with large similarity will be pushed less, whereas an
impostor with small similarity will be pushed more. This makes it suitable for
multi-label classification tasks such as image annotation. The above loss function
is minimized by the following constrained optimization problem:

min
w,v

∑
pq ηpqD(Ip, Iq) + μ

∑
pqr ηpq(1 − λpr)ξpqr

s.t. D(Ip, Ir) − D(Ip, Iq) ≥ 1 − ξpqr ∀p, q, r

ξpqr ≥ 0 ∀p, q, r

w(i) ≥ 0 ∀i;
∑n

i=1 w(i) = n

vi(j) ≥ 0 ∀i, j;
∑Ni

j=1 vi(j) = 1 ∀i ∈ {1, . . . , n} (6)

Here, the slack variables ξpqr represent the hinge loss in Eq. (5), and v is a vec-
tor obtained by concatenating all the vi’s for i = 1, . . . , n. We solve the above
optimization problem in the primal form itself. Since image features are usually
in very high dimensions, the number of variables is large (= n +

∑n
i=1 Ni). This

makes the scalability of the above optimization problem difficult using conven-
tional gradient descent. To overcome this issue, we solve it by alternatively using
stochastic sub-gradient descent and projection steps (similar to Pegasos [9]). This
gives an approximate optimal solution using small number of comparisons, and
thus helps in achieving high scalability. To determine the optimal weights, we
alternate between the weights in distance space and feature space.

Our extension of LMNN conceptually differs from its previous extensions such
as [18] in at least two significant ways: (i) we adapt LMNN in its choice of tar-
get/impostors to learn metrics for multi-label prediction problems, whereas [18]
uses the same definition of target/impostors as in LMNN to address classifica-
tion problem in multi-task setting, and (ii) in our formulation, the amount of
push applied on an impostor varies depending on its conceptual similarity w.r.t.
a given sample, which makes it suitable for multi-label prediction tasks.

4 Experiments

4.1 Data Sets and Their Characteristics

We have used three popular image annotation datasets Corel 5K, ESP Game
and IAPR TC-12 to test and compare the performance of our method with
previous approaches. Corel 5K was first used in [3], and since then it has become
a benchmark for comparing annotation performance. ESP Game contains images
annotated using an on-line game, where two (mutually unknown) players are
randomly given an image for which they have to predict same keyword(s) to
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score points [6]. This way, many people participate in the manual annotation
task thus making this dataset very challenging and diverse. IAPR TC-12 was
introduced in [8] for cross-lingual retrieval. In this, each image has a detailed
description from which only nouns are extracted and treated as annotations.

In Table 1, columns 2 − 5 show the general statistics of the three datasets;
and in columns 6−8, we highlight some interesting statistics that provide better
insights about the structure of the three datasets. It can be noticed that for
each dataset, around 75% of the labels have frequency less than the mean label
frequency (column 8), and also the median label frequency is far less than the
corresponding mean frequency (column 7). This verifies the claim we previously
made in Sec. 1 (i.e., datasets badly suffer from the class-imbalance problem).

Table 1. General (columns 2-5) and some insightful (columns 6-8) statistics for the
three datasets. In column 6 and 7, the entries are in the format “mean, median, maxi-
mum”. Column 8 (“Labels#”) shows the number of labels whose frequency is less than
the mean label frequency.

Dataset Number

of images

Number

of labels

Training

images

Testing

images

Labels

per image

Images per label (or

label frequency)

Labels#

Corel 5K 5,000 260 4,500 500 3.4, 4, 5 58.6, 22, 1004 195 (75.0%)

ESP Game 20,770 268 18,689 2,081 4.7, 5, 15 326.7, 172, 4553 201 (75.0%)

IAPR TC-12 19,627 291 17,665 1,962 5.7, 5, 23 347.7, 153, 4999 217 (74.6%)

Though it is not straightforward to quantify weak-labelling, we try to analyze
it from the number of labels per image (column 6). We argue that large gap
between mean (or median) and maximum number of labels per image indicates
that many images are not labelled with all the relevant labels. Based on this, we
can infer that both ESP Game and IAPR TC-12 datasets suffer from weak-
labelling. For Corel 5K dataset, we examined the images and their corresponding
annotations to realize weak-labelling.

4.2 Features and Evaluation Measures

Features. To compare our model’s performance with the previous methods,
we use the similar features as in [16]. These are a combination of local and
global features. The local features include the SIFT and hue descriptors obtained
densely from multi-scale grid, and from Harris-Laplacian interest points. The
global features comprise of histograms in RGB, HSV and LAB colour spaces,
and the Gist features. To encode some spatial information about an image, all
but the Gist features are also computed over three equal horizontal partitions for
each image. To calculate distance between two features, L1 measure is used for
the colour histograms, L2 for the Gist, and χ2 for the SIFT and hue descriptors.

Evaluation Measures. To analyze the annotation performance, we compute
precision and recall of each label in a dataset. Suppose a label yi is present in the
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ground-truth of m1 images, and it is predicted for m2 images during testing out
of which m3 predictions are correct (m3 ≤ m2 and m3 ≤ m1), then its precision
will be = m3/m2 and recall will be = m3/m1. We average these values over
all the labels of a dataset and get percentage mean precision P and percentage
mean recall R, similar to the previous annotation methods such as [11,16,19,22].
Using these two measures, we get the percentage F1-score F1 = 2.P.R/(P+R),
which takes care of the trade-off between precision and recall. The different image
annotation methods are compared using two criteria: first F1; and second N+
which is the number of labels that are correctly assigned to at least one test
image (i.e., the number of labels with positive recall).

To compare with [14], we use three measures (see [14] for more details): (i)
“One-error” is similar to classification error, which tells the number of times the
label predicted with the highest probability is not present in the ground-truth,
(ii) “Coverage” is a measure of the worst rank assigned to any of the ground-truth
labels, and (iii) “Average Precision” (not to be confused with percentage mean
precision P used to measure annotation performance) gives area under precision-
recall curve used to evaluate a ranked list of labels. To compare with [21], we
adopt Area Under ROC curve (or AUC) as the evaluation measure.

For One-error and Coverage, smaller value implies better performance, while
for all other measures, higher value implies better performance.

4.3 Experimental Details

A randomly-sampled subset of training data consisting of 3000 samples is used to
learn the weights w and vi’s in leave-one-out manner, and a separate (random)
validation set of 400 samples is used for early-stopping. This is repeated five
times, and the model that performs best during validation is used to evaluate
the performance on test data. For the first pass of 2PKNN, we set K1 as 4, 2
and 2 for the Corel 5K, ESP Game and IAPR TC-12 datasets respectively. The
results corresponding to 2PKNN are determined using an L1-normalized one-
vector for each vi; & the vector w is replaced by a scalar that controls the decay
of θJ,Ii (Eq. (3)) with distance (similar to [16]). The results for 2PKNN+ML are
obtained by using weighted features and base distances in 2PKNN, with weights
being determined after metric learning. The probability scores are appropriately
scaled such that the relevance of a label for any image is never above one.

4.4 Comparisons

Now we present the quantitive analysis on the three datasets. First, for the sake
of completeness, we compare with recent multi-label ranking methods [14,21],
and then we show detailed comparisons with the previous annotation methods.

Comparison with Multi-label Ranking Methods. In order to show that
our method does not compromise with the performance on frequent labels, we
quantitatively compare our method with the best reported results of MIML [14]
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in Table 2 using the same conventions as theirs. To be specific, we use the Corel
5K dataset and consider only the 20 most frequent labels, which results in 3, 947
training and 444 test images with average 1.8 labels per image. As we can see,
our method performs significantly better than [14] on all the three measures.
Notable is the considerable reduction in the coverage score, which indicates that
in most of the cases, all the ground-truth annotations are included among the
top 4 labels predicted by our method.

Table 2. Comparison between MIML [14] and 2PKNN combined with metric learning
on a subset of the Corel 5K dataset using only 20 most frequent labels as in [14]

One-error Coverage Average Precision

MIML [14] 0.565 5.507 0.535

2PKNN+ML (This work) 0.427 3.38 0.644

To show that our method addresses weak-labelling issue, we compare with [21].
Though [21] addresses the problem of incomplete labelling (see Sec. 2), conceptu-
ally it overlaps with the weak-labelling issue as both work under the scenario of
inavailability of all relevant labels. Following their protocol, we select those im-
ages from the entire ESP Game dataset that are annotated with at least 5 labels,
and then test on four cases. First we use all the labels in the ground-truth, and
then randomly remove 20%, 40% and 60% labels respectively from the ground-
truth annotation of each training image. On an average, they achieved 83.7475%
AUC for these cases, while we get 85.4739% which is better by 1.7264%.

Comparison with Image Annotation Methods. To compare the image an-
noation performance, we follow the pre-defined partitions for training and testing
as used in [11,16]. To each test image, we assign the top five labels predicted
using Eq. (2). Our results as well as those reported by the previous models for
image annotation are summarized in Table 3. We can see that on all the three
datasets, our base method 2PKNN itself performs comparable to the previous
best results. Notable is the significant increase in the number of labels with pos-
itive recall (credit goes to the first pass of 2PKNN). After combining metric
learning with it (2PKNN+ML), the performance significantly improves. Pre-
cisely, for the Corel 5K, ESP Game and IAPR TC-12 datasets, we gain 6.7%,
3.8%, and 4.1% respectively in term of F1; and 19, 13 and 12 respectively in
terms of N+ over the current state-of-the-art. We also found that F1 improves
by upto 2% in general on using both w and vi’s as compared to using any one
of them.

These empirical evaluations conclude that our method consistently shows su-
perior performance than the previous models under multiple evaluation criteria,
thus establishing its overall effectiveness.
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Table 3. Comparison of annotation performance among different methods. The top
section shows the performances reported by the previous methods. The bottom section
shows the performance achieved by our method (2PKNN), and that combined with
metric learning (2PKNN+ML). The best results in both parts are highlighted in bold.

Corel 5K ESP Game IAPR TC-12

Method P R F1 N+ P R F1 N+ P R F1 N+

CRM [4] 16 19 17.4 107 – – – – – – – –

MBRM [5] 24 25 24.5 122 18 19 18.5 209 24 23 23.5 223

SML [10] 23 29 25.7 137 – – – – – – – –

JEC [11] 27 32 29.3 139 22 25 23.4 224 28 29 28.5 250

GS [19] 30 33 31.4 146 – – – – 32 29 30.4 252

MRFA [13] 31 36 33.3 172 – – – – – – – –

CCD (SVRMKL+KPCA) [22] 36 41 38.3 159 36 24 28.8 232 44 29 35.0 251

TagProp(ML) [16] 31 37 33.7 146 49 20 28.4 213 48 25 32.9 227

TagProp(σML) [16] 33 42 37.0 160 39 27 31.9 239 46 35 39.8 266

2PKNN (This work) 39 40 39.5 177 51 23 31.7 245 49 32 38.7 274

2PKNN+ML (This work) 44 46 45.0 191 53 27 35.7 252 54 37 43.9 278

4.5 Discussion

In Figure 2, we analyze how 2PKNN addresses the class-imbalance issue as
compared to the traditional weighted KNN method (used in TagProp [16]). For
this purpose, we use the annotation performance in terms of mean recall. The
labels are partitioned into two groups based on their frequency. The first partition
consists of the 50% least frequent labels and the second partition consists of the
50% most frequent labels. Three observations can be made by looking at this
figure. First, for all the three datasets, unlike weighted KNN, 2PKNN performs
comparable for both the label-partitions despite the large differences in their
frequency (compare the median label frequency with mean and maximum label
frequency in Table 1, column 7). This suggests that 2PKNN actually addresses
the class-imbalance problem in the challenging datasets with large vocabularies.
Second, 2PKNN does not compromise with the performance on frequent labels
compared to weighted KNN, and always performs better than it. This shows
that 2PKNN can be a better option than weighted KNN for the complicated
image annotation task. And third, after metric learning, the performance always
improves for both the label-partitions for all the datasets. This confirms that
our metric learning approach benefits both rare as well as frequent labels. In
Figure 3, we show some qualitative annotation results from the three datasets.
Each image is an example of a weakly-labelled image. It can be seen that for
all these images, our method predicts all the ground-truth labels. Moreover, the
additional labels predicted are actually depicted in the corresponding images, but
missing in their ground-truth annotations. Recall that for quantitative analysis,
we experimentally compared our method with [21] (Sec. 4.4) and achieved better
performance. These show that our method is capable of addressing the weak-
labelling issue prevalent in the real-world datasets.
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Corel 5K ESP Game IAPR TC-12

Fig. 2. Annotation performance in terms of mean recall (vertical axis) for the three
datasets obtained using weighted KNN as in TagProp [16] (blue), using 2PKNN (red),
and 2PKNN combined with metric learning (green). The labels are grouped based on
their frequency in a dataset (horizontal axis). The first bin corresponds to the 50%
least frequent labels and the second bin corresponds to the 50% most frequent labels.

Corel 5K ESP Game IAPR TC-12

bear, reflection,

water, black

field, horses,

mare, foals

green, phone,

woman, hair

fight, grass,

game

building, base,

horse, statue

fence, moun-

tain, range

bear, reflec-

tion, water,
black, river

field, horses,
mare, foals,
tree

green, phone,
woman, hair,
suit

fight, grass,
game, anime,
man

building,
base, horse,
statue, man

fence, moun-

tain, range,
airplane, sky

Fig. 3. Annotations for example images from the three datasets. The second row shows
the ground-truth annotations and the third row shows the labels predicted using our
method 2PKNN+ML. The labels in blue (bold) are those that match with ground-
truth. The labels in red (italics) are those that, though depicted in the corresponding
images, are missing in their ground-truth annotations and are predicted by our method.

5 Conclusion

We showed that our variant of the KNN algorithm, i.e. 2PKNN, combined with
metric learning performs better than the previous methods on three challenging
image annotation datasets. It also addresses class-imbalance and weak-labelling
issues that are prevalent in the real-world scenarios. This can be useful for natu-
ral image databases where tags obey the Zipf’s law. We also demonstrated how
a classification metric learning algorithm can be effectively adapted for the more
complicated multi-label classification problems such as annotation. We hope that
this work throws some light on the possibilites of extending the popular discrim-
inative margin-based classification methods for the multi-label prediction tasks.
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