
  

  

Abstract—Most existing approaches to indoor localization 

focus on using either cameras or laser scanners as the primary 

sensor for pose estimation. In scan matching based localization, 

finding scan point correspondences across scans is challenging 

as individual scan points lack unique attributes. In camera 

based localization, one has to deal with images with few or no 

visual features as well as scale factor ambiguities to recover 

absolute distances. In this paper, we develop multimodal 

approaches for two indoor localization problems by fusing a 

camera and laser scanners in order to alleviate the drawbacks 

of each individual modality. For our first problem we recover 3 

Degrees of Freedom (DoF) of a camera-laser rig on a rolling 

cart in a 2D plane, by using visual odometry to facilitate scan 

correspondence estimation. We demonstrate this approach to 

result in a 0.3% loop closure error for a 60m loop around the 

interior corridor of a building. In our second problem, we 

recover 6 DoF of a human operator carrying a backpack 

system mounted with sensors in 3D, by merging rotation 

estimates from scan matching and translation estimates from 

visual odometry, resulting in a 1% loop closure error.  

I. INTRODUCTION 

ocalization in environments with limited global 
positioning information is a challenging problem. Indoor 
localization is particularly important in a number of 

applications such as indoor modeling, and human operator 
localization in unknown environments. Localization has 
been primarily studied in the robotics and computer vision 
communities. In robotics, the focus has been on estimating 
the joint posterior over the robot’s location and the map of 
the environment using sensors such as wheel encoders, laser 
scanners and Inertial Measurement Units (IMUs). This is 
typically referred to as Simultaneous Localization and 
Mapping (SLAM)[5]. To localize a wheeled robot, simple 
2D maps are typically generated using 2D horizontal 
scanners which serve to both localize the robot and measure 
depth to obstacles directly. Scan matching based localization 
approaches such as Iterative Closest Point (ICP) involve 
computing the most likely alignment between two sets of 
slightly displaced scans [1]. The open loop nature of the 
pose integration from ICP and wheel odometry tends to 
introduce large drifts in the navigation estimates. These 
estimates can be improved by applying loop closure within a 
probabilistic framework to estimate the robot's location and 
the map[4, 6, 7, 8, 9, 10].      
    The computer vision community has studied pose 
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estimation and Structure from Motion (SfM) for a long time 

[2, 11, 12, 13, 14]. With a single camera, pose can be 

estimated only up to an unknown scale factor. This scale is 

generally determined using GPS waypoints, which makes it 

inapplicable to indoor environments unless objects of known 

size are placed in the scene.   To resolve this unknown scale 

factor, stereo camera based approaches have gained 

popularity, as the extrinsic calibration between the cameras 

can be used to recover absolute translation parameters [15, 

16, 3]. Se et. al. present a three camera based stereo system 

that triangulates SIFT feature correspondences between the 

cameras to localize a robot mounted with the camera rig 

[17]. Newman et. al. present a system that uses a camera and 

a 3D laser scanner to localize a vehicle outdoors, with loop 

closure to enforce global consistency [18].  

    In this paper, we propose new dead reckoning algorithms 
that integrate single camera visual odometry, and scan 
matching to localize a camera and 2D laser scanners. The 
ultimate goal is to build 3D models of the environment. 
Even though laser scanners measure the 3D structure of the 
scene directly and with minimal noise, scan matching is 
prone to errors in environments with poor geometric 
features, such as hallways and long corridors. Camera 
images, on the other hand, capture color and texture from 
which visual correspondences can be found across images. 
Visual odometry techniques perform poorly when there are 
few, or no visual features in the images. In this paper, we 
show that fusing camera and laser scanners is likely to 
overcome some of the above shortcomings of each in order 
to improve localization accuracy. Specifically, we consider 
two indoor localization problems. The first one deals with 
recovering the 3 DoF motion parameters of a sensor rig 
mounted on a rolling cart in the 2D plane; the second one 
deals with full 6 DoF localization of a backpack of sensors 
being carried by a human operator in 3D. 

For the 2D case on a cart, we mount a horizontal and a 
vertical laser scanner on the rig and strap down a side 
looking camera. The rig is placed on a wheeled cart, and is 
pushed around the interior corridors of a building. The 
purpose of the horizontal laser scanner is to localize, while 
the vertical scanner provides a dense point cloud of the 
environment for geometry modeling purposes. The camera 
serves a dual purpose in that it is used for both localization 
and providing color and texture to the 3D models. We 

introduce a Visual Odometry aided Scan Matching (VOSM) 

method that uses visual odometry to determine the camera 

pose between successive images, which in turn aids in 
determining scan correspondence estimates across images.  

For the 3D localization problem, we mount the rig on a 
backpack that is carried by a human operator. Specifically, 
we have mounted three 2D laser scanners orthogonal to each 
other in order to estimate the yaw, pitch, and roll. We then 
use these angle estimates within a visual odometry algorithm 
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to compute all the 6 pose transformation parameters in 3D. 
Fig. 1(a) depicts the conceptual CAD model of the backpack 
system, Fig. 1(b) shows the backpack system being carried 
by a human operator, and Fig. 1(c) shows the system placed 
on a rolling cart. 

This paper is organized as follows. In Section II we 
present our extrinsic calibration method to find the relative 
orientation between a 2D horizontal laser scanner and a 
camera. In Section III we provide an overview of existing 
pose estimation methods for standard visual odometry with 
specific implementation details. In Section IV we describe 
our VOSM algorithm for 2D dead-reckoning and 
characterize its performance on an indoor dataset. In section 
V we introduce a combined laser-camera dead reckoning 
algorithm in 3D, and characterize its performance against 
ground truth collected in an indoor corridor with minimal 
clutter and obstacles. Conclusions and future research are 
presented in Section VI. 

 

II. EXTRINSIC SENSOR CALIBRATION 

The relative rigid transformation between the camera and 

the laser scanner is needed to effectively fuse the two 

sensors. We determine the camera's internal parameters 

using the Caltech camera calibration toolbox [19]. We 

compute the extrinsic calibration between the camera-laser 

pair only once, as the sensors are rigidly mounted relative to 

each other. Using the pinhole camera model, a 3D point in 

camera coordinates, ࢖௖ ൌ ሾݔ௖ , ௖ݕ ,  ௖ሿ், is represented inݖ

image coordinates as, ࢖ ൌ ሾ݌௫ ௬݌ 1ሿ் ൌ ௖ݔሾ ࡷ zୡ⁄ ௖ݕ ⁄௖ݖ 1ሿ்      ሺ1ሻ 
   
where ࡷ is the intrinsic camera calibration matrix, and ࢖ is 

the image pixel location of point ࢖௖. Thus, the unit vector of 

the directional line from the camera center to ࢖௖ is, ࢖ෝ௖ ൌ ࢖ଵିࡷ ԡିࡷଵ࢖ԡ⁄                              ሺ2ሻ 
 

The laser scanner measures a 2D slice of the scene; thus, 

in laser coordinates a scan point is assumed to lie on the 

plane ܼ ൌ 0, and is represented by ࢖௟ ൌ ሾݔ௟ , ௟ݕ , 0ሿ். We 

begin by manually choosing three (laser point, image vector) 

pairs, i.e., ([࢖ଵ௟ , ଶ௟࢖ , ଷ௟࢖ ሿ  ՞ ሾ࢖ෝଵ௖ , ෝଶ௖࢖ ,  ෝଷ௖ሿ), corresponding to࢖

three world points, ሾࡼ૚, ,૛ࡼ  ૜ሿ. These pairs are used by theࡼ

3-point algorithm (p3p) to determine the distance to the 

world points from the camera center, thus recovering their 

position in camera coordinates [20]. The relative pose 

between the sensors is now obtained by applying Horn's 

method to the three point pairs in laser and recovered camera 

coordinates [21]. The p3p algorithm requires the distance 

between the 3D world points to be known. This is obtained 

by computing the Euclidean distance between pairs of laser 

points.  

We use a thin rectangular box placed at the height of the 

laser as the calibration target. Laser scan point-camera pixel 

correspondences are obtained by manually selecting the two 

ends of the box. Calibration sets consisting of scans and 

images of the target are collected from 20 to 30 different 

locations by moving the sensor platform. We have 

implemented our extrinsic calibration process within a 

RANSAC framework, where we choose three point-pixel 

pairs at a time to generate a pose hypothesis, and evaluate it 

on all the calibration sets. The winning hypothesis is further 

refined using iterative nonlinear methods, where the 

objective function being minimized is the error between 

scan-point back-projections and true pixel locations of the 

points in all the calibration images. To project laser scans 

onto images, we first transform each scan point ࢖௟ to the 

camera coordinate frame using the estimated rotation and 

translation from laser to camera frame of reference, i.e. ሾࡾ௟௖ ,  ௟௖ሿ. We then find the image coordinates of the point࢚

using Eqn. 1. Fig. 2 shows a scatter plot representing the 

error between laser point back-projections and true pixel 

locations of the corresponding image points for all 30 

calibration sets. On average, there is a 6 pixel error in laser 

scan back-projection on to camera images. 

 

III. VISUAL ODOMETRY 

Image sequences from a camera could potentially 
provide sufficient information to determine a camera's 
trajectory. In the visual odometry setting, features in images 
are tracked between frames to determine the pose of an 
internally calibrated camera from the visual feature 
correspondences. The epipolar constraint between two 
overlapping camera views are enforced by the essential 

matrix, ࡱ, such that, for any two calibrated point 

correspondences ࢖ ՞  ,ᇱ, we have࢖
 ሺିࡷଵ࢖ᇱሻ்ࡱሺିࡷଵ࢖ሻ ൌ  0                       ሺ3ሻ 

The 5-Point algorithm can be used to determine the 
essential matrix in scenes with planar degeneracies which 
are ubiquitous in indoor environments [13]. As the name 

suggests the algorithm determines ࡱ given 5 image feature 

Fig. 2. Scatter plot of error between manually chosen image pixel 

locations and corresponding scan point back-projections onto 

images found using computed laser-camera extrinsic parameters. 
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Fig 1- The data acquisition system; (a) CAD model of backpack

system; YS, PS, and RS are the short range laser scanners for

estimating yaw, pitch, and roll, and CAM is the camera; (b) the

assembled backpack system carried by a human operator; (c) the

system placed on a cart. 
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correspondences. The epipolar geometry computation is in 
general most accurate when sufficient motion occurs 
between two image frames. Hence, we choose to detect and 
track SIFT features across successive images until the 
number of correspondences falls below a preset threshold 
[22]. We then compute the essential matrix between the first 
and last image in the tracked image sequence with the five-
point algorithm within a preemptive RANSAC routine. 
Finally, we apply nonlinear iterative refinement to find the 
best pose transformation that minimizes the Sampson 
reprojection error of the features between the two images. 

The convenient structure of the essential matrix ࡱ allows it 
to be decomposed into a rotation and translation because, ࡱ ൌ ሾ࢚ො௖ሿൈࡾ௖ ,                                   ሺ4ሻ 

where ሾࡾ௖,  ො௖ሿ represent the camera rotation and unit࢚

translation direction, and ሾ. ሿൈ is the cross product. 

IV. VISUAL ODOMETRY AIDED SCAN MATCHING (VOSM) 

In static environments with sufficient geometric features, 
such as walls at different angles and other obstacles, point-
wise scan matching can be used to determine the ego-motion 
of the moving horizontal laser scanner. ICP [1] is the most 
popular scan matching algorithm which iteratively computes 

the scan transformation, ሾࡾ௟ ,  ௟ሿ, by minimizing the squared࢚

distance between each of the ܰ points in the first scan, ࢓, 

and their nearest neighbors in the second scan, ࢊ, i.e., minࡾ೗,࢚೗ ෍  ԡ࢓௜ െ ௜ࢊ࢒ࡾ െ ԡଶN࢒࢚ .                      ሺ5ሻ 

A na ve nearest neighbor approach to find point 
correspondences is likely to fail when the environment being 
scanned has few geometric features. The basic idea behind 
VOSM is to take advantage of feature rich visual imagery to 
compensate for the lack of geometric features in scenes. 
Specifically, our approach in VOSM is to assign scan point 
correspondences across successive scans by using the 
rotation and translation from visual odometry. We use these 
correspondences to compute the transformation between the 
two successive scans within a RANSAC framework. The 
details of the VOSM algorithm are provided in the 
remainder of this section.  

A. Image Based Nearest Neighbor Search 

We project laser scans of a scene from two different 

locations onto their corresponding images. The scan 

projection tracker finds the best scan point correspondences 

across the two images as follows. 

1. Two successive laser scans, ሾࡸ௧ ,  ௧ାଵሿ, are projectedࡸ

onto their corresponding images, ሾࡵ௧ ,  .௧ାଵሿࡵ
2. The rotation and translation estimates from visual 

odometry are used to warp image ࡵ௧ାଵ into image ࡵ௧’s 

view, and to determine a search window across the two 

images to find scan correspondences. 

3. Image patches are extracted around each scan point 

projection in images ࡵ௧ and ࡵ௧ାଵ in order to find patch 

correspondences across images by minimizing the bi-

directional Sum of Absolute  Difference (SAD) within 

the search window established by visual odometry. 

In our experiments, the optimal window patch size was 

empirically set to 31x31 pixels, and the search window was 

restricted to be 50x50 pixels. 

B. Robust Scan Matching 

Once the scan point correspondences are found using 
images, the rigid transformation between the two sets of 
scan points can be obtained directly without any iterative 
scheme. However, to improve the robustness of the 
matching process, we adopt a RANSAC based approach in 
which two sets of candidate point matches are randomly 
selected, and a pose hypothesis is computed. This candidate 
hypothesis is evaluated on all the scan point 
correspondences, and a score is assigned to it. The 
hypothesis evaluation scheme is determined based on the 
angular distribution of lines in the scan. At the end of the 
routine, the winning hypothesis is chosen as the one with the 
highest score. To determine the hypothesis evaluation 
metric, lines are extracted in each scan, and an angle 
histogram is computed, with 10° bins as shown in Fig. 3(c). 
Each line's angle relative to the scanner is determined from 
its slope. If the angular distribution of scanned lines is 
sufficiently wide, then a laser based metric to evaluate the 
RANSAC hypothesis is instantiated. In this case, each 
candidate pose hypothesis is scored inversely to the 
alignment error between the second scan and the first scan 
transformed with the hypothesis. Fig. 3(a) shows a typical 
scene where the laser based evaluation metric is used since 
there is a wide distribution of lines across many angles as 
seen in Fig. 3(b). 

On the other hand, if the angular distribution of scan 
lines is narrow, then an image based evaluation method is 
used. Specifically, for each subset of two point 
correspondences, a pose hypothesis is generated. With this 

hypothesis, the first scan, ࡸ௧, is transformed and projected 

onto the warped second image ࡵ௧ାଵ. The SAD of image 

patches around each projected scan point of ࡸ௧ between the 

first and second image, i.e. ࡵ௧ and ࡵ௧ାଵ, is computed. The 
hypothesis score assigned is inversely proportional to the 
mean of the SAD error of all image patches. A final stage of 
ICP is performed to refine the computed pose 
transformations. 

C. Scale Computation 

The true scale in the translation, ࢚ො௖,  computed via visual 

odometry is determined as follows. For the first pair of 

images in the tracked image sequence, the search window 
for the nearest neighbor algorithm presented in section IV-A 
is set as the size of the entire image. The 3D coordinates of a 

single point, ࡼ, is obtained from the laser scanner, and its 
location in the first and last image in the tracked image 
sequence are obtained from the image patch correspondence 
algorithm. This image correspondence pair is triangulated 

with the current camera pose estimate, ሾࡾ௖ ,  ො௖ሿ, to determine࢚

the scaled coordinates of the point, i.e., ࡼ෡. The scale in the 
translation is then obtained directly as, 



  

ݏ  ൌ ԡࡼԡ ฮࡼ෡ฮ⁄ ,                               ሺ6ሻ 

where, ԡ. ԡ, is the Euclidean norm. The triangulation proce-
dure is described in detail in [13].  After this form of 
initialization, the scale in translation for subsequent image 

pairs, ሾࡵ௧ ,  ௧ାଵሿ, is obtained in a boot-strapped manner, byࡵ

putting the triangulated features, ࡼ෡௧, in the coordinate 

system of the triangulated features, ࡼ௧ିଵ, in the previous 

image pair, ሾࡵ௧ିଵ,  ௧ሿ. With this computed scale, theࡵ

corresponding location in the second view, ࡼ௧ାଵ, of a point ࡼ௧ in the first view is found using, ࡼ௧ାଵ ൌ ௧ࡼ௖ࡾ ൅ ො௖࢚௧ݏ                               ሺ7ሻ 

where, ሾࡾ௖ ,  ො௖ሿ, are the camera rotation and unit translation࢚

obtained from visual odometry, and ݏ௧ is the translation scale 

at  the current time, ݐ. The search window for the image 
patch matching algorithm is centered around the pixel back-

projection of ࢚ࡼା૚ onto the warped image ࡵ௧ାଵ. 

D. Algorithm 

Fig. 4 shows the flowchart of the VOSM algorithm. Since 
the laser scanner and camera operate at different frame rates, 
the two sensors are initially synchronized. The laser scans 
are then transformed to camera coordinates with the 
extrinsic calibration computed earlier. Two successive 
images and their corresponding laser scans are input into the 
visual odometry and scan matching sub-systems. The visual 
odometry system computes the camera rotation and 
translation, with the scale in translation computed using the 
p3p bootstrapping method. This camera pose matrix is used 
to transform the laser points from the first image's 
coordinate system to the second image's coordinates, and to 
warp the second image to be consistent with the first 
camera’s view. Projecting these transformed laser points 
onto the warped image plane in the second view provides a 
local search region to find scan point correspondences in the 
images. The patch based search method described in Section 
IV-A is employed to find the best matches by minimizing 
the SAD of image patches around scan point projections in 
the two images but searching only within the local search 
window. Once correspondences are found, the robust 
RANSAC based method described in Section IV-B 
determines the pose transformation.  The bootstrapped 
method of computing scale, as explained in section IV-C, 
tends to accumulate errors over time. Thus, scale in the 
current translation is re-computed using Eqn. 6, and the 
SIFT features are re-triangulated with the pose estimates 
from visual odometry.  

E. VOSM Experimental Results 

We compare the accuracy of the VOSM algorithm 

presented in this paper with the ground truth collected by an 

Applanix position and orientation system used for land 

surveying. This is an aided inertial navigation system 

consisting of a navigation computer and a strap down 

navigation-grade Honeywell HG9900 IMU. The HG9900 

combines three ring laser gyros with bias stability of less 

than 0.003deg/hr, and three precision accelerometers with 

bias of less than 0.245 mm/sଶ. For our indoor experiments, 

we utilized a pre-surveyed control point as a global position 

reference. Navigation precision is improved by the use of 

zero-velocity updates (ZUPTs), which allow for 

accumulated biases in the IMU to be estimated, and any 

velocity drift to be corrected. These ZUPTs manifest as 

discontinuities in the ground truth paths of Fig. 5 to be 

discussed shortly.  

Ground truth comparison of VOSM for a 60m loop inside 

a corridor of a building on the UC Berkeley campus is 

shown in Fig. 5(a). The raw visual odometry and ICP results 

are plotted against ground truth in Fig. 5(b). As seen, the 

VOSM reconstructed path is in close agreement with the 

ground truth, while VO and ICP visibly deviate from the 

ground truth. Figures 5(c)-5(e) compare the rotation and 

translations from VOSM against the ground truth. As seen, 

there is close agreement between the ground truth and 

VOSM values. The loop closure error for all schemes is 

shown in Table-1. As expected, the loop closure error is the 

lowest for VOSM at 18cm, or 0.3% of the traversed path. In 

contrast, Oskiper et. al. [3] have reported on a more 

elaborate system consisting of two stereo camera pairs and 

an IMU to obtain between 0.5% to 1% loop closure error.  In 

addition to loop closure error, we have also computed the 

average position error for the various algorithms by 

determining the distance between the ground truth position 

and the position computed by each algorithm at each time 

step in the 3rd column of Table-1. As expected, VOSM has 

an average position error that is 15 times smaller than that of 

ICP and 7 times smaller than that of VO. The 3rd and 4th 

columns of Table-1 confirm the plots in Fig. 5 showing that 

yaw and translation parameters for VOSM have lower RMS 

error compared to VO and ICP. 

Dead 

Reckoning 

Method 

Loop 

Closure 

Error 

(m) 

Average 

Position 

Error 

(m) 

RMS 

Yaw 

Error 

(degrees) 

RMS 

Translation 

Error 

(m) 

ICP 0.24 2.36 0.17 X: 0.05 

Y: 0.03 

VO 1.23 1.09 0.38 X: 0.04 

Y: 0.06 

VOSM 0.18 0.15 0.11 X: 0.02 

Y:0.02 

Table-1: A comparison of the mean position and loop closure errors 

for ICP, Visual Odometry (VO), and VOSM. 

V. BACKPACK SYSTEM FOR INDOOR MODELING 

 VOSM is essentially designed to provide navigation 

estimates for a wheeled system that has 3 degrees of 

freedom. The algorithm, however, does not apply to a 

system that has a non-zero pitch and roll, such as a backpack 

system carried by a human operator. Visual odometry 

provides pose estimates of a traversing camera in 3D and 

0௢ െ 30௢ 31௢ െ 60௢ 61௢ െ 90௢
(a) (b) (c) 

Fig. 3. (a) Sample laser scan; (b) lines extracted from the 

scan in (a); (c) angle distribution of the lines in (b). 



  

performs well when the camera has a smooth trajectory. 

However, the change in dynamics of the human gait while 

walking is quite complex and as such, we have empirically 

found that visual odometry, by itself does not perform well. 

Further, with a side facing camera, features are only tracked 

over a short sequence of images, and no long term feature 

tracks are available to accurately determine the three rotation 

parameters, thus leading to large accumulation of error over 

time.  

A horizontally mounted laser scanner, on the other hand, 

measures the absolute depth to objects in the scene. Further, 

the rotation computed by scan matching is generally more 

accurate than visual odometry in indoor scenes, since the 

sensor’s scanning rate is much faster than the speed at which 

a human operator traverses the environment. Thus, we have 

opted to mount 3 laser scanners orthogonal to each other in 

our backpack system in order to measure the rotation in the 3 

independent axes namely X, Y, and Z, as shown in Fig. 1(a). 

With these initial rotation estimates, the translation vector is 

recovered using camera images as explained shortly.  

A. ICP Aided Visual Odometry (ICP-VO) 

We transform ICP rotation estimates from the 3 orthogonal 

laser scanners to camera coordinates to construct a full 3D 

rotation matrix to represent the rotation between a pair of 

successive images, It and I
t+1

.. The SIFT feature correspond-

ences between this pair of images is obtained from the 

feature tracker. We let,  

 
represent the vectors along which a feature correspondence 

pair lies in the two images. Substituting Eqns. 4 and 8 in 

Eqn. 3 we obtain,  

 
By defining                          , and reordering terms we have,  

 
where,               are the 3 rows of the rotation matrix, Rc, that 

is composed from the 3 Euler angles obtained by performing 

scan matching on the 3 orthogonal laser scanners. With all 

the available feature correspondences between the two 

images, the null space of the matrix in Eqn. 10 is spanned by 

the translation vector,                       .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to note that Eqn. 10 has only 2 degrees of 

freedom, as the translation can be computed only up to an 

unknown scale factor. Thus, only 2 feature point 

correspondences are sufficient to find the translation. 

However, feature correspondences from the SIFT feature 

tracker could have outliers that degrade the translation 

solution. Thus, we have implemented a 2-point RANSAC 

procedure that computes a translation hypothesis using 2 

randomly chosen point correspondences, and scores the 

hypothesis based on the reprojection error of all feature 

correspondences between the two images. The winning pose 

estimates are then further refined iteratively to find the best 

solution that minimizes the Sampson reprojection error of 

the feature correspondences between the 2 images. With our 

current backpack configuration, multiple laser scanners 

sweep the environment as the human operator traverses it, 

and absolute depth can be assigned to SIFT features in the 

images when laser scan points project to within a few pixels 

of the feature location in an image. The true depth of the 

SIFT feature is used to directly compute the scale in 

translation using Eqn. 6.  

B. Results 

 To evaluate the performance of the ICP-VO algorithm, 

two data sets were collected in the interior corridor of the 

Electrical Engineering building on UC Berkeley campus. 

The results of the algorithm on the first dataset are compared 

against ground truth from the HG9900, in Fig. 6(a). The 

initial 6 DoF pose from the IMU is applied to the ICP-VO 

reconstructed path in order to compare the paths. Unlike 

VOSM, the recovered path by ICP-VO is truly in 3D since it 

recovers 6DoF pose rather than 3DoF. As seen, the ICP-VO 

path is in close agreement with the ground truth in the x-y 

plane, but not along the z-axis; this can be attributed to 

errors in roll and pitch. We have found that by applying 

local bundle adjustment techniques such as the one 

described in [14], we can significantly reduce the error in 

pitch and roll, Y, and Z, thereby improving the accuracy of 

the reconstructed path along the z-axis. For comparison, Fig. 

6(b) shows the reconstructed path by VO and ICP against 

ground truth. As seen, VO results in large error in the z-axis 

and ICP has large error along the x-axis. Figs. 6(c) through 

6(h) compare the six pose parameters against the ground 

truth from the Honeywell IMU. As seen, there is close 

agreement between the pose transformation values and the   

Fig. 4. Flow diagram of VOSM.
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ground truth. For the second data set, a different operator 

carried the backpack, with different walking dynamics, and 

larger incremental rotations occurring at faster time scales. 

This resulted in slightly larger loop closure and path errors 

as seen in Fig 7(a).  

 The average path and loop closure errors for the two data 

sets are reported in Table-2. As seen the loop closure, and 

average position errors for ICP-VO is smaller than VO and 

ICP for both sets. The 4
th

 and 5
th

 columns of Table 2 show 

the RMS and peak errors for all pose parameters. The RMS 

error for yaw is considerably smaller for ICP-VO than for 

VO and ICP, and the peak error for all 6 pose parameters is 

considerably smaller for ICP-VO than for VO and ICP. 

The loop closure error for the VOSM algorithm which 

only recovers x, y and yaw in the 2D plane is 1.29m (1.23 

m) for set-1 (set-2). Similarly, the average position errors are 

0.52m (0.72m) for set-1 (set-2). Thus, for backpack data, a 

truly 3D algorithm such as ICP-VO not only recovers all 6 

degrees of freedom, but also results in smaller loop closure 

error. 

VI. CONCLUSIONS AND FUTURE WORK 

 In this paper two image augmented laser scan matching 
algorithms have been presented for indoor dead-reckoning. 
The VOSM algorithm is predominantly a 2D algorithm that 
efficiently uses images to recover 3DoF poses in a 2D plane. 
It has been tested in the interior corridor of a building, and 
results in a 0.3% loop closure error. This is better than the 
loop closure error obtained in [3] for a combined indoor-
outdoor path. The ICP-VO algorithm presented also fuses 

laser scan matching with image based pose estimated in a 

3D framework, and provides an accurate method of dead-

reckoning in 3D, with loop closure errors of about 1% of the 

traversed path. Future work involves loop closure detection, 

and enforcing global consistency using a graph-SLAM 

framework.  Ultimately, we plan on applying our proposed  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithms to localize our backpack mounted with laser 

scanners and cameras for 3D indoor modeling. 

 

 Loop 

Closure 

Error(m)

Average 

Position 

Error(m) 

Rotation Error

(Y/P/R)  

(deg) 

Translation 

Error 

(X/Y/Z)(m) 

 

Set 1 

 

VO  

 

3.99 

 

2.88 

RMS Error 

1.81/0.61/0.94 

RMS Error 

0.07/0.02/0.05

Peak Error 

4.9/3.4/3.92 

Peak Error 

0.83/0.33/0.37

 

ICP 

 

1.97 

 

3.53 

RMS Error 

0.47/0.67/0.81 

RMS Error 

0.1/0.04/0.05

Peak Error 

3.71/3.39/6.86 

Peak Error 

0.54/0.26/0.2

 

ICP-VO

 

0.65 

 

0.57 

RMS Error 

0.30/1.65/1.35 

RMS Error 

0.05/0.04/0.05

Peak Error 

2.5/1.92/2 

Peak Error 

0.24/0.16/0.17

 

Set 2 

 

VO  

 

3.61 

 

 

1.09 

 

RMS Error 

1.67/0.89/0.56 

RMS Error 

0.13/0.04/0.11

Peak Error 

7.1/3.15/7.16 

Peak Error 

1.02/0.96/0.31

 

ICP 

 

4.88 

 

8.05 

RMS Error 

0.79/0.95/0.94 

RMS Error 

0.17/0.06/0.09

Peak Error 

5.28/6.62/6.2 

Peak Error 

1.7/0.94/0.41

 

ICP-VO

 

0.69 

 

0.86 

RMS Error 

0.77/1.19/0.93 

RMS Error 

0.08/0.05/0.10

Peak Error 

3.5/2.33/2.75 

Peak Error 

0.29/0.48/0.25

Table 2 – Performance of VO and ICP-VO on indoor 

data sets. 

Fig. 5. (a) Reconstructed VOSM path, in red, and ground truth in black; (b) the raw ICP path, in pink, and visual odometry path, in 

blue against ground truth, in black; (c) comparison of VOSM yaw in black, against ground truth in blue; (d) comparison of VOSM x-

translation in black, against ground truth in red; (e) comparison of VOSM y-translation in black, against ground truth in blue. 
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Fig. 7 (a). Reconstructed path of the ICP-VO algorithm in red, against ground truth in black for Set 2; (b) reconstructed 

VO path in blue, and ICP path in pink, against ground truth in black;  (c)-(e) computed roll, pitch and yaw from ICP-

VO against ground truth; (f)-(h) computed delta translations in the x, y and z directions against ground truth. 
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