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Image-based Biophysical Simulation of

Intracardiac Abnormal Ventricular Electrograms
Rocı́o Cabrera-Lozoya, Benjamin Berte, Hubert Cochet, Pierre Jaı̈s, Nicholas Ayache, Maxime Sermesant

Abstract— Goal: In this work, we used in silico patient-
specific models constructed from 3D delayed-enhanced magnetic
resonance imaging (DE-MRI) to simulate intracardiac electro-
grams (EGM). These included electrically abnormal electrograms
as these are potential radiofrequency ablation (RFA) targets.
Methods: We generated signals with distinguishable macroscopic
normal and abnormal characteristics by constructing MRI-
based patient-specific structural heart models and by solving
the simplified biophysical Mitchell-Schaeffer model of cardiac
electrophysiology. Then, we simulated intracardiac electrograms
by modelling a recording catheter using a dipole approach.
Results: Qualitative results show that simulated EGM resemble
clinical signals. Additionally, the quantitative assessment of signal
features extracted from the simulated EGM showed statistically
significant differences (p<0.0001) between the distributions of
normal and abnormal electrograms, similarly to what is observed
on clinical data. Conclusion: We demonstrate the feasibility of
coupling simplified cardiac EP models with imaging data to
generate intracardiac EMG. Significance: These results are a step
forward in the direction of the pre-operative and non-invasive
identification of ablation targets to guide RFA therapy.

Index Terms—cardiac electrophysiology modelling, intracar-
diac electrogram modelling, radiofrequency ablation planning,
electroanatomical mapping.

I. INTRODUCTION

DEspite its numerous advantages over the implantation

of a defibrillator, radiofrequency ablation as a curative

therapy for patients at risk of sudden cardiac death is still

challenging due to the difficulty in finding the appropriate

ablation targets. Invasive measures of cardiac activity obtained

during an electrophysiology (EP) study provide insightful

information about the electrical characteristics of the analysed

myocardium. Under pathological conditions, these extracellu-

lar recordings deviate from the normal (healthy) signal shape

and present multiple deflections and fractionation episodes.

However, this lengthy and invasive procedure is difficult for

both the patient and the clinician. This is why we are exploring

non-invasive approaches to define the ablation targets pre-

operatively.

In this work, we focus on a target that recently emerged as

an appropriate therapy. On structurally diseased hearts with

fibrotic scar, bundles of surviving tissue promote electrical

circuit re-entry and are a cause of arrhythmias. Local abnormal

ventricular activities (LAVA) are sharp fractionated bipolar

potentials occurring during or after the far-field electrogram.

They have been shown to indicate surviving fibers within the
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scar and have been successfully used as targets for radiofre-

quency ablation [1].

Previously, fractionated electrograms (EGM) were thought

to be caused mainly by artifacts related to the electronics of

the acquisition system. Although artifacts indeed may cause

complex EGM, most of them are caused by the peculiar

behavior of activation fronts, due to structural and electrical

complexity of the underlying tissue [2]. Previous studies

have used synthetically generated EGM to explore different

pathological phenomena. The authors in [3] describe the

generation of EGM fractionation from changes in activation

wavefront curvature in experimental canine infarction. In [4],

the modelling of intracardiac recordings was used to aid in the

reconstruction of cardiac ischemia. The work in [5] studied

the influence of different catheter angles, locations and filter

settings on the morphology of simulated intracardiac EGM and

compared them to clinical signals. The study in [6] derived a

way to estimate wave direction and conduction velocity from

simulated intracardiac EGM recorded using circular mapping

catheters and the one in [7] complemented it by applying such

estimations on personalized models.

Delayed-enhanced magnetic resonance imaging (DE-MRI)

enables a non-invasive 3D assessment of scar topology and

heterogeneity with millimetric spatial resolution. It has been

hypothesized that areas of intermediate signal intensity in DE-

MRI, also referred to as the border zone (BZ), host scarred

and surviving myocardium related to arrhythmia in ischemic

populations [1].

In this work, we test the feasibility of using DE-MR image-

based simulation to reproduce macroscopic abnormal patterns

in intracardiac EGM. Through this work, we aim to shine some

light on the understanding of the macroscopic mechanisms

underlying EGM fractionation in the border zone. The overall

scheme of the approach is described in Fig. 1.

II. CLINICAL DATA

Five patients referred for cardiac ablation of post-infarction

ventricular tachycardia (VT) were included in this study.

All patients gave written informed consent. They underwent

cardiac MRI prior to high-density EP contact mapping of the

endocardium (Fig. 1).

A. Imaging Data

The scar tissue was imaged on a 1.5 Tesla clinical device

(Avanto, Siemens Medical Systems) 15 minutes after the

injection of a gadolinium contrast agent. A whole heart image
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Fig. 1: The processing pipeline includes the generation of a personalized cardiac model from imaging data, the simulation of

cardiac electrophysiology and intracardiac electrograms and the statistical analysis of the clinical and simulated signals.

was acquired using an inversion-recovery prepared, ECG-

gated, respiratory-navigated, 3D gradient-echo pulse sequence

with fat-saturation (1.25×1.25×2.5mm3).

The myocardium was manually segmented on images which

were reformatted to have isotropic voxel size (0.625mm3).

Abnormal myocardium consisting of dense scar and border

zone areas was segmented using adaptive thresholding of the

histogram, with a cut-off at 35% of maximal signal intensity.

Segmentations were reviewed by an experienced radiologist,

with the option of manual correction.

B. Electrophysiological Data

The CARTO mapping system (Biosense Webster) enables

the 3D localization of the catheter tip and provides the dis-

tribution of EP signals on cardiac surfaces. Contact mapping

was achieved in sinus rhythm on the endocardium (trans-septal

approach) with a multi-spline catheter (PentaRay, Biosense

Webster). The catheter’s five-branched star design (including

20 electrodes located along 5 branches) allows for high density

mapping by recording multiple locations at once. Recordings

are of 2.5 seconds of duration. Signals were categorized as

normal or abnormal by an experienced electrophysiologist.

Table I includes details on the EP studies for each patient.

TABLE I: CARTO Electrophysiology Study Details

P1 P2 P3 P4 P5 µ± σ

# of Catheter Locations 368 1201 339 214 700 567±399
# of Abnormal EGM 71 44 82 44 33 55±21
# of Normal EGM 297 1157 257 170 667 510±409
% of Abnormal EGM 19 4 24 21 5 15±9

Fig. 2 provides further insight in the distribution of the

clinical annotations of the electrode locations for Patient 1.

The distance to the border zone is computed by taking the

Euclidean distance from the annotated signal location to the

closest edge or point in the mesh generated from the border

zone segmentation, as will be detailed in Section III-A. If

points are within the border zone mesh, their distance is set

to zero. Because the distances are computed using a border

zone mesh and not the image intensities themselves, the edges

of the BZ are not diffuse. It can be seen that abnormal

signals have a higher tendency to remain close to the border

zone, nonetheless, healthy signals can also be found in these

regions. Similar abnormal EGM distributions were found in

the remaining four patients.

Fig. 2: (Left) Image-driven personalized model and location of

abnormal (red) and normal (blue) annotated signals on Patient

1. (Right) Boxplots representing the distance of the annotated

signals to the border zone.

III. CARDIAC MODEL CONSTRUCTION

Fig. 1 shows our processing pipeline. It consists of the

generation of a patient-specific cardiac model from imaging

data, with inclusion of synthetic myocardial fibers. A cardiac

EP model with tissue-specific properties is solved on this

geometry and intracardiac EGM are computed at locations

obtained from the clinical EP study. Signal feature extraction is

performed on both clinical and simulated EGM, which allows

us to perform statistical analysis. Each segment of the pipeline

will be detailed in the following sections.



3

Fig. 3: Personalized heart meshes for our five patients depicting healthy myocardium (yellow), scar (black) and border zone

(grey) tissues derived from DE-MRI segmentations.

A. Anatomical Model Generation

Segmentations of the myocardium, border zone and scar

regions on DE-MRI were performed using MUSIC software

(multimodality software for specific imaging in cardiology,

L’Institut de Rythmologie et de Modélisation Cardiaque, Uni-

versity of Bordeaux, Institut National de Recherche en Infor-

matique et Automatique Sophia Antipolis, Sophia Antipolis,

France). The software is a solution that was developed in-

house and built on the open-source medInria software ar-

chitecture (http://med.inria.fr). Segmentations masks were the

basis to generate personalized 3D tetrahedral meshes of the

biventricular myocardium using the CGAL library [8]. Mesh

details including mean edge length and number of tetrahedra

are shown in Table III.

Myocardial fiber directions were created synthetically as

proposed in [9]. The elevation angle (measured w.r.t. the short

axis plane) was varied from -80◦ on the epicardium to 0◦ at

mid-myocardial wall to +80◦ on the endocardium.

B. Electrophysiology (EP) Model

Cardiac electrophysiology can be described through a va-

riety of mathematical models [10], [11], [12], [13]. More

detailed cell-specific models also exist which aim to describe

cell-to-cell variability in the cardiac tissue [14], [15]. These

models have evolved in the last decades to better represent

physiological phenomena [16], e.g. some have been used to

study VT or other arrhythmia episodes [17], [18], [19], [20].

We chose a model able to represent complex cardiac elec-

trical phenomena while keeping the number and variation of

the involved variables tractable: the Mitchell-Schaeffer (MS)

[13] model. Its main advantages include:

- its simplicity, as it only includes two differential equa-

tions

- the relationship between its parameters and physiologi-

cal behavior makes it easier to interpret

- its ability to simulate arrhythmia macroscopically due to

its restitution parameters

It has been used for patient-specific personalization for VT

simulation [19] and interactive simulation of patient-specific

EP [21].

The Mitchell-Schaeffer (MS) model describes the trans-

membrane potential as the sum of a passive diffusive current

and active reactive currents (inward and outward ionic cur-

rents). The system of equations used is the following:











∂tu = div(D∇u) + zu2(1−u)
τin

− u
τout

+ Jstim(t)

∂tz =

{

(1−z)
τopen

if u < ugate

−z
τclose

if u > ugate

(1)

Where:

- u: normalised transmembrane potential variable

- z: gating variable depicting depolarization and repolar-

ization phases by opening and closing the current gates

- Jin = zu2(1− u)/τin: inward Na+ and Ca2+ ionic

currents which raise the action potential voltage

- Jout = u/τout: outward ionic K+ current which de-

creases the action potential voltage during repolarization

- Jstim: stimulation current at the pacing location

- τin, τout, τopen, τclose have units of seconds

- D = d · diag(1, r, r): anisotropic diffusion tensor in

fiber coordinates which enables conduction velocity in

the fiber direction to be 2.5 larger than in the transverse

plane (r = 1/2.52)

This model incorporates both action potential duration

(APD) and conduction velocity restitution effects. We used

the MS model implementation in the SOFA framework [21].

C. Pseudo-personalization: Tissue-specific EP Properties

The EP properties of the infarcted and border zone tissues

differ from those of the healthy myocardium. For the construc-

tion of our personalized model, DE-MRI was used to asses the

viability of the cardiac tissue. We identified tissue as either

healthy myocardium, scar or border zone. Fig. 3 shows the

derived volumetric ventricular models for each of our patients.

Conductivity in the border zone was decreased by 90% with

respect to its value in the healthy myocardium [22]. Studies in

infarcted hearts [23] [24] [25] [26] reported variations in ionic

currents in the border zone tissue generating action potentials

that differ from the healthy myocardium, with:

- 32% lower peak action potential amplitudes

- 31% smaller upstroke velocity

- 25% longer action potential duration (APD)

Consequently, in our model, the term Jin = zu2(1−u)/τin
in (1) was modified to zu2(a − u)/τin, where variable a

controls the peak amplitude for the action potential. To obtain a

smaller upstroke velocity, τin in the border zone was increased

31% with respect to the value in the healthy tissue.

The analytical expression for the maximum APD for

the Mitchell-Schaeffer model is given by APD =
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TABLE II: Simulation Parameter Values

Tissue Type
Parameter Healthy Border Zone Scar

τin [ms] 0.3 0.42 104

τout [ms] 6 8.4 104

τclose [ms] 150 187.5 187.5
τopen [ms] 120 120 120
ugate 0.13 0.13 0.13
Action Potential Amplitude 1.0 0.7 0.7

Conductivity [×10−3m2/s] 4.0 0.4 0.4

τclose ln (τout/4τin), implying a linear relationship between

τclose and the APD. Therefore, the values for this parameter in

the border zone were increased by 25%. Finally, because τin
had been modified to account for a smaller upstroke velocity,

τout was modified in the same proportion to keep the ratio

τout/τin constant.

Scar tissue was modelled to have a null reaction component

on the MS model by setting much higher values of τin
and τout with respect to those of the healthy myocardium.

The diffusion component was left with the values of the

border zone. Healthy myocardial values were set to the default

values in [13]. Furthermore, patient-specific sinus rhythm was

extracted from surface electrocardiogram (ECG) recordings.

Table II summarizes the parameters used for our personalized

simulations.

The current tissue-specific model parameters were not mod-

ified to account for the heterogeneity in action potential dura-

tions between the endocardial and epicardial [27] nor between

the apex to base [28] tissue, which affect the repolarization

phase. This study focuses on EGM abnormalities found in

the depolarization complex. This can explain the difference

between simulated and recorded T-wave patterns.

IV. INTRACARDIAC EGM SIMULATION

Extracellular electrograms arise due to transmembrane cur-

rents occurring from differences in the axial voltage gradient

at the interface between activated and inactivated myocardial

cells [2]. If an activation wave front travels from left to

right throughout the myocardium, at the boundary of the

propagation front, the depolarized cell has an intracellular

potential of +20mV whereas that of the cell in resting state

remains at -90mV. This creates a current flow from the

activated to the inactivated myocyte. To comply with the

preservation of charge, the back of the activation front presents

a current flow from the extracellular space into the intracellular

space, whereas the current flow direction is reversed in the

regions ahead of the activation front. This flow of current

in the extracellular space generates an extracellular voltage

difference and therefore a potential dipole.

A. The Dipole Approach

The notion of resulting dipoles at the depolarization wave

front can be used to compute the resulting potential at a given

coordinate in the extracellular space [29]. This approach was

used by [30] to compute pseudo pre-cordial and limb-lead

ECGs from a Purkinje muscle model. We introduce a similar

approach to simulate unipolar and bipolar intracardiac EGM

at a given position representing the catheter location.

The monodomain formulation describes the action potential

propagation with the following reaction diffusion equation:

Cm

∂v

∂t
+ Iion = ∇ · σm∇v (2)

where v represents the transmembrane potential, Cm is the

membrane capacitance, σm corresponds to the local conduc-

tivity and Iion is the current through the cell membrane per

unit of area. We define the equivalent current density jeq as:

jeq = −σm∇v (3)

−jeq behaves like a flow source density, and it can also be

seen as a dipole moment per unit of volume:

p =

∫

jeqdV (4)

According to the volume conductor theory [29], the electric

potential registered at a distance R in a homogeneous volume

conductor of conductivity σ outside the region occupied by

the volume source V is :

Ψ(R) =
1

4πσ

∫

V

jeq · ∇(
1

R
)dV (5)

In our case, we model the moving propagation front as a

local dipole. As this dipole is proportional to the potential

gradient, and we use linear elements to solve the model equa-

tions, the dipole momentum pX at a position X is spatially

invariant over a single tetrahedron H: ∀X ∈ H, pX = pH .

Then we sum the potential over all the myocardial regions:

those being activated, those depolarized and those at rest.

Non-activated regions give almost null dipole momenta and

it simplifies the overall calculation.

We discretize (4) in space (H tetrahedra of the mesh) and

get the formulation of the dipole moment of the charge in the

volume VH of tetrahedron H :

pH = VH j t
eq,H = VH σm,H∇vH (6)

The gradient of the electrical potential in the tetrahedron

∇vH is computed using its node values and its shape vectors

as defined in [31], and the dipole is located at the tetrahedron

center XH .

From (5), the contribution ΨH(Xel) of tetrahedron H to

the potential field calculated at the electrode location Xel is

estimated by:

ΨH(Xel) =
1

4πσ

(VH σm,H∇vH) · (Xel −XH)

‖Xel −XH‖3
(7)

Finally, we sum over the whole mesh to get the potential

field at Xel: Ψ(Xel) =
∑Nb tetra

H=1 ΨH(Xel) .
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B. Unipolar and Bipolar Electrogram Computations

Unipolar electrograms are obtained by positioning the ex-

ploring electrode in the heart and the indifferent electrode

away from the heart so it has little or no cardiac signal [32].

Bipolar EGM correspond to the difference in potential

between two unipolar measurements and are useful to study

the local activities. The far-field signal is assumed to be similar

for both unipolar recordings so it is largely filtered out [32].

Each of the five branches of the recording catheter used

in the clinical environment has four electrodes named M1,

M2, M3 and M4 from the distal to the proximal. Two bipolar

recordings are generated from these unipolar measurements:

M1-M2 and M3-M4 (Fig. 4). Electrode positions at recording

time are given by the CARTO system and its spatial coordi-

nates are used to generate our computational measurements,

as exemplified in Fig. 1.

Fig. 4: The subtraction of two unipolar measurements gener-

ates a bipolar measurement. Here, the M1 and M2 unipolar

signals are used to generate the bipolar M1-M2 signal.

Simulations were performed with a time step of 1 × 10−5

seconds. Further details on EGM simulations per patient are

shown in Table III. Computation times correspond to the sim-

ulation of a single cardiac cycle and of all the corresponding

patient-specific intracardiac EGM, on a computer with Intel

Core i5 CPU.

TABLE III: Patient-specific Simulation Details

P1 P2 P3 P4 P5

# Tetrahedra in Mesh 112,308 96,260 150,480 96,288 29,586
Mean Edge Length [mm] 2.69 2.67 2.69 2.68 3.98
# Nodes in Mesh 23,355 20,306 31,100 21,231 6,742
# Unipolar EGM 1472 4804 1956 856 2800
# Bipolar EGM 736 2402 978 428 1400
Cardiac Cycle [ms] 830 625 1150 1150 830
Computation time [min] 9.7 23.3 17.4 5.8 4.3

V. SIGNAL ANALYSIS

In addition to a qualitative assessment of signal morphology,

a quantitative signal evaluation was performed by extracting

the signal characteristics from simulated and clinical EGM.

They are described next and some of them have been illus-

trated in Fig. 5:

- Signal Range: difference between the maximum and

minimum amplitude signal values.

- Number of Inflection Points: number of points where

the signal changes concavity.

- Signal Energy: calculated using Teager’s operator [33].

- Dominant Frequency: from the fast Fourier transform.

- Mean Slope: mean absolute value of dV/dt.
- Fractionation Index: number of deflections with an

amplitude >0.2mV from the signal baseline.

- Minimum and Maximum Signal Value.

Fig. 5: Illustration of signal features extracted for EGM

characterization and quantitative analysis.

Some of these features were inspired by those used clini-

cally [34] to characterize EGM associated with atrial fibrilla-

tion. Signal range is expected to be smaller in abnormal elec-

trograms when compared to healthy ones. On the other hand,

the number of inflection points, mean slope and fractionation

index are interesting characteristics as their values tend to be

higher in abnormal electrograms with multiple deflections and

fractionation episodes.

The distributions of the values of each of these char-

acteristics in the normal and abnormal signal groups were

assessed using the non-parametric Kolmogorov-Smirnov (KS)

test, as this test does not assume that data come from a

normal distribution [35]. This test compares the cumulative

distribution functions of two datasets and computes a p value

dependent on the maximum distance between them. It is useful

to detect substantial differences in either shape, spread or

median between the distributions. A value of p < 0.05 was

considered as statistically significant.

VI. RESULTS AND DISCUSSION

Catheter measurements were simulated using the image-

driven personalized heart model at personalized sinus rhythm

with the parameters stated in Table II. Resulting EGM were

qualitatively compared to their clinical counterparts and fea-

tures between normal and abnormal groups were assessed.
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Fig. 6: Simulated and clinical normal (blue) and abnormal (red) bipolar EGM with electrode locations.
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Fig. 7: KS test results. Statistically significant differences

(p<0.05) between normal and abnormal feature distributions

in (green) both CARTO and simulated signals (yellow) only

in CARTO signals (blue) only in simulated signals (black)

neither in CARTO nor in simulated signals.

A. Qualitative Assessment of Simulated EGM

Fig. 6 shows samples of the locations of the electrodes with

respect to the cardiac geometry, and the resulting EGM simu-

lation and clinical bipolar (M1-M2) signals at these locations

for Patients 1 and 3. Three normal and three abnormal signals

per patient are depicted.

A first qualitative assessment shows that simulated signals

are less prone to noise when compared to the CARTO signals.

This is expected as the simulated signals are not affected by

catheter movement, breathing or cardiac motion, among other

factors.

For the normal simulated signals, we observe a normal

ventricular depolarization in the form of a steep slope, without

any fragmentation inside the EGM signal. For the abnormal

signals, fractionation is found anywhere during the QRS

complex of the bipolar EGM.

As was mentioned before, the T-wave abnormality is due to

the fact that APD heterogeneity across the myocardium was

not accounted for in the model.

B. Clinical and Simulated Signal Characterization

Results of the KS test on the signal characteristics of the

clinical CARTO recordings can be obtained from Fig. 7.

With the exception of the dominant frequency in Patients

1 and 4, a statistically significant difference between the

signal characteristics of normal and abnormal distributions was

found. For reference, most test results yielded as low as p

value of <0.0001, denoting a very good separability between

the class distributions of normal and abnormal signal features.

For the simulated signals, the results of the KS test can

also be obtained from Fig.7. The distributions of mean slope,

number of inflection points and maximum signal value differed

significantly among simulated normal and abnormal signal

populations, as can be seen by the low p value obtained after

the KS test.

Looking in more detail at these tests, the first two rows in

Fig. 8 show the histograms of the distributions for the number

of inflection points in the abnormal and normal classes in the

simulated signals, respectively. The difference in distributions

is perhaps more evident in the bottom row which shows the

CDF of both classes. The average KS statistic (maximum

difference between CDF) for this feature across the five

patients is 0.34, denoting a statistically significant distance

between the distributions.

Figure 7 shows a good agreement between the KS test

results in clinical and simulated signals. A statistically signifi-

cant difference was found in the distributions of features such

as signal range, number of inflection points, mean slope and

maximum signal value on both clinical and simulated signals.

The distributions of dominant frequency in the signals

performed the worst, where a statistically significant difference

was only found in simulated signals for Patient 1. For Patient

5, only the CARTO signals had difference in their distribution

and no statistically significant difference was found neither in

the clinical nor in the simulated signals in Patient 4.

C. Discussion

This exploratory research paper seeks to evaluate whether

computer simulation combined with medical imaging is able

to pinpoint non-invasively the regions of the myocardium that

generate abnormal signals in the same way as it is measured

in a clinical environment invasively with a catheter, rather than

to recreate EGM signals with high fidelity when compared to

their clinical counterparts.

Given all the simplifications in modelling both the biophys-

ical phenomenon and the data acquisition procedure, it would

be hard to obtain quasi-realistic signals using the approach

shown in this paper. Nevertheless, this approach demonstrated

statistically significant differences in simulated normal and

abnormal intracardiac electrograms which is of high clinical

relevance. It opens the door for simulation-based approaches

to guide EP interventions in order to guide clinicians to

the locations where abnormal electrograms are found. It also

restricts the search of abnormalities to subregions in the

myocardium and could decrease procedure times. Finally, the

clinician would in any case measure the electrical activity in

the region before taking the decision of ablating.

VII. CONCLUSION

We presented the use of a personalized image-based model

for the simulation of intracardiac EGM with abnormal elec-

trical characteristics. We showed that the use of a simpli-

fied biophysical electrophysiology model with tissue-specific

parameters and the use of a dipole approach to simulate

intracardiac electrograms were sufficient to generate abnor-

mal signals which are properly localized and distinguishable

from their normal counterpart as labeled by an experienced

electrophysiologist.

Also, the resemblance of the simulated signals with their

clinical CARTO counterpart was qualitatively assessed. Fur-

thermore, feature extraction was performed on both the sim-

ulated and clinical signals. Characteristics such as the mean

slope and number of inflection points presented significantly

different distributions when assessed through the use of a

Kolmogorov-Smirnov test in both the simulated (p<0.002) and

clinical signals (p<0.0001).

The encouraging results obtained in this work demonstrate

that it is feasible to generate intracardiac EGM using a
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Fig. 8: Histograms of the number of inflection points for abnormal EGM (top) and normal EGM (middle) simulated signals by

patient. (bottom) Cumulative distribution functions (CDF) for abnormal EGM (red) and normal EGM (blue) simulated signals.

simplified cardiac EP models personalized with imaging data,

with distinct characteristics which could aid in the planning of

RFA therapy by pre-operatively and non-invasively identifying

ablation targets.
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and M. Moscoso, “Shape reconstruction of cardiac ischemia from non-
contact intracardiac recordings: A model study.,” Mathematical and

Computer Modelling, vol. 55, no. 5-6, pp. 1770–1781, 2012.

[5] M. W. Keller, S. Schuler, A. Luik, G. Seemann, C. Schilling, C. Schmitt,
and O. Dossel, “Comparison of simulated and clinical intracardiac
electrograms,” in Engineering in Medicine and Biology Society (EMBC),

2013 35th Annual International Conference of the IEEE, pp. 6858–6861,
IEEE, 2013.

[6] F. M. Weber, C. Schilling, G. Seemann, A. Luik, C. Schmitt, C. Lorenz,
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location of active segments in intracardiac electrograms,” in World

Congress on Medical Physics and Biomedical Engineering, September

7-12, 2009, Munich, Germany, pp. 763–766, Springer, 2010.
[34] Y. Takahashi, M. D. ONeill, M. Hocini, R. Dubois, S. Matsuo, S. Knecht,

S. Mahapatra, K.-T. Lim, P. Jaı̈s, A. Jonsson, et al., “Characterization
of electrograms associated with termination of chronic atrial fibrillation
by catheter ablation,” Journal of the American College of Cardiology,
vol. 51, no. 10, pp. 1003–1010, 2008.

[35] J. W. Pratt and J. D. Gibbons, “Kolmogorov-smirnov two-sample tests,”
in Concepts of Nonparametric Theory, pp. 318–344, Springer, 1981.




