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Cardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD).

Until now, its role has been limited to visual and quantitative assessment of cardiac

structure and function. However, with the advent of big data and machine learning,

new opportunities are emerging to build artificial intelligence tools that will directly assist

the clinician in the diagnosis of CVDs. This paper presents a thorough review of recent

works in this field and provide the reader with a detailed presentation of the machine

learning methods that can be further exploited to enable more automated, precise and

early diagnosis of most CVDs.

Keywords: cardiovascular disease, automated diagnosis, cardiac imaging, artificial intelligence,machine learning,

deep learning, radiomics

1. INTRODUCTION

Despite significant advances in diagnosis and treatment, cardiovascular disease (CVD) remains
the most common cause of morbidity and mortality worldwide, accounting for approximately one
third of annual deaths (1, 2). Early and accurate diagnosis is key to improving CVD outcomes.
Cardiovascular imaging has a pivotal role in diagnostic decision making. Current image analysis
techniques are mostly reliant on qualitative visual assessment of images and crude quantitative
measures of cardiac structure and function. In order to optimize the diagnostic value 5 of
cardiac imaging, there is need for more advanced image analysis techniques that allow deeper
quantification of imaging phenotypes. In recent years, the development of big data and availability
of high computational power have driven exponential advancement of artificial intelligence (AI)
technologies in medical imaging (Figure 1). Machine learning (ML) approaches to image-based
diagnosis rely on algorithms/models that learn from past clinical examples through identification of
hidden and complex imaging patterns. Existing work already demonstrates the incremental value
of image-based cardiovascular diagnosis with ML for a number of important conditions such as
coronary artery disease (CAD) and heart failure (HF). The superior diagnostic performance of
AI image analysis has the potential to substantially alleviate the burden of cardiovascular disease
through facilitation of faster and more accurate diagnostic decision making.

In this paper we describe the main ML techniques and the procedures required to successfully
design, implement, and validate new ML tools for image-based diagnosis. We also present a
comprehensive review of existing literature pertaining to applications of ML for image-based
diagnosis of CVD.
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FIGURE 1 | Number of publications on machine learning and cardiac imaging

per year. This suggests an upward trend for future research. Light green bar

represents the expected number of publications to be published late 2019.

2. OVERVIEW OF PIPELINE FOR
IMAGE-BASED MACHINE LEARNING
DIAGNOSIS

The overall pipeline to build ML tools for image-based cardiac
diagnosis is schematically described in the following section,
as well as in Figure 2. In short, it requires (1) input imaging
datasets from which suitable imaging predictors can be extracted,
(2) accurate output diagnosis labels, and (3) a suitable ML
technique that is typically chosen and optimized depending

Abbreviations: Machine learning abbreviations: AI, Articial Intelligence; AUC,
Area Under Curve; ANN, Artificial Neural Networks; BN, Bayesian Network;
CNN, Convolutional Neural Network; CL, Clustering; DL, Deep Learning; DT,
Decision Tree; GA, Genetic Algorithm; GAN, Generative Adversarial Network;
GBRT, Gradient Boosting Trees; kNN, k-Nearest Neighbors; LDA, Linear
Discriminant Analysis; LR, Logistic Regression; ML, Machine Learning; PCA,
Principal Component Analysis; PLS, Partial Least Squares; RF, Random Forest;
ROC, Receiver Operating Characteristic Curve; Se, Sensitivity; Sp, Specificity;
SVM, Support Vector Machine; VAE, Variational Autoencoder.
Cardiac imaging and clinical abbreviations: ARV, Abnormal Right Ventricle;
ASD, Atrial Septal Defect; CAC, Coronary Artery Calcium; CAD, Coronary
Artery Disease; CMR, Cardiac Magnetic Resonance; CT, Computed Tomography;
CTA, Computed Tomography Angiography; CVD, Cardiovascular Disease; DCM,
Dilated Cardiomyopathy; ECG, Electrocardiography; echo, Echocardiography;
HCM, Hypertrophic Cardiomyopathy; HF, Heart Failure; HFpEF, Heart
Failure with preserved Ejection Fraction; HHD, Hypertensive Heart Disease;
ICA, Invasive Coronary Angiography; IR, Iterative Reconstruction; LV, Left
Ventricle; MACE, Major Adverse Cardiovascular Event; MI, Myocardial
Infarction; MR, Mitral Regurgitation; MRI, Magnetic Resonance Imaging; MYO,
Myocarditis; NRS, Napkin Ring Sign; PET, Positron Emission Tomography;
ROI, Region Of Interest; RV, Right Ventricle; SPECT, Single Positron Emission
Computed Tomography.

on the application to predict the cardiac diagnosis (output)
based on the imaging predictors (input). Additional non-imaging
predictors (e.g., electrocardiogram data, genetic data, sex, or age)
are often integrated into the ML model and typically improve
model performance.

In this section, we will first discuss the input and output
variables in more detail, before introducing common used ML
techniques and their applications.

2.1. Data, Input and Output Variables
2.1.1. Sources of Cardiovascular Imaging Data
Robust ML models are reliant on the availability of sufficient
and accurate data. Thus, data preparation is an important
pre-requisite to derive that perform well on internal and
external validation. Within cardiac imaging, there is increasing
availability of quality sources of organized big data through
various biobanks, bioresources, and registries. Available cohorts
can be classified into population-based and clinical cohorts.
Population cohorts such as the UK Biobank follow the health
status of a representative sample of individuals from the general
population and thus are particularly useful for risk stratification.
In contrast, clinical cohorts, such as the Barts BioResource or
the European cardiovascular magnetic resonance (EuroCMR)
registry, are composed of clinical imaging from patients and
therefore more suitable for building diagnostic tools. These
datasets are an invaluable resource for the development and
validation of ML diagnostic models (see Table 1 for examples of
additional cardiac imaging datasets).

2.1.2. Input Variables
Before an ML model can be built for image-based diagnosis
estimation, it is necessary to suitably define the imaging inputs.
Imaging inputs may be the raw imaging data (i.e., pixel
intensities), conventional cardiac indices (and other transformed
quantitative image parameters) or radiomics features extracted
from the image. See Figures 3 and 4 for additional information
about input variables.

2.1.2.1. Conventional imaging indices
Conventional imaging indices include measures commonly used
in routine clinical image analysis such as ventricular volumes in
end diastole/systole and ventricular ejection fractions.

Estimation of these clinical indices requires prior contouring
of the endocardial and epicardial boundaries of the relevant
cardiac chambers. Deep learning approaches have been used to
develop automated/semi-automated contouring tools for more
efficient and reproducible segmentation of cardiac chambers.

Since manual delineation of these boundaries is tedious and
subject to errors, many automatic or semi-automatic tools have
been developed (see Table 2 for examples of existing tools).
Note that recently, many deep learning (DL) based approaches
have been published for accurate and robust segmentation of
the cardiac boundaries with promising results, however this is
beyond the scope of this review [more details on this, as well as a
basic introduction toML, in cardiac magnetic resonance imaging
(MRI) can be found in recent work by (3)].
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FIGURE 2 | Pipeline for building image-based machine learning models.

TABLE 1 | Selection of cardiac imaging datasets available.

Name Country Modality Size Year

Framingham Heart Study USA Echo/MRI/CT >5,000 1948

Study of Health in Pomerania DE MRI >8,000 1997

The Tromso Study NO Echo 3,287 1999

Multi-Ethnic Study of Atherosclerosis USA MRI 2,450 2000

UK Biobank UK MRI 20,000 2006

HUNT Study NO Echo 1,296 2006

Defibrillators to Reduce Risk by MRI Evaluation USA MRI 450 2007

Barts BioResource UK Echo / MRI >10,000 2007

European CMR Registry EU MRI >27,000 2007

NEO Study NL MRI 1,205 2008

SunnyBrook Cardiac Data USA MRI 45 2009

Registry of Fast Myocardial Perfusion Imaging with next gen SPECT USA SPECT >20,400 2009

The German National Cohort DE MRI 20,000 2011

Maastricht Study NL Echo / CT 3,451 2012

Canadian Alliance for Healthy Hearts and Minds CA MRI 9,700 2013

Challenge on Endocardial 3D Ultrasound Segmentation FR Echo 45 2014

Hamburg City Health Study DE MRI >45,000 2016

Automated Cardiac Diagnosis Challenge Dataset FR MRI 150 2017

Cardiac Acquisitions for Multi-structure Ultrasound Segmentation FR Echo 500 2019
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FIGURE 3 | Input variables type distribution in reviewed literature. As seen in

the pie chart, conventional indices are the predominant features for training ML

models, followed by radiomics and deep learning techniques.

FIGURE 4 | Summary of common input and output variables for image-based

diagnosis ML algorithms. Different cardiac imaging input features such as raw

data, conventional indices extracted from a ROI or radiomics (delineation of

cardiac anatomy is required for the last two cases) and desired output. Both

structures shape the most basic requirement for a ML cardiac imaging

application, data.

Some recent works will be listed to illustrate the use of
conventional imaging indices as inputs for ML-based diagnosis
models. In Khened et al. (4), an artificial neural network (ANN)
was built to automatically diagnose several cardiac diseases such
as hypertrophic cardiomyopathy (HCM), myocardial infarction
(MI) and abnormal RV (ARV), by using as input LV and RV

TABLE 2 | Selection of cardiac structural and functional analysis softwares.

Name Producer Modality

CMRtools Cardiovascular Imaging Solutions MRI

suiteHEART NeoSoft MRI

CVI42 Circle Cardiovascular Imaging MRI/CT

Medis Suite Medis MRI/CT

iNtuition Terarecon MRI/CT

Segment Medviso MRI/CT/SPECT

syngo.via Siemens MRI/CT/SPECT

IntelliSpace Portal Philips MRI/CT/echo

VevoLAB Visualsonics Echo

QLAB Philips Echo

TOMTEC Philips Echo

ejection fraction, RV and LV volume end-systole and end-
diastole, myocardial mass, as well as the patient’s height and
weight. In Chen et al. (5), the authors integrated a set of 32
variables from clinical data, including ejection fraction, blood
pressure, sex, age, as well as other conventional risk factors,
to diagnose dilated cardiomyopathy (DCM). Juarez-Orozco
et al. (6) merged ejection fractions at rest and stress with a
pool of clinical parameters to predict ischemia and adverse
cardiovascular events using ML.

Regarding motion, strain and single intensity analysis, in
Mantilla et al. (7), global spatio-temporal image features are
extracted to feed a support vector machine (SVM) classifier
for LV wall motion assessment. Pairwise single intensity and
variance regional differences in SPECT perfusion studies mimics
the clinical procedure of qualitatively comparing stress and rest
images in Bagher-Ebadian et al. (8). Contractility differences and
multiscale wall motion assessment are performed by means of
apparent flow in Moreno et al. (9) and Zheng et al. (10) where
each feature describes an oriented velocity at a given position
along the cardiac ROI.

2.1.2.2. Radiomics features
Radiomics analysis is the process of converting digital images
to minable data. Analysis of the data through application
of various statistical and mathematical processes allows
quantification of various shape and textural characteristics
of the image, referred to as radiomics features (Table 3).
Radiomics analysis quantifies more advanced and complex
characteristics of the cardiac chambers than is visually
perceptible. Similarly to clinical imaging indices, radiomics
requires the delineation of the cardiac structures before the
features can be extracted.

Introduced in 2012 (11, 12), the radiomics paradigm was,
for a long time, mostly exploited in oncology (13). Recently, a
number of works have shown the promise of radiomics combined
with ML for image-aided diagnosis of CVD. For instance,
Cetin et al. (14) demonstrated that about 10 radiomics features
integrated within an ML model are sufficient to discriminate
between several major CVDs. More recently, researchers at
Harvard University, Neisius et al. (15) have built an ML
model with 6 radiomic features calculated from T1 mapping
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TABLE 3 | Radiomics features overview.

Type Description Examples

Shape features Describe geometric

characteristics of the cardiac

structures

Volume, surface area,

sphericity,

diameters, axis, surface

to volume ratio, flatness

Intensity (First

order)

Statistics on the intensity

distributions within the region of

interest (ROI)

Mean intensity, range,

skewness

(asymmetry) and

entropy

Texture GLCM

(Second order)

Quantifies the spatial relationship

of the pixels in the ROI

Contrast, correlation

Texture GLSZM

(Higher order)

Quantifies the number of

connected voxels that share the

same intensity level

Gray level

non-uniformity, zone

entropy

Texture GLRLM

(Higher order)

Quantifies the gray level runs in

the ROI

Run entropy, long run

emphasis

and short run emphasis

Texture NGTDM

(Higher order)

Quantifies the difference between

a gray value and the average gray

value of its neighbors within a

predefined distance

Busyness, strength

Texture GLDM

(Higher order)

Quantifies the gray level

dependencies in the ROI

Dependence non-

uniformity,

dependence entropy

and

dependence variance

Fractal dimension Determines the ratio of change in

detail to the change in scale

sequences to differentiate between hypertensive heart disease
(HHD) and HCM.

2.1.2.3. Raw imaging data
Whole raw images may also be used as the input for the
ML model, without any pre-processing or calculation of
hand-crafted input imaging features. About 10% of published
reports rely on this type of modeling. In this case, the
optimal features for predicting the cardiac diagnoses are self-
learned automatically by the ML techniques based on the
training sample, as opposed to a priori definition by the
AI scientist.

For illustration, it is worth mentioning the work by Betancur
et al. (16), an end-to-end DL model, estimating per-vessel
CAD probability without any assumed subdivision of the input
coronary territories from imaging data. The authors inWolterink
et al. (17) built a coronary artery calcification (CAC) detector,
also based on DL trained on raw CT images. A similar DL
model directly built from raw echo images was demonstrated
in Lu et al. (18) to identify dilated cardiomyopathy cases. Also
from raw echo images, the authors in Kusunose et al. (19)
built a DL model for automatic detection of regional wall
motion abnormalities.

2.1.3. Output
ML algorithms may be developed using supervised or
unsupervised learning methods. Supervised learning requires

accurately labeled training examples. In the simplest form, the
output is a binary variable which takes a value of 1 for a diseased
individual and 0 for a control healthy subject. To obtain a robust
ML model, it is recommended to use a balanced training sample,
comprising a similar number of healthy and diseased subjects.
Note that the binary classification can be easily extended to the
multi-class case if several diseases or stages of disease are to be
included in the ML model. Thus, supervised learning algorithms
link the input variables to labeled outputs. Unsupervised learning
is the training of algorithms without definition of the output.
Through this technique, the ML algorithm groups the sample
through recognition of inherent patterns within the data. In
general, supervised learning outperforms unsupervised learning
and so is the preferred method in situations where the ground
truth is known. However, unsupervised learning has unique
value for discovery of novel disease sub-types and patient
stratification e.g., different pheno-groups of hypertensive heart
disease or CAD.

2.2. Machine Learning Techniques
ML, refers to the use of computer algorithms that have the
capacity to learn to perform given tasks from example data
without the need for explicitly programmed instructions, i.e.,
image-based cardiac diagnosis in our case. This field of AI
uses advanced statistical techniques to extract predictive or
discriminatory patterns from the training data in order to
perform the most accurate predictions on new data. We present
the most commonly used ML techniques in the field of cardiac
imaging and diagnosis for a non-expert audience and discuss
their benefits and drawbacks (see Table 4 and Figure 5 for
additional information). A list of diagnostic applications for each
method will be provided as examples.

2.2.1. Logistic Regression
A Logistic Regression (LR) model is used to estimate the
probability of a given output based on input variables in a
continuous fashion, in contrast with a binary classifier. Final
probabilities add up to one, so one obtains a stratification
into all possible outcomes and the odds for each one. One
property of this model is that a slight change in the input value
may disproportionately impact the final probability prediction,
as can be seen in Figure 6A. Additionally, the input vector
dimension (number of predictor variables) must be kept low,
as this can lead to costly model training processes and risks
overfitting of the model to the training dataset with resultant
poor generalisability of the model. Thus, when dealing with
a large number of input variables, dimensionality reduction
algorithms, such as principal component analysis (PCA) or linear
discriminant analysis (LDA), are applied to reduce the number of
predictors to those that are most informative. LR is a valuable
model to be selected when different sources of data must be
integrated in a binary classification task and low complexity
is required.

In the literature, several works have applied LRs for their
particular application. For example, Zheng et al. (10) applied a
sequence of four LRs to classify patients according to cardiac
pathologies by using shape features extracted from cine MRI
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TABLE 4 | Overview of machine learning techniques.

Technique Description Advantages Disadvantages

Logistic

Regression

Extension of linear

regression that

outputs a

binary

classification

Simple and

explainable;

Does not require

empirical parameter

tuning nor input

feature

normalization

Not suitable for non-

linear problems;

Prone to

overfitting

Support

Vector

Machine

Finds the optimal

boundary between

classes

Can handle different

types of non-linear

class

separations; Does

not

require large training

samples

Requires

hyperparameter

tuning and

non-linear

kernel selection; Not

suitable for very

large

datasets

Random

Forest

Generates a set of

hierarchical

decision

queries over the

input

and output data

Automatically

defines

feature importances;

Does not require

input

feature normalization

Prone to overfitting;

Requires definition of

depth and number

of

trees

Artificial

Neural

Network

Models complex

classification tasks

by propagating

input data through

a

network of

non-linear

transformations

Generalizes well

when

trained on large

training

samples

Difficult to interpret;

Requires prior

selection

of a network design

(e.g.,

depth of the

network);

Requires large

training

data

Convolutional

Neural

Network

ANNs adjusted for

the processing

and

classification of

image

data

Flexible design

depending on the

applications; Can

learn

the optimal features

directly from the

images

Same limitations as

ANNs

Clustering Finds subgroups

within

the input feature

space in

an unsupervised

manner

Useful to discover

subgroups when the

groups labels are not

unknown a priori;

Simple and fast

Sensitive to

initialization

and scale; Difficult to

estimate the number

of

subgroups

per segment. Thus they obtained a simple and easily interpretable
model with only three input features per classifier. In another
example, Arsanjani et al. (20) used a combination of classifiers
improved with a LR to diagnose obstructive CAD using SPECT
images. Finally, a LR was also applied by Baeßler et al. (21) to
diagnose acute or chronic heart failure-like myocarditis.

2.2.2. Support Vector Machine (SVM)
Support vector machines (SVMs) are supervised ML models
whereby the optimal linear or non-linear boundary segregating
the data into two or more classes is identified, as can be seen
in Figure 6B. Prior to application of SVMs, the function which
will be used for segregating the data should be selected, the
so called kernel function. The most used kernels are the linear

function or the Gaussian function. The remaining parameters
of the SVM model are chosen empirically by training a set
of models and keeping the settings as for the model with the
lowest error. Since thismodel is insensitive to non-discriminating
dimensions, a dimension reduction could be applied to the input
variables to ease the training and obtain a better generalization
as for linear regression. One major drawback of SVM is that
it becomes memory expensive when large amounts of data are
processed. SVM is a good choice to identify non-linearity and
sparsity in the input data : different kernels can be used to fit
different distributions.

Amongst all MLmethods presented in this review, SVM is one
of the most frequently used techniques and some works find this
model to obtain the best performance. For example, Conforti and
Guido (22) presented a comparison of SVMmodels with different
kernels (polynomial, Gaussian and Laplacian functions), the
original 105 features and a feature selection of 25 as input for
the early diagnosis of myocardial infarction. Similarly, Arsanjani
et al. (23) and Ciecholewski (24) found that a SVM model
outperformed previous algorithms used in the task of CAD
identification by using data extracted from SPECT images. In
the first example, a second degree polynomial was used as
kernel while in the second, a Gaussian function showed better
performance. A SVM was also the best model when predicting
acute coronary syndrome for 228 patients using histological, ECG
and echo qualitative features, as shown by Berikol et al. (25).
As a final example, Borkar and Annadate (26) obtained a very
good accuracy for discrimination of DCM and atrial septal defect
(ASD) patients using radiomics features and a SVM using a
Gaussian kernel function.

2.2.3. Random Forest (RF)
This popular technique consists of a combination of decision
trees (DTs) trained on different random samples of the training
set, as can be seen in Figure 6C. Each DT is a set of rules based
on the input features values optimized for accurately classifying
all elements of the training set. DTs are nonlinear models and
tend to have high variance. If the DT is grown very deep it can
pick up irregularities in the training dataset and consequently
problems with overfitting may be encountered. This problem
is counteracted in a RF through training on different samples
of the training dataset. In this way the variance is reduced as
the number of DT used, lowering therefore the generalization
error and becoming a powerful technique. The final prediction
is obtained by selecting the mode (for classification problems)
or the mean (for regression problems) of all predictions. Two
parameters must be selected for these models: the number of DTs
and the depth level for each DT (i.e., the number of decisions).
However, one must bear in mind that whilst discriminatory
power on training dataset is increased as DT increase in depth,
this is often at the expense of losing generalization power. RFs
are chosen in order to transform the problem into a set of
hierarchical queries represented as DTs. However, RFs are not
very resistant to noise.

In the literature, RF or DT have been used frequently and
were selected as the best performing model in some works. For
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FIGURE 5 | Machine Learning technique distribution.

example, Moreno et al. (9) compared SVM and RF models in
binary classification tasks with 2,964 input features for different
cardiac pathologies, such as HF or HCM, using optical flow
features in cardiac MRI, where the latter model obtained the best
performance in most cases. In this case, each DT in the RF model
had two depth levels for fast predictions in clinical practice. In
another example, Wong et al. (27) a RF outperformed a SVM
for infarction detection by means of regional intensity analysis
and motion modeling. As a final example, a RF was also used
by Baeßler et al. (28) to find the most discriminative features
in texture analysis for T1-weighted cardiac MRI for HCM and
normal patients classification.

2.2.4. Cluster Analysis
Cluster analysis relates to the set of techniques that group
together subjects in the form of data points according
to similarity or proximity in the parametric space given
by quantitative data extracted from input variables (image
parameters and/or clinical information), as can be seen in
Figure 6D. This technique is very useful for patient stratification,
since patients with apparently similar pathology, according to
existing image analysis techniques, may fall into previously
unrecognized subsets which may inform understanding of
disease pathophysiology and inform more effective targeted
therapies. Some clustering techniques require definition of
outcomes, which means that lay on the unsupervised learning
ML group. However, in classification tasks a very common
supervised clustering strategy is k-nearest neighbors (kNN)
clustering, where k is the number of neighbor subjects to look
at when finding subgroups. In this case, surrounding diagnosed
subjects will determine the outcome for a new patient. Most of
the reviewed literature in clustering uses kNN (29, 30).

Additional studies report the use of different cluster analysis
for classification and/or discovery of cardiac pheno-groups. For
example, Bruse et al. (31) used hierarchical clustering techniques
to subdivide 60 patients into three groups, a healthy cohort
and two associated with congenital heart disease by using shape
features from cardiac MRI. Wojnarski et al. (32) also used a

cluster analysis technique to group bicuspid aortic valve patients
using CT data to find three phenotypes, and a RF was applied
later to identify biomarker differences for these phenotypes using
echo and clinical data.

2.2.5. Artificial Neural Network (ANN)
ANNs are motivated by the structure and interactions of
biological neural networks. These models propagate input data
in a hierarchical fashion through internal nodes in different
layers. Each input line has a corresponding weight that must
be estimated and iteratively adjusted during the training
process. The ANN adapts until the weights giving optimal
model performance are identified (Figure 6E). A nonlinear
function is applied in each node to the contribution from
incoming connections for obtaining its value/activation (net
input function). Weight optimization provides the model with
great adaptability to complex boundaries separating classes
because of the high non-linear combinations of features involved
in such models. Moreover, the connections between layers in an
ANN can be used to design different networks depending on the
application. Some caveats are the lack of an underlying theory
for deciding the amount of layers or nodes in each layer, that
depends on each problem and the amount of training data, as
well as the trend for these models to adapt to the training set due
to the large difference between number of parameters/weights of
the model and training samples. ANNs are the best choice when
large amount of data is available.

In the literature, these techniques have been applied
frequently. For example, Tsai et al. (33) used ANNs for detection
of HCM and DCM patients using features extracted from echo.
And more recently, two works by Nakajima et al. (34, 35), with
the same SPECT dataset with 1,001 cases, used ANNs to assess
CAD using features extracted from stress and rest images with
good accuracy.

2.2.6. Convolutional Neural Network (CNN)
CNNs are an extension of ANNs in which the value of a
node in a given layer is affected by the spatial surrounding
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FIGURE 6 | Selected machine learning techniques. (A) Logistic Regression is used to model the probability of a binary outcome. In the figure, Y axis represents the

probability while X axis is the continuous input variable. Notice that small changes in X produce large variations of the final probability Y, mainly in the central part of the

plot where the uncertainty of the model is larger. This model can be extended to a multi-class problems. (B) Support Vector Machine models are able to transform a

non-linear boundary to a linear one using the kernel trick. During the training process, the distance between classes to the final selected boundary is maximized. (C)

Random Forest is a technique that combines Decision Trees for reducing the uncertainty in the final prediction. It is based in a recursive binary splitting strategy where

upper nodes are intended to be the most discriminative ones and subsequent branching is applied to less relevant variables. (D) Clustering is a technique with

capability to find subgroups (clusters) along data. There are different cluster techniques, some need a prior number of clusters (kMeans), some of them can be used

with output information (kNN), and others are fully unsupervised (meanShift). (E) Artificial neural networks are able to model complex non-linear relations between input

variables and outcomes by propagating structured data (green nodes—input variables), e.g., radiomics, through hidden layers (blue nodes) to obtain an output

(orange nodes). (F) Convolutional neural networks are the backbone of Deep Learning applications. They comprise input and output layers separated by multiple

hidden layers. Their ability to hierarchically propagate imaging information and extract data-driven features implies automatic detection of relevant cardiac imaging

biomarkers within the intermediate layers.

of a node in the previous layer through an operation called
convolutional product. These models are specially designed
for image processing, where spatial information for the nodes
(pixels) is essential for the final prediction. The advantages and
disadvantages are shared with ANNs. The main difference that
make these models very popular nowadays is that images are
provided as input without any feature extraction. These models

are able to extract their own meaningful features for the final
prediction, as illustrated in Figure 6F. Additional models exist
for compressing images to a lower dimensional representation
space such as the Variational Autoencoder (VAE) and Generative
Adversarial Networks (GANs) where additional analysis can be
carried out more easily (e.g., clustering or classification with a
SVMmodel).
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TABLE 5 | Common normalization techniques.

Technique Description Advantages

Mean/variance

normalization

Centering to zero mean Avoid high variance features

and unit variance dominance

Range

scaling

Mapping to a given Robustness to small variances,

interval preserve zero entries

Robust

scaling

Mapping interval with Robustness to outliers

interquartile information

Image

normalization

Brightness/contrast

correction

Avoid variability in pixel

intensity distribution

A balanced approach should be taken to defining the layers
of a CNN; whilst a deeper network loses information from the
original image with each new layer, a network with few layers
could have problems extracting meaningful features for the final
prediction. CNNs are widely used for analysis of images and
their application to cardiac imaging is reported in numerous
studies. Wolterink et al. (17) presented a framework where
two cascading CNNs were able to detect CAC using cardiac
computed tomography angiography (CTA) images. Their models
had 8–13 convolutional layers that reduced 200 × 200 features
(pixel intensities) to only 32. Zhang et al. (36) used a 13-layer
CNN to diagnose HCM, cardiac amyloidosis and pulmonary
artery hypertension from echo images of size 224x224, that were
reduced to 4,096 features. Madani et al. (37) used a CNN model
to predict left ventricular hypertrophy from echo images of
size 120× 160.

2.2.7. Additional Steps

2.2.7.1. Normalization
Due to the diverse nature of different information sources in
cardiac medicine, a normalization step is often required prior
to model crafting. In general, learning algorithms benefit from
standardization of the data set, e.g., some algorithms as SVM will
improve cardiovascular predictions if all numerical features are
zero centered and have a variance of the same magnitude order.
Furthermore, some non-linear transformations can prepare the
selected features to create a model more robust to outliers. Some
of the most common techniques are mentioned in Table 5.

For illustration, Wong et al. (27) shows that feature
normalization has a positive impact in the ML model
performance. Moreover, categorical variables should be encoded
using Integer encoding, that consist in referencing each possible
categorical value with an integer, or One-Hot encoding, that
considers each possible categorical value as a new binary variable.

2.2.7.2. Dimensionality reduction and feature selection
Frequently, after extracting features from different sources such
as demographic and clinical data, conventional indices and
imaging parameters, one ends up with thousands of values
defining a single patient. This information is later utilized during
the training process of ML models, but the combination of a
large number of input parameters with a limited number of
samples (as usually happens in the medical field) can make the
optimization problem expensive andmay limit the generalization

ability of our model. Thus, a dimensionality reduction algorithm
is usually applied to the input data, such as principal component
analysis (PCA) or linear discriminant analysis (LDA). Another
proactive approach is feature selection. Such method will add
sequentially the most discriminative features for the particular
model instance being trained and dismiss redundant and non-
informative ones.

For example, Tabassian et al. (29) aimed to analyze
deformation curves of the LV in echocardiographic records
of 120 patients. The strain curves obtained were reduced by
means of PCA and the result was used to train a strain kNN
model. The resultant accuracy was 0.87, significantly higher
than the clinician’s results, 0.7. Cetin et al. (38) identified HHD
from healthy controls in 200 subjects with SVM and sequential
forward feature selection. The predictive power of selected
radiomics (AUC = 0.76) was substantially improved compared
to conventional indices (AUC= 0.62).

2.2.8. Validation
In order to prove the validity of ML applied to cardiac imaging,
results must be analyzed from two perspectives: statistical
validity, considering the reproducibility with different cohorts
and correctness of statistical values obtained (i.e., metrics),
and intra-validity, regarding the clinical and real implications
of the algorithms on a daily basis (i.e., clinical effectiveness).
This is a pairwise co-existence; none of the ML cardiac
imaging algorithms will be applied in clinical routine if there
is no agreement from both sides. The following sub-sections
will describe how the metrics and the clinical effectiveness
are considered.

A cohort is sorted in a very specific manner for ML purposes.
For the validity of the algorithms, a whole cardiac imaging data
set should be split into 3 different subgroups, called training
set, validation set, and testing set, respectively. These groups are
often selected in such way that subgroups share demographic
distributions such as age or sex, in order to represent a real
world scenario. Of course, a balanced distribution of control
and pathologic subjects is also required. Once the ML model
is trained and tested, different metrics are obtained to evaluate
its performance.

Accuracymeasures the percentage of the algorithm classifying
the input data correctly. It is a simple measure used in multiple
scientific scenarios if there is no class imbalance (i.e., one
class represented by a higher number of individuals compared
with the rest). One of the drawbacks of using accuracy as the
metric is that there is a knowledge loss when measuring False
Positive and False Negative observations. Therefore, Specificity
(Sp) and Sensitivity (Se) are widely used for measuring the
performance of the algorithm, this time taking into consideration
a possible class imbalance. In order to assess the performance
of an algorithm and to understand where there might be a
miss-classification issue, a table report called Confusion Matrix
is used. This specific table layout is typically used to describe
the performance of a supervised learning model. Each row of
the matrix represents the instances in a predicted class while
each column represents the instances in an actual class (or
vice versa). This way, a computer scientist can have a wider
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FIGURE 7 | Distribution of image-based diagnostic application using machine learning (A) per disease, (B) per modality.

overview of the parameters that may be changed or which classes
are down-performing the algorithm. From sensitivity, specificity
and the confusion matrix we can extract a performance plot
representation called the receiver operating (ROC) curve. It is
created by plotting the true positive rate (TP rate) against the false
positive rate (FP rate) at various threshold settings. In ML, the
true-positive rate is also known as sensitivity, recall or probability
of detection. ROC analysis is related in a direct and natural way
to cost/benefit analysis of diagnostic decision making. The area
under the ROC curve (AUC) is another metric used to measure
algorithms’ performance.

It is noticeable that AUC can be derived from decision
boundaries obtained by ML models despite the fact that it is
trained with discrete outputs. When a trained model is asked to
make a prediction, a probability can be computed and used to
generate a ROC analysis.

3. DIAGNOSTIC APPLICATIONS—A
REVIEW OF LITERATURE

We conducted an organized, pre-defined literature search of
two electronic databases (Google Scholar, Scopus). We included
studies using a well-defined ML technique for cardiac image
analysis using echocardiography, cardiac magnetic resonance,
cardiac computed tomography, or single photon emission
computed tomography (SPECT). Our search strategy comprised
a series of title and whole text searches with search terms
combined using Boolean operators. Search results were filtered
by subject area, limiting to entries from Cardiology, Computer
Science and Engineering fields. We review in detail various
achievements in the diagnosis of a wide range of cardiac diseases
using image-based ML methods. Statistics about the conducted
literature review can be seen in Figure 7.

3.1. Myocardial Infarction
Accurate and timely identification of MI helps in guidance of
treatment strategies and reduction in the time taken for further
tests. While MI diagnostic assessment using imaging is prone
to inter- and intra-observer variability and requires significant

amount of time of experts, ML methods offer opportunities
to simplify, speed up and quantify the diagnostic process in
combination with conventional assessment. For example, Nakada
et al. (39) demonstrated that MI diagnosis can be achieved
in echo using quantitative motion features, avoiding the inter-
observer human variability, as input for an ANN reaching an
accuracy of 0.95. Later, Ungru et al. (40) validated these results
in mice models by inducing MI in healthy specimens with a
prediction accuracy of 0.91, comparing several ML techniques.
The same level of accuracy was obtained in the first texture
analysis work, by Agani et al. (41), with only 17 subjects and a
clustering approach. This echocardiographic research was later
extended with a full pool of texture features and 160 subjects
by Sudarshan et al. (42). In this work, DT, ANN and SVM
models were benchmarked, with the best accuracy obtained
using ANN: 0.94 (Se = 0.91, Sp = 0.97). Vidya et al. (43)
also performed an intensive texture analysis for 800 subjects,
achieving an accuracy of 0.99 using a SVM. In their study,
different pre-processing techniques were used to enhance the
cardiac images.

CardiacMRI has particular value in identification of MI. Since
2017, 13 studies were found integrating input variables from
this imaging modality. Baeßler et al. (44) used late gadolinium
enhancement MRI as a standard reference for non-enhanced
MRI discrimination between chronic and subacuteMI. Radiomic
features in combination with a LR gave an AUC of 0.92 in
a cohort of 180 patients. Similarly, segment viability can be
detected on cine MRI using also radiomics, as suggested by
Larroza et al. (45). This classification between viable, non-
viable and remote segments yielded an AUC of 0.84. However,
we believe that these encouraging results should be validated
with a bigger cohort, and a well-balanced segment viability
distribution. Recently, Zhang et al. (46) tried to detect MI from
non-enhanced MRI images. 212 patients with chronic MI and
87 healthy control patients were used to train a three-stage DL
pipeline. The per-segment AUC for detecting chronic MI was
0.94 (Sp= 0.99, Se= 0.9)

Two consecutive state-of-the-art texture analysis studies were
conducted in cardiac CT: Mannil et al. (47) and Mannil et al.
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TABLE 6 | Selected studies using image-based ML analysis for the diagnosis of Myocardial Infarction.

Publication Modality Biomarker ML technique Diagnostic Sample size Performance

(44) MRI Radiomics LR MI 180 ACC = 0.92

(46) MRI Conventional ANN MI 299 AUC = 0.94

(45) MRI Radiomics SVM MI 50 AUC = 0.84

(9) MRI Conventional SVM/RF MI/HCM 45 ACC = 0.94

(94) MRI Conventional DT/CL/SVM MI 200 ACC = 0.95

(95) MRI Conventional PLS MI 200 ACC = 0.98

(22) Echo Qualitative SVM MI 242 ACC = 0.97

(39) Echo Conventional ANN MI/AP 91 ACC = 0.95

(40) Echo Conventional BN/DT/CL/SVM MI 42 ACC = 0.91

(42) Echo Radiomics DT/ANN/SVM MI 160 ACC = 0.94

(41) Echo Radiomics CL MI 17 ACC = 0.91

(43) Echo Radiomics SVM MI 800 ACC = 0.99

(29) Echo Conventional CL MI 120 ACC = 0.87

(47) CT Radiomics RF/CL/ANN MI 87 ACC = 0.78

(48) CT Radiomics DT MI 30 ACC = 0.97

(27) CT Conventional SVM/RF MI 170 ACC = 0.85

(96) SPECT Conventional BN MI/CAD 728 ACC = 0.78

(48). The former underlines ML ability for detecting MI on non-
contrast low radiation dose CT images on the basis of features
invisible to the radiologists’ eye, obtaining an AUC of 0.78.
The latter study evaluates the impact of automatic classification
methods using different iterative reconstruction (IR) strengths
for contrast-enhancement images, reporting an accuracy of 0.94
(IR 3) and 0.97 (IR 5) for the MLmodel, while three independent
readers achieved 0.73 (IR 5) on average. A summary ofMI studies
can be found in Table 6.

3.2. Cardiomyopathies
Cardiomyopathy is a broad term describing various heart muscle
disorders, a first level of subclassification is into ischaemic and
non-ischaemic cardiomyopathies. This heterogenous group of
disorders have many causes, signs and symptoms, and require
different treatments. The challenge of distinguishing different
cardiomyopathies is illustrated by the fact that many of them can
be associated with diverse manifestations. Each disease entity is
associated with a typical imaging phenotypes. Whilst in routine
image analysis, it is not always possible to discriminate individual
cardiomyopathies, this may be improved with the more granular
and quantitative approach to image analysis inMLmodels. These
premises makes ML-based imaging diagnosis a perfect tool for
computer aided analysis of heterogeneous cardiomyopathies. For
example, Gopalakrishnan et al. (49) used a set of conventional
indices from a pediatric cardiac MRI cohort of 83 subjects to
characterize five different cardiomyopathies. In this study, a DT
(AUC = 0.79) was compared with other ML methods (AUC
= 0.73–0.77). Physiological vs. pathological patterns of HCM
remodeling were characterized by Narula et al. (50) using an
ensemble of models with conventional indices from 2D echo as
input (Se= 0.96, Sp= 0.77).

In 2017, a relevant challenge was organized by Bernard et al.
(51). The Automated Cardiac Diagnosis Challenge (ACDC)

aimed to evaluate the performance of different automatic
methods for the classification of 150 subjects into 5 categories
(healthy, HCM, DCM, ARV and MI) as provided by clinical
experts. Several approaches were proposed for this problem.
Khened et al. (4) and Wolterink et al. (52) used a set
of conventional indices extracted from their own automatic
delineations as input for a RF to obtain an accuracy of 0.96 and
0.86 on the test set, respectively. Isensee et al. (53) also used a
RF and their own segmentation scheme to classify cardiac cycle
dynamic features, with an accuracy of 0.92. From this study, the
benefit of the addition of temporal analysis is remarkable and
provides a strong argument to be exploited further in future cine
MRI studies. Cetin et al. (14) used SVM to classify a complete
pool of radiomic features from manual segmentation, obtaining
also an accuracy of 0.92. Additional research has been done later
using the same dataset. Snaauw et al. (54) proposed a novel
approach, using CNN bottleneck representations to discriminate
between the five categories, obtaining a modest accuracy of 0.78.
Another interesting approach was taken by Biffi et al. (55). Their
VAE architecture was trained with two multi-center cohorts of
537 and 200 patients and tested on their own dataset and on the
ACDC dataset, obtaining an accuracy of 1.0 and 0.9, respectively.

Later, Puyol-Antón et al. (56) combined MRI and echo
data and per-segment motion analysis to diagnose DCM by
means of LDA, achieving an accuracy of 0.94 (Sp = 0.96, Se
= 0.93). Recently, Neisius et al. presented two complementary
works approaching HCM and HHD diagnosis from two different
perspectives, Neisius et al. (15, 57). In the first work, a complete
strain analysis and a LR achieved an accuracy of 0.67 (Sp = 0.64,
Se= 0.68). The second one applied an exhaustive texture analysis
for T1 mapping. A selection of 6 radiomic texture features and a
linear SVM model showed an improved accuracy of 0.86 (Sp =

0.91, Se = 0.77). A summary of cardiomyopathy studies can be
found in Table 7.
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TABLE 7 | Selected studies using image-based ML analysis for diagnosis of various cardiomyopathies.

Publication Modality Biomarker ML technique Diagnostic Sample size Performance

(49) MRI Conventional BN HCM/DCM/ARV/MYO 83 AUC = 0.79

(28) MRI Radiomics RF/LR HCM 62 AUC = 0.95

(52) MRI Conventional RF MI/HCM/DCM/ARV 100 ACC = 0.86

(14) MRI Radiomics SVM MI/HCM/DCM/ARV 100 ACC = 0.92

(53) MRI Conventional RF MI/HCM/DCM/ARV 100 ACC = 0.92

(4) MRI Conventional RF MI/HCM/DCM/ARV 100 ACC = 0.96

(55) MRI Deep Learning VAE HCM 737 ACC = 1.00

(10) MRI Conventional LR MI/HCM/DCM/ARV 100 ACC = 0.94

(57) MRI Conventional LR HHD/HCM 224 ACC = 0.67

(15) MRI Radiomics SVM HHD/HCM 224 ACC = 0.86

(54) MRI Deep Learning CNN MI/HCM/DCM/ARV 100 ACC = 0.78

(9) MRI Conventional SVM/RF MI/HCM 45 ACC = 0.94

(31) MRI Conventional CL CHD 60 ACC = 0.89

(50) Echo Conventional SVM/RF/ANN HCM/ATHCM 139 ACC = 0.91

(33) Echo Radiomics ANN/GA HCM/DCM 90 ACC = 0.95

(18) Echo Deep Learning CNN HCM/DCM 927 AUC = 0.84

(56) Echo/MRI Conventional SVM DCM 69 ACC = 0.94

(26) Echo Radiomics SVM DCM/ASD 439 ACC = 0.98

(37) Echo Deep Learning CNN/GAN HCM 772 ACC = 0.92

(36) Echo Deep Learning CNN HCM/CA/PH 14,035 AUC = 0.93

3.3. Coronary Artery Disease
Non-invasive imaging assessment for detection of CAD has a
great potential impact on clinical practice. If ischemia can be
discarded with a high probability, invasive coronary angiography
(ICA) may be avoided. Advanced ML image analysis techniques
can improve the diagnostic accuracy of myocardial ischemia and
through this improve CADmanagement and reduce unnecessary
downstream testing.

A very first approach dating from 1999 showed promising
results. Considering ICA as reference standard, Kukar et al. (58)
used scintigraphy, ECG and data on symptoms from 327 patients
to detect CAD. Different ML models and feature selections
were tested and in some cases the ML model outperformed
clinicians in accuracy (0.92 vs. 0.91, respectively), but not in
sensitivity. An exhaustive approach by Kurgan et al. (59) sets
the base for a semi-automated diagnosis pipeline in perfusion
SPECT. In their work, a pseudo-DT was crafted from intensity-
based features, for 267 subjects, achieving an overall accuracy of
0.8. Another similar work was conducted in perfusion SPECT
(n = 115) and Equilibrium Radionuclide Angiocardiography
(n = 58) by Bagher-Ebadian et al. (8). Using ICA as ground
truth for both studies, CAD was assessed using mean and
variance intensity features extracted from stress and rest studies
in anterior, left anterior oblique and left lateral projections,
obtaining accuracies of 0.77 and 0.73 with an ANN. A similar
methodology was covered in detail by Guner et al. (60). A
cohort of 308 patients with clinical coronary CTA assessment was
utilized to train an ensemble of ANNs for CAD discrimination.
A combination of demographic information and frequency,
phase and brightness features provided as input variables
resulted in model accuracy of 0.74, outperforming some of the

non-expert clinicians. The results revealed that single-vessel CAD
was more difficult to identify. Recently, complementary work
by Shibutani et al. (61), including per-segment analysis, was
performed on 21 patients who underwent perfusion SPECT.
A total of 109 abnormal regions were examined and an ANN
achieved better results than two independent observers for
stress defect and ischemia detection, with respect to ICA as
gold standard.

Alternatively, resting CT can be used for CAD diagnosis
without additional contrast injection for stress imaging. Han
et al. (62) used 3 quantitative features and the 17-segment model
to obtain 51 input variables for training a gradient boosting
algorithm, a ML technique that builds an ensemble of classifiers
to improve the final accuracy. Invasive angiography and FFR
were used as gold standard. This study based on a 252 patients’
cohort from 5 countries and 17 centers, obtained an AUC of
0.75. Another state-of-the-art approach using cardiac CT, by
Coenen et al. (63), showed that improved reclassification of non-
significant stenosis is possible with ML-based image analysis.
Three hundred and fifty-one patients, including 525 vessels with
invasive FFR comparison were included in this study. A set of
28 anatomical features were computed from semi-automatic 3D
CT reconstructions. On a per-vessel basis, diagnostic accuracy
improved from 0.58 (CTA) to 0.78 (ML model). The per-patient
accuracy improved from 0.71 to 0.85. A summary of CAD studies
can be found in Table 8.

3.4. Atherosclerosis
Atherosclerosis is a strong and independent predictor of
cardiovascular events. Plaque is often scored manually by
experts, which leads to an increase in workload, is prone to
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TABLE 8 | Selected studies using image-based ML analysis for diagnosis of coronary artery disease.

Publication Modality Biomarker ML technique Diagnostic Sample size Performance

(20) SPECT Conventional LB CAD 1,181 AUC = 0.94

(16) SPECT Deep Learning CNN CAD 1,160 AUC = 0.81

(34) SPECT Conventional ANN CAD 1,365 AUC = 0.75

(35) SPECT Conventional ANN CAD 106 AUC = 0.96

(60) SPECT Conventional ANN CAD 65 AUC = 0.74

(97) SPECT Conventional DT/GA CAD 267 ACC = 0.83

(24) SPECT Qualitative SVM CAD 267 ACC = 0.92

(8) SPECT Deep Learning ANN/CL CAD 173 AUC = 0.80

(61) SPECT Conventional ANN CAD 109 AUC = 0.88

(6) PET Conventional N/A CAD/MACE 1,234 AUC = 0.72

(63) CT Conventional N/A CAD 352 AUC = 0.84

(62) CT Conventional GBRT CAD 252 AUC = 0.75

(58) echo/SCI Qualitative ANN CAD 327 ACC = 0.80

(98) echo Radiomics SVM CAD 61 AUC = 0.88

(25) echo Qualitative SVM CAD 228 ACC = 0.99

false positives and to inter-observer variability regarding CAC
detection. Hence, the ability to quickly and reliably quantify
calcification using ML models provides additive value to clinical
risk scoring tools and will enable superior prognostication of
individuals. To overcome these issues and bring robustness to
such procedures, intensive cardiac imaging feature extraction
may be utilized.

Išgum et al. (30) designed an automated method for detection
of aortic calcification, an indicator of established atherosclerotic
disease, based on shape and intensity features. Forty abdominal
scans contained a total of 249 CAC determined by a human
observer. The method detected 209 CAC (Se = 0.84) at the
expense of 1.0 false-positive object per scan on average, while
the presence of contrast increased the number of incorrect
classifications. This work was complemented by Išgum et al.
(64), analysing cardiac CT with a more sophisticated feature set
to obtain a final accuracy of 0.74 for CAC detection. Feature
selection showed that no shape features were included in the
classification stage, highlighting the discriminating power of
texture analysis in CT.

Wolterink et al. (65) used cardiac CT scans thresholded
at 130 Hounsfield units and a connected-component analysis
to obtain candidate regions in the coronary arteries for 164
subjects with expert annotations. Their texture analysis was
similar to Išgum et al. (64), and the resulting accuracy with
DTs was 0.86 for risk stratification. This work also introduced
a guided review where the most uncertain CAC were manually
inspected again, increasing the overall accuracy up to 0.92. Later,
a large radiomic pool of 4,440 features was extracted from a
group of 60 subjects with Napkin Ring Sign (NRS) and non-
NRS plaques with similar degree of manually segmented CAC
by Kolossváry et al. (66). This research unveils the value of
radiomics to find discriminative features: almost half of them
reached an AUC of 0.8, short- and long-run low gray-level
emphasis and surface ratio of high attenuation voxels had the
highest AUC values (0.92 and 0.89, respectively). Finally, in a

recent work, Zreik et al. (67) used recurrent CNNs in multi-
planar reformatted coronary CTA images previously annotated
by an expert, achieving accuracies of 0.77 and 0.8 for plaque
and stenosis characterization, respectively. A summary of ATH
studies can be found in Table 9.

3.5. Valvular Heart Disease
Heart valve disease is an increasingly common pathology of the
cardiovascular system and an increasing number of patients are
expected to require heart valve replacement. Such diverse group
of disorders can benefit from cardiac imaging ML integration
through early diagnosis, treatment or surgery planning. For
instance, Elalfi et al. (68) used imaging preprocessing techniques
(Gaussian and Gabor filtering) and intensity and texture features
to generate an ANN model with 120 echo images. These images
were organized in 8 types of valvular diseases. The obtained
accuracy was high at 0.93. This is encouraging particularly
considering the diversity of outcomes.

A similar approach was addressed for mitral regurgitation
(MR) severity estimation using echo videos. Moghaddasi et al.
(69) took advantage of binary patters as image descriptors which
include details from different viewpoints of the heart. kNN and
SVM models were trained with 102 patients divided in four
groups: mild MR (n = 34), moderate MR (n = 32), severe MR
(n = 36), and control (n = 37). SVM obtained the best accuracy,
0.99. Another interesting work mentioned in previous sections
was conducted by Wojnarski et al. (32). A summary of HVD
studies can be found in Table 10.

3.6. Heart Failure
Heart failure with preserved ejection fraction (HFpEF) is a
heterogeneous group of disorders with variable treatment
response and poor outcomes. There has been increasing interest
in improved phenotyping of HFpEF to aid understanding
of underlying disease mechanisms and also to guide
treatments toward subtypes who may derive benefit. Given
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TABLE 9 | Selected studies using image-based ML analysis for diagnosis of aortic and coronary atherosclerosis.

Publication Modality Biomarker ML technique Diagnostic Sample size Performance

(66) CT Radiomics N/A ATH 60 AUC = 0.91

(67) CT Deep Learning CNN ATH 163 ACC = 0.80

(65) CT Radiomics DT ATH 164 ACC = 0.86

(17) CT Deep Learning CNN ATH 250 ACC = 0.72

(64) CT Conventional CL ATH 615 ACC = 0.74

(30) CT Conventional CL ATH 249 ACC = 0.83

TABLE 10 | Selected studies using image-based ML analysis for diagnosis of valvular heart disease.

Publication Modality Biomarker ML technique Diagnostic Sample size Performance

(68) echo Radiomics ANN HVD 120 ACC = 0.93

(69) echo Radiomics SVM/CL HVD 102 ACC = 0.99

(32) CT Conventional CL HVD 656 N/A

TABLE 11 | Selected studies using image-based ML analysis for diagnosis of heart failure.

Publication Modality Biomarker ML technique Diagnostic Sample size Performance

(9) MRI Conventional SVM/RF MI/HCM/HF 45 ACC = 0.77

(21) MRI Radiomics LR HF 79 AUC = 0.85

(70) echo Conventional CL HHD/HFePF 100 ACC = 0.81

(71) echo Conventional CL/SVM HFePF 397 AUC = 0.76

(72) echo Conventional CL HF 1,106 N/A

the heterogeneous nature of HFpEF, ML techniques are a very
suitable tool for diagnosis and image phenotype stratification.
Some of the reviewed studies in previous sections were
also related to the characterization of heart failure (9, 70).
Additional work in this field was presented by Shah et al.
(71), that prospectively studied 397 HFpEF patients and
performed detailed clinical, laboratory, electrocardiographic
and echocardiographic phenotyping of the study participants.
Clustering techniques were applied to divide the cohort into
3 pheno-groups. Phenomapping was helpful for improved
classification and categorization of HFpEF patients and risk
stratification by means of SVM, obtaining an AUC of 0.76. ML
applied to HF phenogrouping is also used for prognostic tasks
by Cikes et al. (72). A summary of HF studies can be found in
Table 11.

3.7. Abnormal Wall Motion
Most of the existing quantitative techniques for wall motion
characterization involve laborious post-processing and image
analysis. For this reason, ML approaches with a minimum user
input and a correlation with the segmental cardiac function can
improve clinical routine and triage.

For instance, Mantilla et al. (7) detected wall motion
abnormalities in the left ventricle by means of spatiotemporal
profiles obtained with pseudo delineations of 20 MRI patients.
Wavelet and Fourier transforms were applied and the subsequent
spaces were used to generate two models: SVM and dictionary

learning (DICTL). Dictionary Learning at mid-cavity level
obtained the best accuracy, 0.96 (Sp = Se = 0.96). Afshin et al.
(73) exploited intensity distributions per segment. In their work,
a reference frame automatically propagated to each cardiac phase
generated the 16 segments for the whole cardiac cycle. LDA
reduced feature dimensionality and linear SVM obtained an
accuracy of 0.86 in a cohort of 58 MRI subjects.

Kusunose et al. (19) used a total of 300 patients with a history
of myocardial infarction and 100 age-matched control patients.
Each case contained echo from short-axis views at end-diastolic,
mid-systolic, and end-systolic phases. An ensemble of 10 CNN
models were trained. AUC obtained by the ML ensemble was
similar to that produced by the cardiologists and sonographer
readers (0.99 vs. 0.98, respectively), and the same occurred for
territory detection (0.97 vs. 0.95, respectively). A summary of
AWM studies can be found in Table 12.

4. DISCUSSION AND FUTURE
PERSPECTIVES

Reflected by the large amount of already published data reviewed
above, AI in general and ML in particular have been shown
to exhibit a huge potential to significantly influence diagnostic
decision making in cardiology. In contrast to “traditional”
statistical methods, the techniques from the field of AI are
able to deal with large amounts of data (“big data”) and to
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TABLE 12 | Selected studies using image-based ML analysis for diagnosis of wall motion abnormalities.

Publication Modality Biomarker ML technique Diagnostic Sample size Performance

(7) MRI Conventional SVM/DICTL AWM 20 ACC = 0.96

(73) MRI Conventional SVM AWM 58 ACC = 0.86

(19) echo Deep Learning CNN AWM 400 AUC = 0.99

FIGURE 8 | Factors involving robustness and reproducibility of quantitative imaging features.

integrate information from all fields of clinical care, including
e.g., clinical parameters (“clinomics”), genetic information
(“genomics”), protein metabolism (“proteomics”), and imaging
data (“radiomics”) within one large all-encompassing analysis
framework. The steadily increasing computational power and
the increasing availability of data through mobile applications
and the digital transformation of the global healthcare systems
further contribute to the advancement of the field. Consequently,
future studies will continue the use of these techniques in order
to allow translation into routine clinical practice and thus pave
the way toward improved diagnostic decision making tailored to
individual patient-specific needs (subsumed under the heading
“precision medicine”).

Yet, in today’s clinical routine, diagnostic decisions are
still drawn from stand-alone parameters [e.g., LV ejection
fraction, (74)], despite many encouraging research studies from
the field of AI. On a per-patient basis, the diagnostic and
prognostic value of such independent functional parameters
was found to be low, Park and Kim (75). Given the diversity
of cardiovascular imaging modalities, their potential additive
value for more accurate diagnostics and risk stratification
remains unclear. Besides, continued reliance on subjective
visual interpretation, has resulted in considerable observer-
dependencies and lack of standardization. The application of AI
and precision medicine to CVD, however, is currently still is in
its infancy, and faces huge challenges which have to be overcome
by future research. To establish novel imaging biomarkers and
AI techniques, the robustness and reproducibility of quantitative
imaging features must be ensured, Zwanenburg et al. (76).

Up to now, trained models and algorithms have limited
generalizability due to the multiplicity of potential influencing
factors (including differing scanners, vendors, CT radiation
doses, MRI field strengths, sequences, sequence parameters,
spatial and temporal resolutions, reconstruction algorithms,
reconstruction parameters, and so forth; Figure 8).

For CT and positron emission tomography (PET) imaging,
a variety of studies have highlighted difficulties in producing
reliably reproducible radiomic features when using different
vendors, scanners, and acquisition or reconstruction settings (48,
77–84). While the “image biomarker standardization initiative”
(IBSI) has established certain standards for radiomic studies,
Zwanenburg et al. (76), the specific needs of cardiac imaging
have not yet been met. For cardiac CT, Hinzpeter et al. and
Mannil et al. have investigated the influence of slice thickness,
Hinzpeter et al. (84), and iterative reconstruction algorithms,
Mannil et al. (48), on the robustness and comparability of
radiomics features – observing considerable feature variations
for differing technical settings. In contrast to this evolving body
of literature on CT imaging, little evidence exists concerning
the robustness of radiomic features in MRI (75, 85–87). Given
the qualitative nature of most MRI sequences and the absence
of absolute signal intensities (in contrast to CT imaging for
instance), the robustness of radiomic features seems to heavily
depend on acquisition sequences as well as acquisition and
reconstruction parameters. In a recent phantom study, Baeßler
et al. sought to evaluate the influence of different acquisition
sequences, spatial resolution, and postprocessing settings (88)
revealing that the robustness of radiomic features was heavily
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influenced by the acquisition sequence and image resolution as
well as image processing settings. Future work not only needs
to add to the understanding of such influencing factors but
should alsomerge into extensive standardization efforts to ensure
reliability of all imaging measures.

Several attempts to improve radiomic feature robustness
through image normalization have been made. For more reliable
quantification of emphysema, normalization was proposed for
chest CT images reconstructed with different kernels, Gallardo-
Estrella et al. (89). The proposed method decomposed each
scan into multiple frequency bands, the energy of which was
then normalized to the average energies observed in a set of
scans reconstructed with a reference kernel. Building on these
results, Jin et al. used a deep learning-based strategy for CT
image normalization by means of a U-Net, Jin et al. (90). For
harmonization of MRI images, similar deep learning algorithms
were proposed for dynamic contrast enhanced (DCE) images
in breast, Samala et al. (91), and brain MRI, Dewey et al. (92).
Although yielding promising results, the applicability of such
approaches in cardiovascular applications remains elusive, which
is due to inherent particularities of cardiac imaging. Other than
breast and brain, the human heart is steadily moving because
of breathing and myocardial contraction. Second, the contrast
bolus inside the ventricular lumen may influence the myocardial
features. Aside from these specific characteristics, the impact of
image normalization on extracted radiomic features has not been
fully investigated yet. Besides lack of standardization of technical
factors, the recent trend to train ML classifiers on relatively small
datasets is a major issue of current methodology and hampers
translation of the novel techniques into routine clinical practice.
The small sample sizes in most cardiovascular imaging studies
(usually N < 100 with > 1,000 variables in the models) lead
to a considerable risk of overfitting. Overfitting leads to poor
generalisability of the classification models when deployed to
different datasets. Besides the current lack of imaging feature
standardization and the problem of model-overfitting, other
challenges should be acknowledged when it comes to translation
of AI to daily patient care. While big data aims to integrate
data from various sources, the current lack of interoperability
of many systems used in clinical care poses huge obstacles
for data pooling approaches. Several national and international
attempts are currently under way to solve interoperability issues
for medical care and to allow a seamless integration of different
databases and informatic systems used in healthcare.

The ability to understand the rationale behind ML generated
diagnostic grouping may be crucial in order to achieve
widespread clinical use of this novel technology. However,
especially with DL techniques, those are usually considered
as being “black boxes,” which do not deliver any insights
or explanations on how they reached their conclusions and
upon which, e.g., imaging features, they based their decision.
Although several attempts and ongoing research exist on
delivering insights into an algorithm’s decision making (such
as heatmaps), these attempts are not sufficiently elaborated
so far to convince most cardiology practitioners to use a
diagnostic black box in daily clinical patient management.

Thus, interpretability of DL models including the psychological
aspects of digital transformation itself should represent one
major aim of future research. Radiomics might represent a
valid alternative for the meantime, since radiomic models—
in cases where an appropriate and stepwise feature reduction
is performed before training the ML algorithm—deliver more
insights into the specific imaging features which were important
for the model’s classification performance. In summary, solutions
achieving better standardization or normalization resulting in
better generalisability are an important condition to bring
radiomics and AI into cardiac precision medicine with
concomitant improved diagnostic approaches to CVDs. In
addition, better interoperability of healthcare informatics systems
should be achieved. Finally, the steadfast progression of AI
approaches to clinical decision making represent an abrupt
change from conventional medical reasoning, as such, it is
essential to engage with the psychological impact of the ongoing
digital transformation in order to facilitate the transition of
medical practice in line with advancing technologies. The
extensive and encouraging work reviewed in this article above
pursues one common goal for the future of cardiovascular
medicine: to pave the way toward better diagnosis and
precision medicine in cardiology. The application of AI
to cardiology holds the promise to revolutionize individual
disease monitoring and treatment (93), thus overcoming the
currently used “one size fits all” approach derived from large
clinical studies.
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