
Image-Based Crowd Rendering

Franco Tecchia, Céline Loscos, Yiorgos Chrysanthou

Virtual Environments and Computer Graphics, Computer Science Department, University College London, London, UK

Abstract

Populated urban environments are very important in many applica-
tions such as urban planning and entertainment. However rendering
in real time many people in a complex environment is still chal-
lenging. In this paper, we propose methods for rendering real time
animated crowds in virtual cities. We take advantage of the proper-
ties of an urban environment, and the way a viewer and the avatars
move within it, to produce fast rendering, based on positional and
directional discretization. To allow the display of a large number of
different individual people at interactive frame rates, we combined
texture compression with multi-pass rendering. The results show
that we can visualise in real time a city with thousands of animated
people.

Keywords: Virtual cities simulation, crowd rendering, image-
based rendering, texture compression.

1 Introduction

The wide use of computer graphics in games, entertainment, med-
ical, architectural and cultural applications, has led it to becoming
a prevalent area of research. At the current stage of technology,
a user can interactively navigate through complex, polygon-based
scenes rendered with sophisticated lighting effects and high qual-
ity antialiasing techniques. Animated characters (or agents) with
which the users can interact are also becoming more and more com-
mon. However, the rendering of crowded scenes with thousands of
different animated virtual people has still not been addressed suf-
ficiently for real time use. In this paper we propose new methods
for the rendering of these highly populated scenes. To render ani-
mated human avatars in a complex polygonal model will result in
non-interactive frame rate. In this paper, we propose a new method
to display avatars using an image-based rendering approach.

In order to minimize geometrical complexity, as it is too slow to
display polygonal models, each human is represented with a single
adaptive impostor. Appropriate impostor images are selected de-
pending on the viewpoint position and the frame of animation. A
previous approach [15] has already proposed such a solution. How-
ever, with that approach there is a trade off between the memory
usage and the quality/variety of the rendering. The required texture
memory is excessive, reducing the avatars simulated to only one
kind of human. Thus the generated animation is in real time for
thousands humans but which look all the same. Our current work
boosts the quality of rendering using aggressive optimisations and
adding important environmental effects such as shadows.

We analysed all the improvements needed to allow more vari-
ety with an increase of the visual quality, while keeping a real time
frame rate. This led us to a set of new techniques presented in this
paper, which combined together help to display crowd of humans
with an undeniable improved quality while keeping the rendering
cost low. We minimize the popping effect when changing views,
by choosing the impostor representation that fits best for walking
humans. However, the technique used to select the best fitting im-
postor can be applied to other kinds of objects. We also decided on
a strategy to decrease the amount of texture memory required for

Figure 1: The crowd rendering system.

one human, as well as finding new displaying methods to make ev-
ery avatar look different. To minimize the memory consumption we
drop the regular-grid organization of the images, removing all the
unused space in the impostor images set, in this way reducing the
memory requirements to about 3/4. This compression technique
reduces the size of the required texture memory for each kind of
human, allowing the addition of several kinds of humans. To en-
hance the crowd variety without increasing the memory usage, we
use multi-pass rendering. An example of the final rendering system
can be seen in Fig. 1.

In Section 2, we briefly introduce some of the previous work on
virtual city simulation, as well as the previous image-based render-
ing approaches which are relevant to our work. We then describe an
image-based rendering method to display humans in real time, ex-
plaining the impostor representation chosen in Section 3, detailing
the texture compression algorithm in Section 4, and the multi-pass
algorithm in Section 5. Finally we conclude with some results and
a discussion.

2 Background

The rendering of populated urban environments requires the syn-
thesis of what are often considered two separate problems: the real-
time visualisation of large-scale static environments, and the visual-
isation of animated crowds and traffic. Because both are expensive
to render it is essential to reduce the amount of time required for
each frame to be displayed. In this paper, we focus on real-time
display of an animated crowd. We believe that the effort made on
the animated crowd display combined together with accelerating
techniques for walkthrough in virtual environments, should allow
high-quality visualisation of big cities.

Large-scale environments are those containing millions of poly-
gons. Although thousands of polygons can be displayed and visu-
alised in a real-time frame rate, delays appear between frames for
a larger number of polygons decreasing the quality of the visuali-



sation and the ability of the user to walk through. There has been
a lot of published work on this subject. There are in general three
different classes of methods that can be used for accelerating the
rendering of large environments: visibility culling, imaged-based
rendering and level-of-detail representation. In our case, we need
to reduce the number of polygons to display as well as to take care
of the real-time animation of the avatars. Level of detail and visi-
bility culling proved to be efficient, but still many polygons need to
be rendered. In a crowded square, a user might visualise thousands
of virtual avatars as well as a view of the surrounding city details.
Even the use of level of details techniques results in too many poly-
gons to display. Considering these limitations, an image-based ren-
dering approach seemed more suitable for both the animation and
the rendering of animated avatars. We focused on the lowest level,
when the viewer is at a certain distance from the virtual humans,
and potentially has in view a very large number of them. In appli-
cations for which a user needs to have a closer look, only the closer
avatars can be rendered with polygons.

The principle of image based rendering techniques is to replace
parts of the polygonal content of the scene with images. These im-
ages can be either computed dynamically or a priori. Maciel [7]
uses pre-rendered images to replace polygonal parts of a static en-
vironment in a walkthrough application. This is done individually
for single objects or hierarchically for clusters of objects. These
images are used in a load balancing system to replace geometry
which is sufficiently far away. In [11, 12] the authors introduced
the concept of dynamically generated impostors. In this case ob-
ject images are generated at run-time and re-used for as long as the
introduced error remains below a threshold. Numerous algorithms
have subsequently been proposed in literature, that try to gener-
ate better approximations. For example Chen [3], Debevec [6] and
McMillan [9] warp the images to adapt them to different viewpoints
while Mark [8] and Darsa [5] apply the images on triangular meshes
to better approximate the shape of the object. Schaufler [10] pro-
posed a hardware assisted approach to image warping and Dally [4]
used an algorithm that is very efficient in storing image data starting
from a number of input images.

The literature on human modelling and rendering is also very
extensive. However the largest part of it is concerned with achiev-
ing realistic approximations using complex and expensive geomet-
ric representations. Even with the help of level of detail techniques
it would be almost impossible to use a very large number of such
representations in a real-time system. An alternative which was re-
cently employed by Aubel et al. [1, 2] is the use of impostors for
the rendering of the virtual humans. In [1] each human is replaced
by a single impostor while in [2] the authors take a much more de-
tailed approach where each body part is replaced by an impostor,
overall using 16 impostors for each human. In both of these meth-
ods the impostors are computed dynamically and used only for a
few frames before being discarded. Tecchia et al. [15] proposed a
less accurate but much more scalable method which uses fully pre-
computed images. They showed results with only one individual
replicated many times due to the excessive texture requirements.

Part of our work is based on the approach of Tecchia et al. [15]
which mapped an appropriate texture onto an impostor to display
walking humans. In this previous approach, to generate the impos-
tors, a set of textures is created, each corresponding to a frame of
animation. Each texture is composed of a set of images of the char-
acter taken from different positions. A sampled hemisphere is used
to capture the images, from 32 positions around the character and
8 elevations. At run time, depending of the view position with re-
spect to each individual, the most appropriate image is chosen and
displayed on an impostor, which is a single polygon dynamically
oriented toward the viewpoint. No interpolation is used between
views, as this would be too CPU-intensive. The appropriate tex-
ture to map is chosen depending on the viewpoint and the frame of

animation. To improve the rendering speed, the humans are drawn
frame by frame of animation and the textures are loaded only once
per frame of rendering.

However several limitations can be observed in the technique
used in Tecchia et al. [15]. First it needs a lot of texture mem-
ory because 32*8 samples images need to be stored in one texture.
Popping between frames of animation can also be observed due to
the sampling of the view position (there are 11.25 degrees of dif-
ferences in the orientation of the object between each image). As a
consequence of the cost of the texture memory, the authors showed
animation only for a single type of character. However, we decided
to use this method as a basis because it opens a great potential if
efforts are made to reduce memory requirements.

In the next sections, we detail the different contributions of this
paper. First we studied different ways of placing the impostor poly-
gon to reduce popping effects (see Section 3). To reduce the amount
of texture memory needed, we combined texture compression ex-
plained in Section 4 together with multi-pass rendering which helps
to enable variety as described in Section 5.

3 Choosing the impostor representation

When image-based representation are used to render complex ob-
jects, two common forms of artefacts may arise: missing data due to
inter-occlusion may cause black regions to appear, and popping ef-
fects may occur when the image samples are warped and/or blended
to obtain the final image. As we introduced earlier, we try to max-
imize the rendering speed using a minimal geometric complexity
for each impostor; this leads us to use a single polygon as the plane
on which to project a sample. In this scenario, the main perceived
artefact is the popping between different samples as the viewpoint
changes; unfortunately, the multi-pass algorithm used in our system
to improve the crowd variety prevents us from blending together
different samples, solution that could have mitigated the problem.
Another way to reduce the popping effect could be to augment the
number of samples. However since we still want to minimize the
memory consumption, we preferred to use some other methods.
Taking into account that we have only a limited number of image
samples available, we decided to accept this popping effect up to a
certain extent, while putting some effort to minimize it.

The popping artefact is due to the fact that all the points on the
surface of the sampled object are projected onto the same plane,
from the direction that the camera is facing when the sample is
created. Obviously, as the camera position changes, the projection
of such points on the impostor cannot change, and the current im-
postor is no longer an exact replica of the object appearance. The
amount of error for a generic point on the object surface is propor-
tional to the distance of the point from the projection plane. This is
demonstrated in Fig. 2.

The plane commonly used in literature as the projection plane
for an impostor is usually the one perpendicular to the view direc-
tion from which the sample image was taken. This plane does not
take into account the shape of the object nor any kind of special
occlusion that could be present in the image. We then decided to
try a different approach: given an object and the camera position
from where the sample image is created, we search for the projec-
tion plane passing trough the object that minimises the sum of the
distances of the sampled points and the projection plane.

To apply such idea, we need to project back in the 3D space the
points visible in the impostor image, to get 3D visible samples of
the object. We apply a Principal Component Analysis (PCA) to the
set of 3D points and identify the two principal eigenvectors as di-
rections describing the projection plane. In the case of samples of
human polygonal models, such a plane results in a far better ap-
proximation of the position of the visible pixels in respect to the
actual point positions in 3D. Unfortunately, other visual artefacts



Figure 2: Error introduced when changing the viewpoint. This er-
ror is proportional to the distance between the 3D point and the
projection plane.

Figure 3: Distance of the visible samples from the impostor plane.
Left: The plane is perpendicular to the camera direction. Right:
The best fitting plane is chosen to minimise the distance between
sample points and the projection plane.

arose using the best fitting plane as the impostor plane; in fact, the
new special orientation of this new plane produces an asymmet-
ric warping of the image depending on which direction the camera
moves away from the sampling position. For some extreme cases,
for a particular plane orientation and a certain distance of the cam-
era, perspective distortions can also become too evident.

As the best fitting plane computing with PCA cannot be used as
it, we reduce the artefact combining the two possible orientations
of the plane. Starting from an impostor plane purely perpendicular
to the camera, we ”perturb” its orientation using the result plane
obtained from a PCA of the sample image. We therefore minimise
the popping while limiting the introduction of other artefacts.

4 Image compression

Although the texture memory available has increased in hardware,
efforts should be made to reduce the amount used for displaying
virtual humans. First it can be noticed that because humans are
walking, the movement is symmetric. Instead of 32 samples, we
can then reduce it to 16 and get the others 16 by mirroring the tex-
ture. Such symmetry can be noticed in other objects, such as for
cars or bicycles and this approximation may be useful for these as

well.

Figure 4: Impostor texture for a frame of animation as done in Tec-
chia et al. [15].

Figure 5: Illustration of the rendering of impostors using a com-
pressed texture. On the bottom right, texture after compression.
The images are packed occupying only one fourth of the previous
texture as shown in Fig. 4.

Second, all the images are of the same size. This results in a
considerable waste of space, since for some images the human fits
a restricted area. We start placing the samples on a texture using
a regular grid as was done in Tecchia et al. [15]. Each sample is
a prerendered ray-traced image of 256*256 pixels 1 of the charac-
ter, using an orthographic projection. An example of the result-
ing image is shown in Fig. 4. In this way, extracting a particular
sample is a trivial and fast operation, but there is a lot of unused
texture space around each of the samples that gets wasted. To min-
imise the amount of such unused regions, during the pre-processing
phase we compute the smallest rectangle containing the character
for each sample. Then, we combine all these samples in a single
image, reorganising them in order to minimise the unused space.
Thanks to this process, the resulting new image is much smaller
than the original without any loss, in terms of image quality. With
our current reorganisation strategy, we can reduce the amount of
texture memory used to store our human images to 25% of the
original value. In our case, in order to have a good trade-off be-
tween the quality and the memory required for the samples, each
frame of animation was stored using a single image of 512*512
pixel as a total size. An example of the resulting texture is shown in
Fig. 5. The texture was then stored using the OpenGL compressed
format (�� ������		�
 ���� 	�� 
��) [16],

1using 3dmax



which gives a further memory compression ratio of 1:4. This ratio
is extremely efficient, although the image looses part of the qual-
ity. The compression format allows us to keep alpha values, and
encodes them in 4 bits. Once loaded in texture memory, each frame
of animation for a single human model requires 256 Kbytes.

Because we no longer have a regular grid, appropriate texture
coordinates now need to be precomputed and stored for each sam-
ple. Then, at rendering time we need to compute on the fly the right
size and orientation for the impostor to avoid the introduction of
distortions of the sample image. It is important to notice that, be-
cause of our optimal samples placement strategy, these parameters
generally vary for different frames of animation even considering a
fixed point of view. An example of the mapping and the choice of
the impostor is shown in Fig. 5.

5 Improving the variety

With the texture compression described above we gain texture
memory which we can use to simulate more humans than in Tec-
chia et al. [15]. To simulate 10 different types of human, with 10
frames of animation each, we need 25MB of texture memory. Al-
though we improved the possibility of variety, ten different avatars
are not enough to populate a city. Because we were limited by the
texture memory, we decided to modify the texture on the fly using
multi-pass rendering. As we cannot change the shape and the kind
of human, we changed the colour of significant parts of the body,
like cloth, hairs, and skin colour.

To identify the area to change, we pre-compute an alpha-channel
image2 with a different alpha value for each part to modify (see
Fig. 5). Tuning the alpha channel we can define up to 256 different
regions in the texture if no compression is used, or up to 32 if using
the s3tc compression [16] since only 4 bits are available for the
alpha channel. In the rendering process, we use the alpha channel
to select parts to be rendered while a multi-pass rendering. For each
pass, the impostor polygon colour is changed to the expected colour
and the texture is applied using the flag �� ��
���� and
setting the alpha threshold of the alpha test to the one associated
with the part of interest.

Because we compute a texture modulation, the shading is pre-
served since it is already included into the texture. In our exper-
iments, we draw up to 3 passes, thus changing only the colour of
the shirt and the trousers. More passes can be done since we can
identify up to 32 regions. However, the multi-pass rendering might
slow down the overall rendering rate, and a trade off between the
variety and the rendering time must be done.

6 Implementation details and results

We implemented and tested the methods described above. For the
simulation, we added some elements that allow better quality for
the results.

In order to control the motion of the virtual humans, we subdi-
vide the floor of the environment into tiles of regular size. While
humans move around, they check information corresponding to the
tile they occupy. Any information can be stored [13] but we use
only this information for collision detection and shadowing. The
tiles are subdivided so that an avatar can be at different positions
into the same tile. If an avatar stays in the same tile in the next
frame, it just continues to move in its current direction and no de-
cision needs to be taken. In our system, the collision detection map
is a binary map. When the tile is encoded by black, it is impassable
and the avatar needs to change direction. We performed as well

2Using 3dmax. The anti-aliasing must be turned off to avoid the borders
of two adjacent regions to becoming blurred.

Figure 6: Example of avatars used. On the left hand, an avatar as
rendered with ray tracing in 3dmax. On the middle, an avatar with
alpha-channels to identify parts to modify. On the right hand, an
avatar rendered with multi-passes regarding to the alpha-channel.
Notice how these four avatars look different although they are built
from the same 3D model.

inter-collision detection between humans, by checking if a destina-
tion tile is already occupied. We also use a binary shadowing map,
which encodes regions on the ground covered by the shadows of
the buildings, to determine if humans are in shadows relatively to
the buildings. When a human reaches a dark cell of the 2D repre-
sentation of the positions, its impostor is darkened.

Using the impostor approach, we can also compute and display
the shadows of the moving humans. We use another polygon to be
displayed on the floor with a shadow texture. The polygon is the
projection of the human impostor on the floor level with regards to
the light direction. When rendering, the shadows are displayed us-
ing the appropriate frame, which corresponds to the position of the
human. Depending on the light position, the appropriate texture is
applied and the projected polygon is scale consistently to the tex-
ture compression. To fake a shadow, the shadow impostor polygon
is darkened so that the texture is modulated and darkened as well.

We develop the system on a PC Pentium III - 800Mhz with
NVIDIA GeForce GTS2 video card. We populated our environ-
ment with 6 different avatars, and perform 3 passes to draw differ-
ent colours, chosen randomly. For the results shown on Fig. 6 and
6, we displayed �� ��� for each of four types of humans and �� ���
for each of the two last type, thus displaying ��� ��� of different
humans. One of these types is a jogger, thus having an animation
different from the others. These humans move in a village modelled
with ��� ��� polygons. The display is updated between 12 and 20
frames per second depending on the displayed polygonal complex-
ity. Although the rendering is done in real time, there is no trade off
made to decrease the quality. The rendering quality is as good as if
no optimisation algorithms had been done. Some videos are shown
in http://www.cs.ucl.ac.uk/staff/Y.Chrysanthou/crowds/CGA/ .

To evaluate the scalability of our simulation, we tried to simulate
�� ���, �� ���, and ��� ��� people. We run the simulation on a
chosen path identical for each simulation.

Simulation 0 �� ��� �� ��� ��� ���
people people people people

Frames per sec. ����� ����� ����� �����

As can be seen, rendering the city model itself already uses a lot



of the resources since the average display is of �� frames per sec-
onds. We believe that an occlusion culling algorithm performed on
the static model could help to accelerate the rendering. The frame
rate then decreases while the number of polygons (one per avatar)
displayed increases. It is to be noticed that these numbers include
as well the collision detection performed for each of the virtual hu-
mans simulated. A visibility test as well as an occlusion culling
algorithm applied to both the collision detection and the display of
the humans could accelerate the frame rate.

7 Conclusion and future work

We have presented a system that allows real time rendering of
widely populated large scaled environments. The method used al-
lows real time rendering of a high number of different animated
people, using multi-layered animated impostors. The rendering
speed is independent of the complexity of the avatar model, al-
though rendering the same number of humans would be impossible
if using polygonal models. We improved already existing meth-
ods by three main contributions. First the choice of the impostor
is adapted to the object to render, thus minimising popping effects
when changing view. Second the amount of texture memory has
been reduced, allowing the load of a higher number of different
kinds of people. Finally we presented a multi-pass algorithm, tak-
ing advantage of the alpha channel to select and colour different
regions of the body, thus allowing a wide variety (the 10,000 peo-
ple simulated in our experiment are all different).

With the continuous raise of the texture memory available in
common machines we predict that the use of such IBR approaches
will provide solutions to crowd visualisation. Although we have al-
ready achieved valuable results, we believe that this method offers
great potential for further developments.

We have already shown that shadows could be generated with the
impostors and that we can modulate the intensity of the impostor
polygon to reflect shadowing. Impostors were previously shaded
while rendered in 3dmax, but we believe that we could shade on
the fly the impostors using normal maps indicating the orientation
of each pixel.

Methods to cull polygons could speed up rendering times, select-
ing for display both polygons from the static environments and the
moving people [14].

The current algorithms could certainly be used to render differ-
ent kinds of objects such as cars, pets, children, or groups of people
(children holding the hand of an adult). Also several animations
could be possible, with an appropriate load of the texture. Particular
care should be taken for transitions in between animations. More-
over using the multi-pass rendering algorithm we could simulate
simple animation such as turning the head to left or right.

Finally, for each of this new type of objects more work should be
done on developing appropriate behaviour. Although a lot of work
has been done on behaviour in cities, there are still a lot of problems
to solve, especially for real time simulation of thousands of agents.

References

[1] A. Aubel, R. Boulic, and D. Thalmann. Animated impos-
tors for real-time display of numerous virtual humans. In
Jean-Claude Heudin, editor, Proceedings of the 1st Interna-
tional Conference on Virtual Worlds (VW-98), volume 1434
of LNAI, pages 14–28, Berlin, July 1–3 1998. Springer.

[2] A. Aubel, R. Boulic, and D. Thalmann. Lowering the cost of
virtual human rendering with structured animated impostors.
In Proceedings of WSCG 99, Plzen, Czech Republic, 1999.

[3] Shenchang Eric Chen and Lance Williams. View interpolation
for image synthesis. In James T. Kajiya, editor, Computer
Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages
279–288, August 1993.

[4] William J. Dally, Leonard McMillan, Gary Bishop, and Henry
Fuchs. The delta tree: An object-centered approach to image-
based rendering. Technical Memo AIM-1604, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory,
May 1996.

[5] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Nav-
igating static environments using image-space simplification
and morphing. In Michael Cohen and David Zeltzer, editors,
1997 Symposium on Interactive 3D Graphics, pages 25–34.
ACM SIGGRAPH, April 1997. ISBN 0-89791-884-3.

[6] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Mod-
eling and rendering architecture from photographs: A hybrid
geometry- and image-based approach. In ACM SIGGRAPH
96 Conference Proceedings, pages 11–20, August 1996. held
in New Orleans, Louisiana, 04-09 August 1996.

[7] Paulo W. C. Maciel and Peter Shirley. Visual navigation of
large environments using textured clusters. In Pat Hanrahan
and Jim Winget, editors, ACM Computer Graphics (Symp. on
Interactive 3D Graphics), pages 95–102. ACM SIGGRAPH,
April 1995. ISBN 0-89791-736-7.

[8] William R. Mark, Leonard McMillan, and Gary Bishop. Post-
rendering 3D warping. In Michael Cohen and David Zeltzer,
editors, 1997 Symposium on Interactive 3D Graphics, pages
7–16. ACM SIGGRAPH, April 1997. ISBN 0-89791-884-3.

[9] Leonard McMillan and Gary Bishop. Plenoptic modeling: An
image-based rendering system. Computer Graphics, 29(An-
nual Conference Series):39–46, November 1995.

[10] G. Schaufler. Per-object image warping with layered impos-
tors. In 9th Eurographics Workshop on Rendering ’98, pages
145–156, Vienna, Austria, April 1998. EUROGRAPHICS.
ISBN 0-89791-884-3.

[11] Germot Schaufler and Wolfgang Sturzlinger. A three-
dimensional image cache for virtual reality. Computer Graph-
ics Forum, 15(3):C227–C235, C471–C472, September 1996.

[12] Jonathan Shade, Dani Lischinski, David Salesin, Tony
DeRose, and John Snyder. Hierarchical image caching
for accelerated walkthroughs of complex environments. In
Holly Rushmeier, editor, SIGGRAPH 96 Conference Pro-
ceedings, Annual Conference Series, pages 75–82. ACM
SIGGRAPH, Addison Wesley, August 1996. held in New Or-
leans, Louisiana, 04-09 August 1996.

[13] F. Tecchia, C. Loscos, R.Conroy, and Y.Chrysanthou. Agent
behaviour simulator (abs): A platform for urban behaviour
development. In GTEC’2001, January 2001.

[14] F. Tecchia, C. Loscos, and Y.Chrysanthou. Real time ren-
dering of populated urban environments. In ACM Siggraph
Technical Sketch, August 2001.

[15] F. Tecchia and Y.Chrysanthou. Real-Time Rendering
of Densely Populated Urban Environments, pages 83–88.
Springer Computer Science, 2000. Rendering Techniques
2000.

[16] OpenGL texture compres-
sion. http://oss.sgi.com/projects/ogl-
sample/registry/EXT/texture compression s3tc.txt.



Figure 7: The crowd visualisation. Notice the number of different people. Using the optimisation techniques presented in the paper, we
visualise thousands of different humans in real time.

Figure 8: A view closer to the humans.


