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Abstract

In this paper, we propose an efficient technique to de-

tect changes in the geometry of an urban environment us-

ing some images observing its current state. The proposed

method can be used to significantly optimize the process of

updating the 3D model of a city changing over time, by re-

stricting this process to only those areas where changes are

detected. With this application in mind, we designed our

algorithm to specifically detect only structural changes in

the environment, ignoring any changes in its appearance,

and ignoring also all the changes which are not relevant for

update purposes, such as cars, people etc. As a by-product,

the algorithm also provides a coarse geometry of the de-

tected changes. The performance of the proposed method

was tested on four different kinds of urban environments and

compared with two alternative techniques.

1. Introduction

Motivated by the success of online services such as

GoogleEarth and StreetView, as well as by the expecta-

tion of future navigation applications, lot of attention has

gone specifically to developing efficient techniques for re-

constructing static 3D models of urban environments from

imagery and/or range measurements captured from ground-

based vehicles [18, 3], as well as aerial platforms [6, 23].

Recent developments in this area have proven that one can

reach impressive levels of detail in these environments cap-

turing even thin structures like trees and rails [13].

However, while the main structures in an urban scene

remain unchanged for very long periods of time (decades

or even centuries), on the scale of a city new structures are

continuously being erected and old taken down [22]. As

a consequence, any previously reconstructed 3D model be-

comes obsolete rapidly. Considering the vast number of ap-

plications that rely on such data, there is a need to explore

efficient solutions to keep these models consistent with the

current state of the environment.

The naı̈ve solution of updating these models by repeat-

ing the process of data collection and reconstruction on
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Figure 1. Example output of the proposed algorithm. (a) One of

the images used to recover the initial geometry of the scene, shown

in (b). (c) One of the images of the same location captured after

some time: a new structure was placed. (d) Computed volumetric

inconsistency map between the new images (c) and the initial ge-

ometry (b): red indicates inconsistencies. (e) Coarse geometry of

the detected changes computed using our approach.

the whole environment on a regular basis, is not only time

consuming but also very expensive. In fact, while recon-

struction algorithms are getting faster day by day exploiting

parallelism on GPUs [11] or dedicated clusters of comput-

ers [1], the collection of the data, necessary for these algo-

rithms, still needs dedicated setups (multiple cameras, sen-

sors, scanners etc.) mounted on cars, driving around the

city or on aerial vehicles flying over the area of interest,



with the sole intention of capturing data for reconstruction.

The time and effort involved in this exhaustive data collec-

tion makes this approach impractical for a frequent update.

A way to incrementally update these models which does not

completely discard the existing information, needs to be ex-

plored.

This motivates our effort to leverage the existing 3D

model and some images representing the current state of the

scene, to efficiently determine which areas have undergone

significant changes and which parts of the model are still ac-

curate. In principle, these new images can be recorded from

low resolution consumer cameras mounted on third party

vehicles driving around the city for different purposes: for

instance, postal vans or taxis due to their excellent coverage

across the city. The captured data can then be processed

offline to discover if any changes have occurred in the ex-

plored areas. An update process can then be planned by

adding the locations of the observed changes, to a list of

sites, to be visited during a future run with the scanning ve-

hicle, to capture data with high quality sensors.

2. Related Work

For a broad applicability of the proposed idea, the hard-

ware to be mounted on the vehicles, needs to be kept as

minimal as possible. Therefore, we need to consider that,

for each explored location, only sparse and low resolution

imagery might be available. Detecting structural changes

that may have occurred in an environment from only these

images is not trivial.

Intuitively, a first approach would be to apply multi-view

stereo (MVS) on these images to recover a local updated

geometry of the scene. Geometric changes can then be de-

tected by performing a 3D-to-3D comparison between this

new model and the original one. The accuracy of such a

comparison however, relies on the quality of the obtainable

MVS reconstruction, which may be low in scenarios with

sparse wide baseline imagery.

On the other hand, change detection literature offers a lot

of solutions based on 2D-to-2D comparisons between im-

ages representing the old state of a scene and images repre-

senting its current state [19]. These approaches however are

sensitive to changes in illumination and weather conditions

across the old and the new images. To partially overcome

these issues [17] proposed to learn, from the old images, a

probabilistic appearance model of the 3D scene, to be used

for comparison with the new images. [4] instead, proposed

to detect changes based on the appearance and disappear-

ance of 3D lines detected in the images.

These methods however, focus on generic appearance

changes across the old and new images, which may or may

not correspond to changes in the geometry of the scene.

Since our aim is to keep the geometry of an urban en-

vironment up to date, we need to focus only on geomet-

ric changes that may have occurred, ignoring any changes

in the appearance, such as different paints on a wall, new

posters or new advertisements on boards etc.

In this paper, we propose a technique to detect changes

in the geometry of an environment using a few low resolu-

tion images, observing its current state. The proposed algo-

rithm exploits the existing geometry to detect inconsisten-

cies across these images. In particular, it does not consider

changes in the appearance or changes on objects that are not

relevant for the purpose of keeping the model up to date,

such as changes in vegetation, cars and pedestrians.

3. Algorithm

We assume that the last data acquisition and reconstruc-

tion of the urban environment took place at a certain time

t0, and that Γ indicates the 3D model resulting from such a

procedure. This model will be used as a reference to detect

all the future changes in the environment. At a subsequent

time t1 > t0, a set of images is captured representing the

current state of the urban scene.

These images are first registered with respect to the orig-

inal geometry Γ (Section 3.1). A probabilistic framework

is then used to verify their consistency with respect to Γ
(Section 3.2). In order to ignore changes occurring on non-

relevant parts of the scene, semantic knowledge of the envi-

ronment is incorporated into the proposed framework (Sec-

tion 3.3). As a final and optional step, a coarse update of the

geometry can also be recovered (Section 3.4).

3.1. Image Registration

A lot of research has been devoted to this particular prob-

lem, especially for urban scenes. Both visual [30, 20, 21]

and geometric information [2, 14] have already been ex-

ploited to approximately localize images in an environment.

Once these images are roughly mapped to a location in a

city, classical registration is used to refine the result.

In our scenario, irrespective of whether the original ge-

ometry Γ is built using imagery or range scan data, as long

as there is some texture information available, feature cor-

respondences, like SIFT [16], VIPS [26] or orthophoto-

correspondences [2], can be used to relate the captured im-

ages with Γ. Since, each correspondence is related to a 3D

point in Γ, the images can be registered using Direct Lin-

ear Transform (DLT) followed by a refinement step based

on the reprojection error [9]. In cases where a significant

change covered the majority of the field of view of an im-

age, the number of found correspondences was insufficient

to apply DLT. To recover from this, the images were first

registered relative to each other, on a common coordinate

system, using Structure from Motion [27]. If one or more

of these images saw a sufficient part of the scene that had

not changed, so they could also be registered with Γ using

DLT, then the transformation between the two coordinates



system was computed and transferred to the remaining im-

ages as well. Clearly, if GPS or other additional information

are available, the registration process becomes simpler.

3.2. Change Detection

To ensure the scalability of the proposed approach to

large environments, the 3D model Γ is first subdivided into

uniformly sized 3D regions and each of those is considered

independently for detecting changes. Let I denote the set of

captured images observing a specific 3D region. It is rea-

sonable to assume that these images are taken around the

same time so that changes in illumination of the environ-

ment can be neglected across them. In a practical situation,

the timestamp can be used to discard the images that do not

comply with the above assumption.

The considered 3D region is discretized into voxels. Let

V represent these voxels and 〈V, E〉 the graph connecting

them, such that each edge eij ∈ E connects only adjacent

voxels (26-neighborhood). We aim to compute a binary la-

beling L = {li}i for each element in V according to the

occurred changes. Specifically, li = 1 indicates the pres-

ence of a change in voxel i, or in other words, it indicates

that the current state of the environment in voxel i is incon-

sistent with the original geometry Γ. On the contrary, li = 0
indicates consistency. To label these voxels, we maximize

the posterior probability of L given the observations I , i.e.,

we maximize p(L|I). Assuming dependence only across

neighbouring voxels, this is equivalent to minimizing the

Gibbs energy (please refer to [25] for details)

∑

i

ψi(li) +
∑

eij∈E

ψij(li, lj), (1)

where the unary term ψi(li) represents the log-likelihood

−log(p(I|li)) and the binary term ψij(li, lj) accounts for

the spatial dependencies across neighboring voxels, i.e.,

it is equal to −log(p(li, lj)). We define the binary term

ψij(li, lj) such that it penalizes the assignment of differ-

ent labels to adjacent voxels represented on the same image

with similar colors. More precisely,

ψij(li, lj) = [li 6= lj ] · γ/
(∑

It
||cit − cjt ||

2 + 1
)
, (2)

where ||cit − cjt || is the L2-norm of the difference between

the RGB colors cit and cjt of the two voxels i and j on the

same image It. γ > 0 is a regularization factor.

Concerning the unary term ψi(li), a first approach would

be to store the appearance of each voxel from previous ac-

quisitions, and to compare it with the images in I . Some-

thing similar was explored in [17]. However, this kind of

approach is sensitive to changes between the old and the

current appearance of the scene.

On the contrary, we use the geometry Γ to transfer the

current appearance across the images in I . Previous works

Is It

Mt¬s

G

Figure 2. Image formation process of a 2D inconsistency map

Mt←s computed for the scene shown in Figure 1. Since the new

structure in front of the building, was not modeled by the original

geometry Γ, the resulting image Mt←s reveals some inconsisten-

cies in the corresponding pixels.

like [10, 24, 29] have shown that such an approach can be

used to recover dynamic elements in a scene such as peo-

ple walking in an environment under surveillance. Follow-

ing a similar intuition, for each pair of images in I , say

(It, Is), we render a new image by projecting the colors

of the source image Is into the target image It using the

geometry Γ and the registration parameters for both It and

Is. More precisely, each ray corresponding to a pixel in It,
is cast to Γ and reflected back into the image plane of Is
to retrieve a pixel color. Subsequently, this new image is

compared with the original image It to obtain a sort of 2D

inconsistency map between It and Is, that we will denote

with the symbol Mt←s. Figure 2 depicts this procedure. To

account for possible errors in the registration or in Γ, this

comparison was performed on a 7x7 window as in [24].

Ideally, if the geometry Γ still represents the current state

of the scene observed by the images I , these images should

reproject onto each other correctly, i.e., the 2D inconsis-

tency maps Mt←s should be all zero. On the contrary, if

some Mt←s differ from zero then there is an evidence of a

possible change.

Let M = {Mt←s|∀t, s} be the set of 2D inconsistency

maps obtained from all the possible image pairs in I . From

a probabilistic point of view, M is a random vector linked

deterministically to the images in I , i.e., its conditional

probability distributions p(M |I) and p(I|M) differ from

zero only when all the inconsistency maps Mt←s in M are

obtained with the previously described procedure.

By marginalizing over M , the probability p (I|li), re-

lated to the unary term ψi (li), becomes

p (I|li) =
∑

M
p (I|M, li) p (M |li) ∝ p (M |li) , (3)



where, the proportionality holds since all the terms inside

the sum are zero except for only a specific M . Minimizing

Equation 1 using p (M |li) in place of p (I|li) is therefore

equivalent.

In general, when a change in the geometry occurs, two

evidences of this change are visible in eachMt←s map: one

corresponding to the pixels of the change observed by It,
and the other being the pixels of the change observed by Is
projected into It (see Figure 2). Let πi

t←s denote the set

of pixels providing these evidences for a specific voxel i.
For tractability, we assume independence in the image for-

mation process for each pixel q in each inconsistency map

Mt←s, therefore,

p (M |li) =
∏

t,s

∏

q∈πi
t←s

p (Mt←s (q) |li) . (4)

We then define p (Mt←s (q) |li) to be

p (Mt←s (q) |li) =

{
e−

Mt←s(q)2

2σ2 li = 0
U li = 1

. (5)

Equation 5 states that, if a voxel i has not changed since

the last acquisition, all the corresponding pixels in Mt←s

should follow a normal distribution centered around zero.

In other words, in those pixels, the two images It and the

projection of Is into It, should agree. On the contrary, if

voxel i has changed, nothing can be said about the values of

those pixels, and so we approximate their probability with

the least informative one, i.e., the uniform distribution U .

In order to speed up the computation of ψi(li), we reduce

the number of considered image pairs in M by selecting

only those with sufficient overlap in their field of view and

discarding also the symmetric ones.

Since the defined unary and binary terms satisfy the met-

ric requirements, graph cuts [12] was used to minimize

Eq. 1. The obtained labeling L corresponds to a volumet-

ric inconsistency map between the original model Γ and the

current state of the environment. An example of this map

can be seen in Figure 1(d), where only the voxels labeled

as 1 are displayed in red. Voxels are rendered using trans-

parency to emphasize the volumetric nature of the result.

3.3. Change Understanding

By minimizing the energy in Equation 1 we aim to de-

tect all the geometric changes that may have occurred in

the environment since the last acquisition. However, for

the problem being addressed in this paper, some of these

changes might not be relevant and should be discarded by

the algorithm: for instance, people walking on a street, cars

parked in front of buildings, natural vegetation etc. We

avoid detecting such changes by incorporating some seman-

tic knowledge about these objects into our framework.

Let us consider r mutually exclusive classes of objects

{0, 1, . . . , r − 1}. Let class 0 denote relevant objects while

all the other classes denote only irrelevant objects. Let

p (ωq
t = c) represent the probability of a pixel q in image

It to belong to an object of a specific class c. We account

for these probabilities in Equation 5 by increasing the un-

certainties of p (Mt←s (q) |li) when either the information

coming from the source or the target image belongs to a

non relevant object. Specifically, we use the same tech-

nique described in the previous section to transfer informa-

tion from a source image Is to the image plane of a target

image It. This time, instead of transferring colors, we trans-

fer the probability p (ωq
s = 0) related to the source image.

Let ωq
t←s denote the random variable related to such a pro-

jection, i.e., computed by mapping the random variable ωq
s

into It.
What we stated before can be formalized by defining the

conditional probability p (Mt←s (q) |li, ω
q
t , ω

q
t←s) equal to

{
p (Mt←s (q) |li) ωq

t = 0 ∧ ωq
t←s = 0

U otherwise
, (6)

where p (Mt←s (q) |li) is defined as in Equation 5 and U
denotes the uniform distribution. By marginalizing over

ωq
t and ωq

t←s, the new probability distribution of Mt←s (q)
given li, call it p̃ (Mt←s (q) |li), becomes

∑
p (Mt←s (q) |li, ω

q
t , ω

q
t←s) p (ω

q
t , ω

q
t←s) . (7)

Before substituting Equation 6 into Equation 7, we sim-

plify the notation introducing the symbol Ωq
t to indicate

the probability p (ωq
t = 0), and the symbol Ωq

t←s to indi-

cate the probability p (ωq
t←s = 0). Now, assuming indepen-

dence between ωq
t and ωq

t←s, Equation 7 is rewritten as

(1− Ωq
tΩ

q
t←s) · U +Ωq

tΩ
q
t←s · p (Mt←s (q) |li) . (8)

In this way, if either Ωq
t or Ωq

t←s have low values, the prob-

ability distribution of Mt←s (q) given any possible voxel

labeling tends to be uniform, consequently pixel q does not

carry any discriminative information for the voxels.

In our current implementation, we focused on the most

commonly encountered cases of irrelevant changes in urban

scenes namely changes in vegetation, cars and pedestrians.

In order to compute the probabilities p (ωq
t = c) for vegeta-

tion we used the same patch based k-nearest-neighbors ap-

proach on both color and edge features as described in [8].

For cars and pedestrians instead, we used the same approach

as presented in [5].

3.4. Model Update

Ideally, once a significant change is detected in the en-

vironment, a new data acquisition with high quality sen-

sors can be planned focusing only on the changed areas.



(a) (b) (c) (d) (e) (f)
Figure 3. (a) One of the images used to recover the initial geometry, (b) initial geometry, (c) one of the new images, (d) and (e) volumetric

inconsistency maps obtained without and with accounting for the semantic information, (f) update obtained as described in Section 3.4.

(a) (b) (c) (d) (e)
Figure 4. (a) One of the images used to recover the initial geometry, (b) initial geometry, (c) one of the new images, (d) and (e) volumetric

inconsistency maps obtained without and with accounting for the semantic information projected onto the image plane of image (c).

Advanced reconstruction algorithms can then be applied on

this new data to recover an accurate updated 3D model.

In the meanwhile, a coarse geometry of the changes can

be computed as a temporary update to the model, using the

available images. To perform this, the detected 3D inconsis-

tencies are first grouped into clusters using connected com-

ponents, and only clusters with significant sizes are consid-

ered for an update. The volumetric inconsistency maps are

then recomputed for each of these clusters independently, at

a higher resolution.

In order to incorporate the detected changes into the

model, the existing geometry Γ is first converted into its

volumetric representation. Specifically, a voxel is labeled 1
if it is inside Γ, and 0 otherwise. We then apply the XOR

operator between this voxelization and the computed vol-

umetric inconsistency map, considering four cases: (0, 1)
means that an element has been added in the scene, (1, 1)
means that an element has been removed, (0, 0) and (1, 0)
mean that the state of the geometry inside this voxel has not

changed. In the end, the update is obtained by applying the

marching cubes algorithm [15] to the resulting labeling. An

example of such an update is shown in Figure 1(e).

4. Experiments and Discussion

The proposed algorithm was evaluated on four differ-

ent urban environments. In all the experiments, the initial

geometry Γ was recovered using imagery, specifically us-

ing [28]. After some time had elapsed, some new images

of the same locations were captured using a 0.8Mpixel con-

sumer camera from the street side. These images were then

registered with respect to Γ as described in Section 3.1. The

achieved reprojection error for the registration was on an av-

erage between 1.5 and 2 pixels. The scale of the considered

locations varied between 150m2 and 4500m2. The chosen

voxel size was 25cm in each dimension and the size of each

considered 3D region was limited to 1000m2. On an av-

erage, 8 newly captured images were used to compute the

volumetric inconsistency maps for each of these regions.

4.1. Qualitative Evaluation

In the first dataset (Figure 1), we analyzed the case where

a new structure was placed in front of a building inside a

commercial area. As can be seen from the images in Fig-

ure 1(a) and (c), the posters displayed on the windows had

changed between the first and the second round of acquisi-

tion. This is frequent in urban environments, especially in

commercial areas, and would be a serious issue for those

methods which use the appearance from the last acquisi-

tion to detect changes. Since our algorithm uses only the

new set of images for comparison, it correctly detects the

new structure, ignoring the changes on the posters, which

we are not interested in detecting. The resulting volumet-

ric inconsistency map is shown in Figure 1(d). Some vox-

els besides the new structure were also labeled as changed,

however, these get discarded during the update process, as

described in Section 3.4. Figure 1(e) shows the obtained

updated model.

In the second dataset (Figure 3), a speed monitoring de-

vice was placed on a street whose geometry was acquired

two weeks before. Since the images were taken on two sep-

arate days and at different times of the day, the lighting con-

ditions were completely different. Despite this and due to

the robustness offered by the SIFT descriptor, a sufficient

number of correspondences could be established between

the old and the new images, allowing the registration of all

the new images with respect to Γ.



Figure 5. Result of the reverse experiment performed on the same

dataset of Figure 3. (left) Initial geometry, (right) Volumetric in-

consistency map after the XOR operator: (blue) voxels to be re-

moved, (green) voxels to be added.

Figure 3(d) and 3(e) show a comparison between the

volumetric inconsistency maps obtained without and with

taking semantic information into account, as described in

Section 3.2 and 3.3 respectively. In the former case, since

the geometry of the trees and the bushes changes with time

(due to movement of leaves or seasonal changes), most of

the corresponding voxels were labeled as inconsistent. Us-

ing semantic information instead, these changes were dis-

carded revealing clearly the structure of the device. Fig-

ure 3(f) shows the result obtained after the model update.

A reverse experiment was performed on the same dataset

to evaluate the algorithm behavior on an object removal

case. The previously obtained updated geometry was used

in place of the original model, and the old images without

the device, were used instead of the newly captured images

I . The obtained result is shown in Figure 5, where each

inconsistent voxel is colored in either blue or green to in-

dicate that something has been removed or added, respec-

tively. Inconsistencies were found on the majority of the re-

moved device except for its upper part, which was excluded

because some of the corresponding pixels in the Mt←s’s

images overlapped with the bushes, which had a high prob-

ability of being irrelevant objects.

In the third dataset, we considered a street in a residen-

tial area (Figure 4). At the time of the second acquisition,

multiple structures had been added in front of the building,

covering a considerable part of the field of view of the cap-

tured images. The semantic information helped to discard

irrelevant changes like the car parked behind the new struc-

tures and the bushes. Although the algorithm correctly de-

tected the new structures, very little could be inferred about

the parts of the building occluded by them. In fact, as can

be seen in Figure 4(e), some false positives were detected

around the two windows behind the new structures. This

was due to the fact that these two regions were represented

in only one of the new images and therefore, no 2D incon-

sistency map had information about their true state.

In the fourth dataset (Figure 7), 25 new images were

captured around a big intersection whose geometry was ac-

quired two months before. The environment extends for

about 4500m2 and it was split into four 3D regions. For
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(a) (b)
Figure 6. Change detection ROC for the second (a) and the third

dataset (b): Blue and Green curve: results obtained using our

method with and without accounting for semantic information re-

spectively. Red curve: result obtained using a 3D-to-3D compar-

ison technique. Black curve: result obtained using a 2D-to-2D

comparison technique. (Best viewed in color)

each of these regions, 6 new images were selected and used

for detecting changes. Inconsistencies were detected around

a booth and a stall that were added on the footpath. Some

small and sparse inconsistencies were also detected in the

center of the intersection due to the tram wires and some

poles that were not captured in the initial acquisition, due

to their small size. Note that, in presence of a change some

neighboring voxels are incorrectly labeled as inconsistent if

none of the images give information about them. This is

visible in the top view for the booth whose detected incon-

sistencies exceed the area of the actual change.

4.2. Quantitative Evaluation

For a quantitative evaluation of the proposed algorithm,

we generated a ground-truth by manually segmenting the

occurred changes on each image in I . These were then com-

pared against the masks obtained by projecting the com-

puted volumetric inconsistency maps onto the images I .

This procedure was repeated 50 times for different values

of σ in Equation 5. The fraction of correctly labeled pixels

against the fraction of falsely labeled ones were computed

for all the images in I , and displayed in a ROC curve.

Figure 6 shows the ROC curves obtained for the second

and the third dataset. It is evident that, taking the semantic

information into account (blue curve) decreases the falsely

detected changes significantly. In the third dataset, the per-

formance of the algorithm decreased due to lack of infor-

mation already observed in the previous section.

4.3. Comparison with Alternative Techniques

Since there is no previous work focusing specifically on

geometric changes, we propose two alternative techniques,

and evaluate their performance against our approach.

The most appropriate baseline for comparison is the 3D-



to-3D approach mentioned in Section 2. We applied multi-

view stereo, precisely PMVS [7]+Poisson reconstruction,

to the newly captured images. Changes were then detected

by thresholding the differences between the depthmaps ob-

tained by rendering this new reconstruction and the original

model Γ, from the point of view of the new images.

When multi-view stereo was able to recover an accurate

3D geometry, the results obtained by the 3D-to-3D method

were comparable with those obtained by running our ap-

proach without accounting for semantic information, see the

red curve in Figure 6(a). On the contrary, in the case when

the images were captured sparsely, with wide baselines or in

the presence of textureless regions, the resulting poor recon-

struction of the scene reduced drastically the discriminative

property of this approach, see Figure 6(b).

We also implemented a 2D-to-2D change detection ap-

proach performing a comparison between the new and the

old images. The same reprojection technique presented in

Section 3.2, was used to compensate for the difference in

viewpoints across the two sets of images. A global color

calibration and a local luminance normalization were per-

formed to compensate for the different lighting conditions.

Despite this last expedient, the differences in appearance

across the two image sets, not corresponding to geometric

changes, biased the results, increasing the number of false

positives (see the black curve in Figure 6).

On a single core working at 2.8GHz, the running

time per region was 35 minutes for the 3D-to-3D method

(MVS+comparison), 5 seconds for the 2D-to-2D method,

and 1 minute for our approach.

5. Conclusions and Future Work

In this paper, we proposed an efficient technique to detect

changes in the geometry of an urban environment that may

have occurred since its last 3D acquisition, using some im-

ages representing its current state. The proposed algorithm

can be used to significantly optimize a model update pro-

cess by restricting the data acquisition and update to only

those areas where changes are detected. Unlike the high

resolution and dense imagery needed to remodel the entire

environment from scratch, we need as few as 8 low resolu-

tion images to detect the possible changes for each region

of size 1000m2.

In the experiments section, we showed that the proposed

method was able to correctly classify changes on four dif-

ferent urban environments. Since only the current images

of the scene were used, the results were not influenced by

changes in illumination across the old and the new images,

such as in Figure 3, or changes in the model texture, such

as the changing posters in Figure 1. Moreover, the use of

semantic information allowed us to ignore the changes cor-

responding to irrelevant objects, as shown in Figure 4. The

algorithm proved to be robust to deal with relatively large

and cluttered environments like the one in Figure 7.

We also proposed two alternative techniques and ana-

lyzed their performance. Even without accounting for se-

mantic information, our approach outperformed these two

techniques. Moreover, in the case when the obtained results

were comparable (as in Figure 6(a) for the 3D-to-3D ap-

proach), this only came at the cost of more computational

time (35 min. vs. 1 min.). This is because, while the pro-

posed method has to consider consistency only with a sin-

gle depth hypothesis, i.e., the original geometry, multi-view

stereo, required by the 3D-to-3D approach, needs to con-

sider all possible depths.

Limitations: The volume detected using our approach

always bounds the actual change. In fact, false positives

may be detected in areas surrounding a change in case these

areas are not seen by at least two images. Moreover, like

other change detection techniques, our approach still suffers

in case of strong reflective surfaces, which may generate

false positives in the Mt←s maps. The computational time

of 1 minute per region is reasonable. However, as a future

extension, the intensive step of solving for Equation 1, can

be triggered only when a significant evidence of change is

observed in the Mt←s images (rare event in the intended

application scenario), reducing the total computational time

drastically.
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