
Image Based Flow Visualization

Jarke J. van Wijk∗

Technische Universiteit Eindhoven
Dept. of Mathematics and Computer Science

Abstract

A new method for the visualization of two-dimensional fluid flow is
presented. The method is based on the advection and decay of dye.
These processes are simulated by defining each frame of a flow an-
imation as a blend between a warped version of the previous image
and a number of background images. For the latter a sequence of
filtered white noise images is used: filtered in time and space to re-
move high frequency components. Because all steps are done us-
ing images, the method is named Image Based Flow Visualization
(IBFV). With IBFV a wide variety of visualization techniques can be
emulated. Flow can be visualized as moving textures with line inte-
gral convolution and spot noise. Arrow plots, streamlines, particles,
and topological images can be generated by adding extra dye to the
image. Unsteady flows, defined on arbitrary meshes, can be han-
dled. IBFV achieves a high performance by using standard features
of graphics hardware. Typically fifty frames per second are gener-
ated using standard graphics cards on PCs. Finally, IBFV is easy to
understand, analyse, and implement.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques; I.6.6 [Simulation and Modeling]: Simula-
tion Output Analysis

Keywords: Flow visualization, texture mapping, line integral con-
volution

1 Introduction

Fluid flow plays a dominant role in many processes that are impor-
tant to mankind, such as weather, climate, industrial processes, cool-
ing, heating, etc. Computational Fluid Dynamics (CFD) simula-
tions are carried out to achieve a better understanding and to improve
the efficiency and effectivity of manmade artifacts. Visualization is
indispensable to achieve insight in the large datasets produced by
these simulations. Many methods for flow visualization have been
developed, ranging from arrow plots and streamlines to dense tex-
ture methods, such as Line Integral Convolution [Cabral and Lee-
dom 1993]. The latter class of methods produces very clear visual-
izations of two-dimensional flow, but is computationally expensive.

We present a new method for the visualization of two-
dimensional vector fields in general and fluid flow fields in

∗e-mail: vanwijk@win.tue.nl

particular. The method provides a single framework to generate
a wide variety of visualizations of flow, varying from moving
particles, streamlines, moving textures, to topological images.
Three other features of the method are: handling of unsteady flow,
efficiency and ease of implementation. More specific, all 512 × 512
images presented in this paper are snapshots from animations of
unsteady flow fields. The animations were generated at up to 50
frames per second (fps) on a notebook computer, and the accom-
panying DVD contains a simple but complete implementation in
about a hundred lines of source code.

The method is based on a simple concept: Each image is the re-
sult of warping the previous image, followed by blending with some
background image. This process is accelerated by taking advantage
of graphics hardware. The construction of the background images
is crucial to obtain a smooth result. All operations are on images,
hence we coined the term Image Based Flow Visualization (IBFV)
for our method.

In the next section related work is discussed, and in section 3 the
method is described and analysed extensively. The implementation
and application are presented in section 4, in section 5 the results are
discussed. Finally, conclusions are drawn.

2 Related work

Many methods have been developed to visualize flow. Arrow plots
are a standard method, but it is hard to reconstruct the flow from dis-
crete samples. Streamlines and advected particles provide more in-
sight. A disadvantage of these techniques is that the user has to de-
cide where to position the startpoints of streamlines and particles,
hence important features of the flow can be overlooked.

The visualization community has spent much effort in the devel-
opment of more effective techniques. Van Wijk [1991] introduced
the use of texture to visualize flow. A spot noise texture is generated
by inserting distorted spots with a random intensity at random loca-
tions in the field, resulting in a dense texture that visualizes data.
Cabral and Leedom [1993] introduced Line Integral Convolution
(LIC), which gives a much better image quality. Per pixel a stream-
line is traced, both upstream and downstream, along this streamline
a random noise texture field is sampled and convolved with a filter.

Many extensions to and variations on these original methods, and
especially LIC, have been published. The main issue is improve-
ment of the efficiency. Both the standard spot noise and the LIC al-
gorithm use a more or less brute force approach. In spot noise, many
spots are required to achieve a dense coverage. In pure LIC, for each
pixel a number of points on a streamline (typically 20-50) have to be
computed. As a result, the computing time per frame is in the order
of tens of seconds. One approach is to develop more efficient al-
gorithms. Stalling and Hege [1995] achieved a higher performance
by using a faster numerical method and a more efficient, streamline
oriented scheme for the integration.

Another approach to achieve a higher efficiency is to exploit hard-
ware. Firstly, parallel processing can be used [de Leeuw and van
Liere 1997; Zöckler et al. 1997; Shen and Kao 1998]. Secondly,
graphics hardware can be used. De Leeuw et al. [1995] use texture

Publication Equipment Procs. fps
Cabral et al.[1993] SGI Indigo 1 0.02-0.05
Stalling and Hege [1995] SGI Indigo 1 0.23
Max and Becker [1995] SGI Onyx 1 4.0
De Leeuw et al.[1997] SGI Onyx 8 5.6
Zöckler et al.[1997] Cray T3D 64 20.0
Shen and Kao [1998] SGI Onyx2 7 0.09
Heidrich et al.[1999] SGI Octane 1 3.3
Jobard et al.[2000] SGI Octane 1 2.5
Jobard et al.[2001] SGI Onyx2 4 4.5
Weiskopf et al.[2001] PC, GeForce3 1 37.0
IBFV, 2002 PC, GeForce2 1 49.3

Table 1: Performance results for texture synthesis in frames per sec-
ond.

mapped polygons to render the spots. Max and Becker [1995] vi-
sualized flow by distorting images. An image is mapped on a rect-
angular mesh, next either the texture coordinates or the vertex co-
ordinates are changed. The mesh is rendered, and the mesh is dis-
torted further. After a number of frames the distortion of the image
accumulates, hence a new image is smoothly blended in, using alpha
compositing [Porter and Duff 1984].

Heidrich et al. [1999] have presented the first version of LIC ac-
celerated by graphics hardware. The integration of texture coordi-
nates is delegated to the graphics hardware, and indirect addressing
on a per-pixel basis via pixel textures [Hansen 1997] is used. They
are used to store the velocity field and the texture coordinates. Pix-
els are updated via backward texture advection: The color of a pixel
is found by tracing a virtual particle backwards.

Jobard et al. [2000] have further elaborated on the use of pixel
textures. They presented a variety of extensions, including the han-
dling of unsteady flow, dye advection and feature extraction. Sev-
eral problems obtained special attention. Edge effects emerge near
inflow boundaries. This is solved by adding new noise via image
compositing. White noise is used as background, where per frame
3 % of the pixels are inverted to maintain high spatial frequencies
at divergent areas. A sequence of frames (typically 10) is stored.
At each time step the oldest frame is subtracted and the newest is
added. All in all 18 texture applications per image are used. Re-
cently Jobard et al. [2001] presented an alternative approach, which
is a combination of a Lagrangian and an Eulerian approach: i.e. a
mix of particles and noise. Again, backward texture advection is
used. The method is implemented in a parallel fashion on a general
purpose computer. Successive frames are blended.

Finally, Weiskopf et al. [2001] have used the programmable per-
pixel operations of a nVIDIA GeForce 3 card. Backward texture
advection is used to show moving particles. Short pathlines can be
shown by combining the four last frames.

A summary of the performance results for the synthesis of dense
textures for flow visualization reported is given in Table 1. Procs.
refers to the number of processors used. This table should not be
taken too seriously, because the results are not completely compara-
ble. The resolution of the images varies, some consider only steady
flow, and the image quality varies, for instance Weiskopf et al. pro-
duce only animations of moving particles.

Overall, we see that significant progress has been achieved in the
synthesis of texture for flow visualization. Unsteady flows can be
handled, framerates in the order of 3 to 40 LIC images per second
can be achieved. However, to achieve real-time frame rates a super-
computer has to be used, or image quality has to be sacrificed. Fram-
erates in the order of 1 to 6 fps require special features of graphics
hardware and/or parallel machines such as an SGI Onyx. For com-
parison purposes, IBFV refers to the method presented in this article.

IBFV uses advection of images via forward texture mapping on
distorted polygonal meshes [Max and Becker 1995], in combina-
tion with blending of successive frames [Jobard et al. 2001]. The
combination of these two approaches has not been presented before,
and we think it is close to optimal. In contrast, the use of graphics
hardware (f.i. via pixel textures) to calculate new texture coordi-
nates requires special features of the hardware, introduces quanti-
zation problems, and requires interpolation of the velocity field on
a rectangular grid. Advection of a flow simulation mesh matches
more naturally with higher level graphics primitives, i.e. polygons
instead of pixels, in combination with the use of a general purpose
processor to perform the necessary calculations.

A major contribution of IBFV is the definition of the background
images that are blended in. In other approaches [Jobard et al. 2000;
Jobard et al. 2001] much work is spent afterwards to eliminate high
frequency components. The approach used here is simpler: If the
original images are low pass filtered, then there is no need for such
a step afterwards.

3 Method

In this section we start with an informal introduction of IBFV, fol-
lowed by a more precise description. Various aspects are analysed.
In section 4 the model presented here is translated into an algorithm
and mapped on graphics primitives. A discussion of the results can
be found in section 5.

3.1 Concept

How can we generate a frame sequence that shows an animation of
flow? Suppose we already have an image available (fig. 1). Typi-
cally, the next frame will look almost the same. If we project the im-
age on, say, a rectangular, mesh, move each mesh point over a short
distance according to the local flow and render this distorted image,
we get an even better approximation [Max and Becker 1995].

distort render blendimage k

k := k+ 1

background images

k+ 2 k+ 1 k

Figure 1: Pipeline image based flow visualization

We could continue this process, but then several problems show
up. If we distort the mesh further for the next frames, the accumu-
lating deformation will lead to cells with shapes that are far from
rectangular. This problem can easily be solved: We just repeat ex-
actly the same step as before, each time starting with the original
mesh.

Nevertheless, the original image will be distorted more and more,
and it will disappear from the viewport, advected by the flow. This

problem can be solved too: For each frame we take some new image
and blend it with the distorted image [Jobard et al. 2001].

The next question is what new image to take. One could use a
sequence of random white noise images, just like in standard LIC
algorithms However, this leads to noisy animations. A better solu-
tion is to use pink noise, i.e. to remove high frequency components
from the background images, both in space and time.

The preceding elements are the basic ingredients of Image Based
Flow Visualization. Flow visualization methods like particle and
streamline tracking operate in world space, and have geometric ob-
jects like points and lines as primitives. The Line Integral Convolu-
tion method starts from screen space: For each pixel a streamline is
traced. We take complete images as our basic primitive. This leads
to straightforward definitions and algorithms, which can be mapped
effectively on graphics hardware.

3.2 Image generation

Consider an unsteady two-dimensional vector field v(x; t) ∈ IR2

v(x; t) = [vx (x, y; t), vy(x, y; t)]. (1)

We assume it has been defined for t ≥ 0, and for x ∈ S, where
S ⊂ IR2 . The region S is typically rectangular, but this is not essen-
tial. We focus on flow fields, where v(x; t) represents a velocity, but
other applications, such as potential fields where v(x; t) represents
a direction and a strength, fall within the scope as well.

A pathline is obtained when we track the position of a particle in
a dynamic flow field. A pathline is the solution of the differential
equation

dp(t)/dt = v(p(t); t), (2)

for a given start position p(0). A streamline has an almost identi-
cal definition, except that here the velocity at a fixed time T is con-
sidered. For a steady flow field, pathlines and streamlines are the
same. A first order approximation of equation (2) gives the well-
known Euler integration method:

pk+1 = pk + v(pk; t)1t, (3)

with k ∈ IN and t = k1t . In the remainder we use the frame number
k as unit of time.

Suppose we have a field F(x; k) that represents some property
advected by the flow. Here F represents an image, hence F(x; k) is
typically an RGB-triplet. The property is advected just like a par-
ticle, so F(p(t); t) is constant along a pathline p(t). A first order
approximation of the transport of F can hence be given by:

F(pk+1; k + 1) =

{

F(pk; k) if pk ∈ S
0 otherwise (4)

Here we set F(pk+1; k + 1) to 0 (black) if the velocity at a previous
point pk is undefined. Sooner or later most of F(x; k) for x ∈ S will
be black; for many points pk ∈ S a corresponding start point p0 will
be located outside S. To remedy this, at each time step we take a
convex combination of F and another image G. Specifically,

F(pk; k) = (1 − α)F(pk−1; k − 1) + αG(pk; k), (5)

where the points pk are defined by equation (3), and where α(x; k) ∈

[0, 1] defines a blending mask. For many applications α will be con-
stant in time and space. Equation (5) is central. It defines the image
generation process and forms a startpoint for analysis.

The recurrency in (5) can be eliminated to give

F(pk; k) = (1 − α)k F(p0; 0)+α

k−1
∑

i=0

(1 − α)i G(pk−i ; k − i). (6)

The first term represents the influence of the initial picture. This
term can be ignored if we either start with a black picture F(x; 0)

or consider a large value for k. Hence we get

F(pk; k) = α

k−1
∑

i=0

(1 − α)i G(pk−i ; k − i). (7)

In other words, the color of a point pk of the image is the result of
a line integral convolution of a sequence of images G(x; i) along
a pathline through pk , with an exponential decay convolution filter
α(1 − α)i . A low α gives a high correlation along a pathline.

This is a Eulerian point of view; We observe what happens at
a point. We can also adopt a Lagrangian point of view; Consider
what happens when we move along with a particle. Particles here
are advected by the flow and fade away exponentially. Jobard et
al. [2001] made the observation that this can be interpreted phys-
ically, and hence gives a natural effect. The particle moves two-
dimensionally, and simultaneously sinks away with constant speed
in a semi-transparent fluid.

The next question is what images G and masks α to use. We first
consider the synthesis of dense textures. A standard way to obtain
these is to use random noise. In the next section we discuss spa-
tial constraints on such noise, in section 3.4 we consider temporal
characteristics. Two aspects of IBFV that require further attention are
edge and contrast problems, which are discussed in section 3.5 and
3.6. In section 3.7 the injection of dye is discussed.

3.3 Noise: spatial

To simplify the following discussion, without loss of generality, we
consider a simple steady flow field v(x; t) = [v, 0]. As a result,
pathlines are horizontal lines, and successive points pk are spaced
d = v1t apart. Furthermore, we consider a pathline through the
origin, and assume that F and G are scalar functions (i.e. grey scale
images). If we define f and g as

f (x; k) = F([x, 0]; k) (8)

g(x; k) = G([x, 0]; k) (9)

then equation (7) reduces to

f (x; k) = α

k−1
∑

i=0

(1 − α)i g(x − id; k − i) (10)

We consider some special cases for g. First, let’s suppose that g is
a steady, rectangular pulse with width δ and unit height, i.e.

g(x; k) =

{

1 if |x| ≤ δ/2
0 otherwise (11)

The corresponding f (x; k) for large k is a sequence of thin pulses,
with exponentially decreasing height, spaced d apart (fig. 2). Obvi-
ously, this is not what we want. Discretization of the time dimension
gives a sequence of ghost images of the pulse. The desired smooth
result is obtained if we set δ = v1t , and let 1t → 0

f (x) = α(1 − α)x/d . (12)

What are the requirements on g(x) to obtain such a smooth result?
Obviously, this is a sampling problem, which can be studied in the
frequency domain. A narrow pulse has a flat, white noise spectrum
in its limit. Sampling such a signal gives aliasing artifacts. As an
example, if we set g(x; k) = cos(2πnx/d), we get for the steady
state f (x) = cos(2πnx/d). Hence, all components with a spatial
frequency that is an integral multiple of the sampling frequency are
not damped at all. Therefore, to prevent artifacts, g should not have
high frequency components.

α(1−α)x/d

xd 2d0

Figure 2: Stepwise advected pulse

We next consider this in the spatial domain. Let the function hw(x)

represent a triangular pulse

hw(x) =

{

1 − |x|/w if |x| ≤ w

0 otherwise (13)

and let g(x) = hw(x). For small w, the corresponding f (x) is
a sequence of triangles with constant width and exponentially di-
minishing height. If the triangles overlap, they are added up. How
can we get a result that approximates the continuous result of equa-
tion (12) satisfactorily? If we require that f (x) should be at least
monotonously decreasing, the requirement we get is simply w ≥ d,
or, in general

w ≥ |v|1t. (14)

This leads to a convenient way to construct low-pass filtered white
noise. We use a linearly interpolated sequence of N random values
G i , with i = 0, 1, . . . , N − 1, i.e.

g(x) =
∑

hs(x − is)G i mod N, (15)

where the spacing s satisfies s ≥ |v|1t . There are two ways to sat-
isfy this constraint. First, a large value for s can be used. Figure 3(b)
shows an example. The velocity field is modeled by a source in a
linear flow, moving from left to right. Left of the source a saddle-
point is located, where the magnitude of the velocity is 0. A station-
ary black-and-white noise was used, with s set to three pixels (fig.
3(a)). The texture shows both the direction and the magnitude of
the local velocity. Concerning the latter: in regions with low veloc-
ity the texture is isotropic, whereas it is stretched in high velocity
areas. A second way to satisfy the constraint is to use a modified
velocity field v′(x; k), with

v′(x; k) =

{

v(x; k)vmax/|v(x; k)| if |v(x; k)| > vmax

v(x; k) otherwise (16)

in other words, we clamp the magnitude of the velocitity to an up-
per limit vmax, with vmax1t ≤ s. If we use a large value of 1t and
a low value for vmax, most of the velocity field will be clamped, i.e.
magnitude information is ignored and only directional information
is shown (fig. 3(c)). Or, in LIC terms, the field is sampled with
points equidistant in geometric space, whereas in the previous way
the points are equidistant in traveling time. In practice a combi-
nation of both approaches is most convenient. Fields defined with
sinks and sources can locally lead to high velocities, and the use of
v′ is a useful safeguard here. Another approach would be to normal-
ize the velocity by dividing through max(|v|), but for fields defined
with sinks and sources this gives poor results.

If we set vmax to high values, artifacts appear. For fig. 3(d)
we set vmax1t to nine pixels, and used a high value for 1t . As a
result, components in the background noise with a wavelength of
nine, eighteen, etc. pixels show up prominently, leading to intricate
knitwear like patterns.

The scale parameter s can be used to influence the style of the
visualization. In figure 4 three visualizations of the same field with

Figure 3: Source in linear flow. From top to bottom: (a) background
noise, (b) direction and magnitude, (c) direction only, (d) artifacts

different settings for s are shown. Dependent on the scale, fine LIC-
style images, coarser spot noise images, to fuzzy, smoke-like pat-
terns are produced. The latter may seem unattractive, but such pat-
terns give a lively result when used for animations of unsteady flow
fields.

3.4 Noise: temporal

In the preceding section G(x; k) was assumed to be constant in time.
This results in static images for steady flow. How can we produce
a texture that moves along with the flow? The obvious answer is to
vary G(x; k) as a function of time. We analyse this again using the
one-dimensional model. We use a set of M images as background
noise, linearly interpolated in space and discrete in time, i.e.

g(x; k) =
∑

hs(x − is)G i mod N;k mod M, (17)

with k again representing the frame number. One simple solution
would be to use for each frame a different set of random values for
G ik . This would spoil the animation however, because the variation
along a path line is too strong. In spectral terms, too much high fre-
quency is introduced. Another solution is to produce two random
images G i;0 and G i;N/2 , and to derive the other images via linear in-
terpolation, similar to [Max and Becker 1995] . However, this so-
lution lso falls short. This texture is not stationary in time, in the
sense that each frame has statistically the same properties. As an
example, the variation in magnitude will be higher for G i;0 than for
G i;N/4 , because the latter is an average of two samples.

A convenient solution can be derived from the spot noise tech-
nique. The intensity of each spot varies while it moves, and to each

Figure 4: Scaling the texture. From top to bottom: (a) s = 1.5,
(b) s = 3.0, (c) s = 6.0

spot a different phase is assigned. Here we do the same: We con-
sider each point G i of the background texture as a spot or parti-
cle that periodically glows up and decays according to some profile
w(t). In other words

G i;k = w((k/M + φi) mod 1) (18)

where φi represents a random phase, drawn uniformly from the in-
terval [0, 1), and where w(t) is defined for t ∈ [0, 1].

We have experimented with various profiles w(t). The use of
cos 2πx (figure 5(a)) gives a result that is too soft and too diffuse,
especially when seen in animations. A sharp edge in the profile is
needed to generate contrast where the user can focus on. A simple
choice is to use a square wave, i.e. w(t) = 1 if t < 1/2 and 0 else-
where (figure 5(b)). Advantages are that a high contrast is achieved
and crisp images are generated. Let’s have a closer look which pat-
terns are generated. Consider a single point, linearly interpolated,
which is set to 1 and 0 alternatingly for a number of frames. This
produces a dashed line, which fades away in the direction of the
flow. And also, each dash itself fades away. This is somewhat un-
natural: A standard convention in particle rendering is that the head
should be the brightest and that the tail should faint. We can achieve
this effect if we use w(t) = β t . If we set β < (1 − α)M the pulse
falls off faster than the decay, and hence a texture with a decreasing
intensity upstream is produced (figure 5(c)). However, the exponen-
tial decay has one disadvantage: the dynamic range is not used well
during a cycle, leading to a poor contrast. A convenient alternative
here is the sawtooth w(t) = 1 − t , which produces a similar effect
and uses the dynamic range more effectively (figure 5(d)). The ef-
fect is strongest for animations, but also in still images the direction
of the flow can be discerned.

Finally, we assumed so far that for each new frame a dif-
ferent background image is used, for frame k we used pattern
G(x; k mod N). We can also use G(x; ⌊(vgk) mod N⌋), where vg

denotes the rate of image change. If N is large enough, different
frequencies for background image variation can be modeled with-
out visible artifacts using the same set of background images.

Figure 5: Different profiles w(t). From top to bottom: (a) cosine,
(b) square, (c) exponential decay, (d) saw tooth.

3.5 Contrast

One typical problem of flow visualization using texture mapping
is the reduced contrast, and, as can be observed from figure 5, the
method presented here is no exception. What happens with the con-
trast? Consider equation (10). The value of f is a sum of scaled
samples of g. Let us assume that the values of the samples of g are
independent (i.e. spaced s apart). We find then, using standard rules
for summation and scaling of a number of independent variates, for
the average µ f and variance σ 2

f :

µ f = µg (19)

σ 2
f =

α

2 − α
σ 2

g . (20)

Hence, low values for α reduce the contrast significantly. For in-
stance, α = 0.1 reduces σ f with about 77 percent, so a high value for
σ 2

g is welcome. Another result from statistics is that the histogram
of the intensities approaches a normal distribution, according to the
central limit theorem.

One way to solve this problem is to postprocess the images. We
have implemented this: Images can optionally be passed through a
histogram equalization. For a sequence of textured images the his-
togram is fairly stable, so the calculation of the table has to be done
only once. The result is however somewhat disappointing: Scal-
ing up the narrow range of intensities gives rise to quantization ar-
tifacts. The use of more bits per color component per pixel (eight
here) could remedy this. Also, other, more sophisticated techniques,
like the removal of low pass components [Shen and Kao 1998] could
be used. Most often however, we find that the textures look nice

enough on the screen, especially when they are used as a background
for dye-based techniques, and that the reduction in frame rate is not
worth the improvement in contrast. For none of the images pre-
sented in this paper extra contrast enhancement was used, so that the
impact on the contrast can be compared for the various variations.

3.6 Boundary areas

Another issue that deserves extra attention is the treatment of bound-
ary areas. Suppose that the flow domain S originally coincides with
the image as viewed on the screen, and let S′ be the distorted flow
domain (fig. 6):

S′ = {x + v1t |x ∈ S}. (21)

We define the boundary area B as S − S′.

B

S
S’

Figure 6: Boundary area B = S − S′

The use of eq. (4) and (5) comes down to the following proce-
dure: 1) clear the screen; 2) render the previous image on a warped
mesh; 3) blend in a background image. This procedure gives rise
to artifacts (fig. 7 (a)). Area B is almost black for low α, and this
leaks in from the boundary into the image. A better solution is to
use a modified version of eq. (5)

F(pk; k) = (1 − α)F∗(pk; k − 1) + αG(pk) (22)

with F∗(pk; k − 1) =

{

F(pk; k − 1) if pk ∈ B
F(pk−1; k − 1) otherwise

Stated differently, we just do not clear the screen when we generate
a new frame. We can show that now the average value is constant.
Equation (22) can be modeled by setting G(x; t) to 0 for x < 0. The
boundary area B is here the interval [0, d). The equivalent of eq. (7)
is then for k → ∞

f (x) = α

∞
∑

i=m

(1 − α)i g(x −md)+α

m−1
∑

i=0

(1 − α)i g(x − id) (23)

with m = ⌊x/d⌋. The boundary area B is not advected, just con-
stantly blended with new values of g. The average value of f is the
same as the average value of g. For the variance σ 2

f for a constant g
in time, we find however

σ 2
f =

2(1 − α)2m+1 + α

2 − α
σ 2

g . (24)

In the boundary area the samples of g are all the same, hence for
m = 0 σ 2

f = σ 2
g , with increasing m the variance σ 2

f approaches
σ 2

g α/(2 − α). In other words, the closer to the inflow boundary, the
higher the contrast. Figure 7(b) shows this artifact. A linear flow
field was used, v1t was 6 pixels, the texture scale s also to 6 pixels,
α = 0.1. This is a critical setting, near the boundary aliasing arti-
facts show up. In practice we use lower values vmax1t , typically 2-3
pixels, and a time varying G, and as a result the boundary artifacts
are almost invisible. Also, these artifacts can be removed by using
a slightly larger image than the image presented on the screen.

Figure 7: Boundary artifacts: black boundaries (top), increasing
contrast towards edge (bottom).

3.7 Dye injection

The injection of dye is a convenient metaphor for many flow visu-
alization methods. Shen et al. [1996] and Jobard et al. [2000] have
already used dye injection in the context of LIC. Dye injection fits
well in the model. Injection of dye with color G D and blending mask
αD to an image F can be modeled as

F ′(x; k) = (1 − αD(x; k))F(x; k) + αD(x; k)G D(x; k) (25)

Multiple dye sources can be modeled by repetition of this step. The
final modified image F ′(x; t) is next used in the advection step, ad-
vecting the injected dye as well. Note that αD(x; k) varies with
space. If we want to add a circular dye source to the image, we just
draw a filled circle in the image, thereby implicitly using a mask that
is 1 over the area of the circle and 0 elsewhere. Furthermore, both α

and G D can vary with time. If they are static, the result is a trace of
dye, exponentially decaying. By varying them, we get objects that
move and distort with the flow. The same profiles w(t) as used for
the background noise can be used, where the length of one cycle can
be set independently from that of the background noise.

4 Implementation

So far we have presented a model, in this section we consider its
implementation. In section 4.1 an algorithm is presented, in section
4.2 an application is described, and section 4.3 gives performance
results.

4.1 Algorithm

All aspects of the model can easily be mapped on graphics primi-
tives and graphics operations. The image F is represented as a rect-
angular array of pixels Fi j , i = 0..NX − 1, j = 0..NY − 1. We
use the framebuffer to store the image. The background images G
are represented by a sequence of images Gki j , with k = 0..M − 1
and i, j = 0..N − 1, filled according to equation (18). Typically
NX = NY = 512, N = 64, and M = 32. The background patterns
only have to be recalculated if the time profile w(t) has changed,
and can be stored in texture memory.

For the advection of the image we use a tesselation of S.
For instance a rectangular mesh, represented by an array Ri j ,
i, j = 0..Nm , where for each array element the coordinates of the
advected grid point are stored. We typically use Nm = 100. Other
meshes could also be used, triangular meshes for instance lend

themselves also well to fast implementations. If the velocity can be
calculated analytically for arbitrary points, the implementor is free
to choose the most efficient mesh; If the velocity is given for a mesh
already, it is obviously most convenient to use that mesh. Also, time
varying meshes can be handled without extra complexity.

The algorithm to generate frame k of an animation now proceeds
as follows.

1. If the flow field has changed, calculate a distorted mesh R;

2. Render R on the screen, texture mapped with the previous im-
age;

3. Overlay a rectangle, texture mapped with noise pattern k mod
M, blended with a factor α, whereas the image is weighted
with 1 − α;

4. Draw dye to be injected;

5. Save the image in texture memory;

6. Draw overlaid graphics.

A few words per step. The calculation of the distorted mesh is done
per grid point Ri j by calculating a displacement d = v(Ri j , k)1t ,
which is clamped if |d| exceeds a threshold, and adding this dis-
placement to Ri j . In step 2 the texture coordinates are set evenly dis-
tributed between 0 and 1. In step 3 the background noise is blended
into the image. The texture coordinates are set such that the spacing
of the points of the pattern equals s. Linear interpolation is done by
the hardware. In step 4 dye is injected. This can be done in many
ways, typically by drawing a shape or overlaying an extra image.
In step 5 the result is copied to texture memory ready for the next
frame. Finally, overlaid graphics that should not be advected, such
as markers and time indicators, are drawn.

One little problem of step 4 and 6 is that when something is drawn
in the boundary region B, this is not removed in step 1 for the next
frame. As a result, such dye is persistent and leaks into the flow. A
simple solution is just not to render additional imagery too close to
the boundary of the image or to display the computed image minus
its border.

Nearly all steps match very well with graphics hardware. The
main action is the rendering of texture mapped quadrilaterals, pos-
sibly blended. Modern graphics hardware, such as which can be
found in standard PCs nowadays, is made exactly for this purpose,
and hence high speeds can be achieved. The algorithm can be im-
plemented using only OpenGL1.1 calls, without extensions, hence
the portability is high. As an illustration of the simplicity and porta-
bility of IBFV, the accompanying DVD contains a minimal but com-
plete texture based flow visualization demo in the form of about one
hundred lines of C-code. This enables the reader to make a quick
start and to experiment by varying the parameters and extending vi-
sualization options.

The only step that does not take advantage of the graphics hard-
ware is the calculation of the distorted mesh. However, this is a great
task for the central processor. These calculations are most easily
done in floating point arithmetic, and data must be calculated, re-
trieved from disk or from a network. The use of graphics hardware
for this purpose does not pay off.

4.2 Results

We have implemented IBFV in an interactive flow simulation and vi-
sualization system. The application was implemented in Delphi 5,
using ObjectPascal. It consists of about 3,500 lines of code, most
of which concerned user interfacing. For the modeling of the flow
a potential flow model, in line with [Wejchert and Haumann 1991],
was used. A flow field is defined by superposition of a linear flow

Figure 8: User interface flow modeling and visualization system

Figure 9: Texture: (a) coarse, (b) fine

field vL and a number of fields defined by flow elements. Each flow
element has a position pi , a source strength si and a rotation strength
ri as attributes, and contributes

vi (x; t) =

[

si −ri

ri si

]

d
|d|2

, (26)

with d = x − pi , to the flow field.
Figure 8 shows a screen-shot of the user interface. The user can

interactively add and remove flow elements and change their prop-
erties. To generate a time dependent flow field, to each flow element
a velocity is assigned, such that the flow element moves through the
field. Each flow element can optionally produce dye, various at-
tributes of the circles to be drawn can be set. The image is overlaid
here with an extra transparent texture, colored according to the mag-
nitude of the velocity, similar to [Jobard et al. 2000]. Many options
for visualization were implemented. With different variations of dye
injection a wide variety of effects can be achieved. We present these
using the same flow field. All images have a 512×512 resolution,
for the flow field a 100×100 mesh was used.

Figure 9 shows two visualizations with texture. The scale of the
texture can be varied, left we used a coarse texture, on the right a
fine texture; by changing 1t and vmax either both the magnitude and
direction of the velocity (left) or only the direction can be shown. In
the latter version saddle points can be located more easily.

A simple model for injecting dye is to use a rectangular grid, pos-
sibly jittered, and to draw a circle on the gridpoints, either continu-
ously or intermittently. Figure 10(a) shows that continuous release
gives arrow-like glyphs. In figure 10(b) particles are released, using
an exponential decay profile. This gives lively animations. Near the

Figure 10: Classic: (a) arrow, (b) particles

Figure 11: Image distortion: (a) smeared, (b) warped

sources (indicated with a red marker) particles are blown away, in
other areas dye accumulates.

Arbitrary images can be inserted in the field. Figure 11 shows
what happens if a picture of a grid is smeared (continuous release
with low α) or warped (release once, with α = 1) by the flow. The
method presented here can be used to apply artistic effects on arbi-
trary images by adding sources, sinks, and vortices, and by overlay-
ing texture.

Topological analysis [Helman and Hesselink 1989] aims at seg-
menting the flow area into distinct areas, such that flow is con-
strained within the area. Here, streamlines can start only at the
boundary or at sources. If we now paint the boundary and let each
source produce a differently colored dye, automatically a topolog-
ical decomposition is achieved when the dye is advected (fig. 12).
For the flow model used here this process can be fully automated,
because sources are modeled and known explicitly, for arbitrary
flow fields this can be realized by searching for points where the
velocity magnitude vanishes. Combination of this technique with
a soft texture (α = 0.01 − 0.02, fig. 12(b)) gives an especially at-
tractive result. The texture indicates the flow, the color of the area
faints with increasing distance from the source or boundary.

Inflow from a boundary can be studied by painting strips along
the boundary (figure 13). If a pattern for the boundary is used,
streamlines appear; intermittent painting gives so called time lines.
Furthermore, on the right image three user positioned dye sources
are shown.

We have applied the method to visualize the result of CFD simu-
lations. Figure 14 shows a 2D slice from a 3D time dependent sim-
ulation of turbulent flow around a block [Verstappen and Veldman
1998]. A rectilinear 536 × 312 grid with a strongly varying den-
sity was used. This grid could be handled without special problems.
We only added an option to zoom and pan on the data set, such that
the turbulent flow can be inspected at various scales. In figure 14
we zoom in on a corner of the block, thereby reveiling intricate de-
tail. When sufficiently close (i.e. about 50 × 50 gridlines in view),

Figure 12: (a) Topology, (b) Topology with texture

Figure 13: Boundary: (a) streamlines, (b) timelines and dye sources

zooming and panning on the animated flow can be done smoothly at
30–40 fps.

All applications presented here were easy to implement. All that
has to be done is injection of dye, and the remainder is done by the
underlying process. Almost no data structures are needed, for in-
stance, there is no need to keep track of the position of advected
particles. Another strong effect of real-time animation is that it be-
comes interesting to make all parameters for dye injection time-
dependent. Positions, colors, shapes, can all be defined as functions
of time, leading to interesting special effects.

4.3 Performance

The images shown were made on a Dell Inspiron 8100 notebook PC,
running Windows 2000, with a Pentium III 866 MHz processor, 256
MB memory, and a nVidia GeForce2Go graphics card with 32 MB
memory. The following table shows framerates in fps for four differ-
ent values of the mesh resolution Nm and for three different config-
urations. A distinction is made between steady flow (mesh requires
no recalculation), one moving flow element (mesh requires recalcu-
lation), and seven moving flow elements (the configuration of fig-
ure 9 to 12). As test animation a moving black and white texture
was used, but there is little difference for the various flow visualiza-
tion styles. The only exceptions are the use of a transparent velocity
overlay or the use of a constant extra image (see figure 11(a)), which

mesh steady one source seven sources
50×50 49.3 49.3 49.3

100×100 49.3 37.0 27.0
200×200 49.3 14.6 9.1
512×512 18.5 2.5 1.4

Table 2: Frames per second, 512×512 images

Figure 14: Visualization of turbulent flow simulation data [Verstap-
pen and Veldman 1998] at different scales

cost some 10 to 50% extra, dependent on the resolution of the mesh
or image.

What does this table show? Above all, IBFV is fast. Unsteady flow
is visualized via moving textures in real-time. Parameters can be
changed on the fly, the effect of changes is smooth and immediate.
The maximum speed of the flow as shown on the screen is typically
in the order of 150 pixels per second, hence lively animations result.
We have tried our application on several other machines. On a PC
running Windows’98 with a 350 MHz processor, 128 MB memory,
and a graphics card with a nVidia TNT processor and 16 MB mem-
ory we achieved a frame rate of 22 fps for the standard case. In other
words, also on somewhat older machines real-time frame rates can
be achieved.

In the table from left to right the amount of work for the proces-
sor increases with more moving sources. For steady flow the same
mesh can be reused, for dynamic flow it has to be recalculated. De-
pendent on the complexity of the field (one vs. seven sources) the
process slows down. From top to bottom the amount of work for the
graphics hardware increases with increasing mesh resolution: More
coordinates have to be transformed. For steady flow the amount of
work for the processor is independent of the mesh resolution, for dy-
namic flow it depends on the complexity of the field.

The impact of variation of the mesh resolution on the result is lim-
ited. Actually, for the fields modeled here no differences can be seen
in animations. As an example, figure 15 shows a dye source at a dis-
tance of 100 pixels from a vortex. The left image was made using
Nm = 50, for the right Nm = 512 was used. The dye source pro-
duces an almost perfect circle. We do see that some diffusion shows
up, due to resampling of the distorted mesh on the regular pixel grid
of the image. This smoothing has also a very positive aspect: Stan-
dard aliasing artifacts such as jagged edges never show up. Anyhow,
these images are quite artificial, for texture visualization the visible
trace of a particle is much shorter.

We did not perform yet a formal assessment of the accuracy of
IBFV, but judging from test images such as fig. 15, it does not seem
an urgent problem. The use of a more advanced ODE solver than
the very simple Euler scheme used here could give further improve-

Figure 15: (a) 50×50 mesh, (b) 512×512 mesh

ments if necessary. The topology method is interesting from the
viewpoint of stability. Standard approaches require careful pro-
gramming, to make sure that streamlines starting from critical points
end up in other critical points. IBFV produces stable results, also for
hard cases like a pure vortex. The result here is that the boundary of
the vortex area and the remainder of the field is blurred and smooth,
which seems to be a natural representation for this situation.

5 Discussion

5.1 Efficiency

IBFV is about one to three orders of magnitude faster than other meth-
ods for the synthesis of dense texture animations of flow (see ta-
ble 1). This efficiency comes from four different effects. Firstly,
graphics hardware is used. The warping, blending, and linear inter-
polation of images is taken care of by the graphics hardware. Com-
munication between graphics hardware and processor is limited to
the coordinates of warped meshes, frames are copied directly to tex-
ture memory. Secondly, the number of steps in the generation of a
single image is limited. Only two full-screen operations are used per
frame. Thirdly, frame to frame coherence is exploited. Fourthly, the
velocity field can typically be sampled at a lower resolution than the
image resolution, where the central processor takes care of velocity
field calculations.

We see no simple options to increase the performance further.
One limit is the refresh rate of the monitor used. Another limit is
the simplicity of the algorithm: The inner loop is almost empty.

In the near future we will experiment with higher image reso-
lutions to see if the same frame rates are achieved. Limitations in
texture memory will not be a problem. The total amount of texture
memory required is 3Nx Ny bytes for the image, and 4N2 M bytes
for the background patterns. For the set-up used here, in total 1.25
MB is used, which fits well within graphics memory.

5.2 Versatility

IBFV can be used for arbitrary flow fields. So far, we have used IBFV

for unsteady flow fields with high vorticity defined for rectangular
meshes, but we expect that arbitrary triangular meshes, and even
time varying meshes can be handled without special measures.

IBFV can be used to produce a variety of different types of visu-
alizations. Various kinds of texture can be produced. These can be
defined with a few parameters: the scale s of the texture, the type of
time profile w(t), the image variation speed vg and the blending fac-
tor α. Dependent on these settings, LIC, spot noise, or smoke like
textures are produced. Changes in parameter settings can be judged
in real-time, hence tuning can be done efficiently. Furthermore, in-
jection of dye and images can be used to generate effects like stream-

lines, vectors, particles, and to analyse the topological structure of
the field.

5.3 Simplicity

Maybe the main virtue of IBFV is its simplicity (or elegance?), inde-
pendent of the point of view. IBFV is based on injection, advection,
and decay of dye. It can be described mathematically in a few sim-
ple equations. It is based on warping and blending images. It can be
coded compactly using a few standard OpenGL calls. This is attrac-
tive for application purposes, but also for its analysis. Issues such as
contrast and boundary artifacts can be analysed precisely.

5.4 Future work

We have applied IBFV to external two-dimensional CFD datasets. A
next step is the use of the method for three-dimensional simulations.
Slicing through 3D rectangular data sets does not seem to bring in
special problems. Also, generation of texture on arbitrary surfaces
in 3D should be feasible. A larger step is to transpose the 2D im-
ages to 3D volumes. In [Weiskopf et al. 2001] such an approach is
presented for particles. The efficiency will depend critically on the
capabilities of the graphics hardware.

Besides flow visualization for scientific purposes, other applica-
tions can be foreseen. A system such as presented here is attrac-
tive for educational purposes. Games and animations could use IBFV

to generate smoke and other special effects. The flow modeling
method used here is already effective to create and draw fairly ar-
bitrary flow fields. In combination with a more sophisticated CFD
method, such as presented in [Witting 1999], a higher realism can
be achieved. The method produces cyclic imagery (after transient
effects) for steady flow. These can be used as animated gifs to liven
up web pages. The method can also be used for artistic effects on
arbitrary images.

Finally, also the method itself can be extended. So far we have
dealt with injection of dye, decay of dye and advection. A similar
method could be derived to handle anisotropic diffusion.

6 Conclusions

We have presented a simple, efficient, effective, and versatile
method for the visualization of two-dimensional flow. Unsteady
flow on arbitrary meshes is visualized as animations of texture, vec-
tors, particles, streamlines, and/or advected imagery at fifty frames
per second on a PC, using standard features of consumer graphics
hardware. As there remains little to be desired, we think we are close
to having solved the problem of visualization of two-dimensional
flow.

Acknowledgements

I thank Ion Barosan, Alex Telea, Huub van de Wetering, and Frank
van Ham (TU/e), for their inspiring and constructive support during
the preparation of this paper, and Roel Verstappen, Arthur Veldman
(RuG), and Wim de Leeuw (CWI) for providing highly challenging
turbulent flow simulation data.

References

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging vector fields us-
ing line integral convolution. In Proceedings of ACM SIGGRAPH
93, Computer Graphics Proceedings, Annual Conference Series,
263–272.

DE LEEUW, W., AND VAN LIERE, R. 1997. Divide and conquer
spot noise. In Proceedings SuperComputing’97.

DE LEEUW, W., AND VAN WIJK, J. 1995. Enhanced spot noise for
vector field visualization. In Proceedings IEEE Visualization’95.

HANSEN, P. 1997. Introducing pixel texture. Developer News,
23–26. Silicon Graphics Inc.

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL,
T. 1999. Applications of pixel textures in visualization and re-
alistic image synthesis. In ACM Symposium on Interactive 3D
Graphics, 127–134.

HELMAN, J., AND HESSELINK, L. 1989. Representation and dis-
play of vector field topology in fluid flow data sets. Computer 22,
8 (August), 27–36.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, M. 2000.
Hardware-accelerated texture advection for unsteady flow visu-
alization. In Proceedings IEEE Visualization 2000, 155–162.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, M. 2001.
Lagrangian-eulerian advection for unsteady flow visualization.
In Proceedings IEEE Visualization 2001, 53–60.

MAX, N., AND BECKER, B. 1995. Flow visualization using mov-
ing textures. In Proceedings of the ICASW/LaRC Symposium on
Visualizing Time-Varying Data, 77–87.

PORTER, T., AND DUFF, T. 1984. Compositing digital images.
Computer Graphics 18, 253–259. Proceedings SIGGRAPH’84.

SHEN, H.-W., AND KAO, D. L. 1998. A new line integral convo-
lution algorithm for visualizing time-varying flow fields. IEEE
Transactions on Visualization and Computer Graphics 4, 2, 98–
108.

SHEN, H.-W., JOHNSON, C., AND MA, K.-L. 1996. Visualizing
vector fields using line integral convolution and dye advection. In
Symposium on Volume Visualization, 63–70.

STALLING, D., AND HEGE, H.-C. 1995. Fast and resolution
independent line integral convolution. In Proceedings of ACM
SIGGRAPH 95, Computer Graphics Proceedings, Annual Con-
ference Series, 249–256.

VAN WIJK, J. 1991. Spot noise: Texture synthesis for data visu-
alization. Computer Graphics 25, 309–318. Proceedings ACM
SIGGRAPH 91.

VERSTAPPEN, R., AND VELDMAN, A. 1998. Spectro-consistent
discretization of Navier-Stokes: a challenge to RANS and LES.
Journal of Engineering Mathematics 34, 1, 163–179.

WEISKOPF, D., HOPF, M., AND ERTL, T. 2001. Hardware-
accelerated visualization of time-varying 2D and 3D vector fields
by texture advection via programmable per-pixel operations. In
Vision, Modeling, and Visualization VMV ’01 Conference Pro-
ceedings, 439–446.

WEJCHERT, J., AND HAUMANN, D. 1991. Animation aerody-
namics. Computer Graphics 25, 19–22. Proceedings ACM SIG-
GRAPH 91.

WITTING, P. 1999. Computational fluid dynamics in a traditional
animation environment. In Proceedings of ACM SIGGRAPH
99, Computer Graphics Proceedings, Annual Conference Series,
129–136.

ZÖCKLER, M., STALLING, D., AND HEGE, H.-C. 1997. Parallel
line integral convolution. Parallel Computing 23, 7, 975–989.

