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Current plant phenotyping technologies to characterize agriculturally relevant traits have been primarily developed for use in
laboratory and/or greenhouse conditions. In the case of root architectural traits, this limits phenotyping efforts, largely, to young
plants grown in specialized containers and growth media. Hence, novel approaches are required to characterize mature root
systems of older plants grown under actual soil conditions in the field. Imaging methods able to address the challenges
associated with characterizing mature root systems are rare due, in part, to the greater complexity of mature root systems,
including the larger size, overlap, and diversity of root components. Our imaging solution combines a field-imaging protocol
and algorithmic approach to analyze mature root systems grown in the field. Via two case studies, we demonstrate how image
analysis can be utilized to estimate localized root traits that reliably capture heritable architectural diversity as well as
environmentally induced architectural variation of both monocot and dicot plants. In the first study, we show that our algorithms and
traits (including 13 novel traits inaccessible to manual estimation) can differentiate nine maize (Zea mays) genotypes 8 weeks after
planting. The second study focuses on a diversity panel of 188 cowpea (Vigna unguiculata) genotypes to identify which traits are
sufficient to differentiate genotypes even when comparing plants whose harvesting date differs up to 14 d. Overall, we find that
automatically derived traits can increase both the speed and reproducibility of the trait estimation pipeline under field conditions.

Crop root systems represent an underexplored target for
improvements as part of community efforts to ensure that
global crop yields and productivity keep pace with pop-
ulation growth (Godfray et al., 2010; Gregory and George,
2011; Nelson et al., 2012). The challenge in improving crop
root systems is that yield and productivity also depend on
soil fertility, which is also a major constraint to global food
production (Lynch, 2007). Hence, desired improvements
to crop root systems include enhanced water use efficiency
and water acquisition given the increased likelihood of
drought in future climates (Intergovernmental Panel on
Climate Change, 2014). Over the long term, the develop-
ment of crop genotypes with improved root phenotypes

requires advances in the characterization of root system
architecture (RSA) and in the relationship between RSA
and function.

The emerging discipline of plant phenomics aims to
expand the scope, throughput, and accuracy of plant
trait estimates (Furbank, 2009). In the case of plant roots,
structural traits may describe RSA as geometric or topo-
logical measures of the root shape at various scales (e.g.
diameters and width of the whole root system or a single
branch; Lynch, 1995; Den Herder et al., 2010). These traits
can be used to predict yield under specific conditions such
as drought or low fertility. Understanding the diversity
and development of root architectural traits is crucial,
because spatial and temporal root deployment affects
plant fitness, especially water and nutrient acquisition
(Rich andWatt, 2013). Thus, improving plant performance
may benefit from improvements in the characterization
of root architecture, including understanding how trait
variation arises as a function of genotype and environ-
mental conditions (Band et al., 2012; Shi et al., 2013).

Current efforts to understand the structure of crop
root systems have already led to a number of imaging
solutions (Lobet et al., 2013) that are able to extract root
architecture traits under various conditions (Fiorani et al.,
2012), including laboratory conditions (de Dorlodot et al.,
2007) in which plants are often grown in pots or glass
containers (Zeng et al., 2008; Armengaud et al., 2009;
Le Bot et al., 2010; Clark et al., 2011; Lobet et al., 2011;
Naeem et al., 2011; Galkovskyi et al., 2012). In the case of
pots, expensive magnetic resonance imaging technologies
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represent one noninvasive approach to capture high-
resolution details of root architecture (Schulz et al., 2013),
similar to the capabilities of x-ray microcomputed to-
mography (mCT) systems. X-ray systems allow capturing
of the root architecture at a fine scale in containers with a
wide variety of soil types (Mairhofer et al., 2012; Mooney
et al., 2012). It has been shown that x-ray mCT paired with
specifically designed algorithms has sufficient resolution
to recover the root structure in many cases (Mairhofer
et al., 2013). Nevertheless, x-ray mCT systems are cur-
rently unable to image mature root systems because of
technical restrictions in container size.
As an alternative, root systems can be imaged directly

with a digital camera when grown in glass containers
with transparent media such as gellan gum or transpar-
ent soil replacements (Downie et al., 2012). Such in situ
imaging benefits from controlled lightning conditions
during image acquisition, even more so when focusing
on less complex root structures of younger plants that
allow three-dimensional reconstruction (Clark et al., 2011;
Topp et al., 2013). Under such controlled conditions, it is
expected that imaging would enable the study of growth
of roots over time (Spalding and Miller, 2013; Sozzani
et al., 2014).
However, all of the above-listed solutions have been

used primarily to assess root structures in the early
seedling stage (French et al., 2009; Brooks et al., 2010;
Sozzani et al., 2014) to approximately 10 d after germi-
nation (Clark et al., 2011), which makes it all but impos-
sible to directly observe mature root systems. For example,
primary and seminal roots make up the major portion of
the seedling root system in maize (Zea mays) during the
first weeks after germination. Later in development,
postembryonic shoot-borne roots become the major
component of the maize root system (Hochholdinger,
2009), not yet accessible to laboratory phenotyping plat-
forms. In addition to phenological limitations, current
phenotyping approaches for root architecture require
specialized growth conditions with aerial and soil en-
vironments that differ from field conditions; the effects
of such differences on RSA are only sparsely reported in
literature (Hargreaves et al., 2009; Wojciechowski et al.,
2009).
Indeed, high-throughput field phenotyping can be

seen as a new frontier for crop improvement (Araus
and Cairns, 2014) because imaging a mature root system
under realistic field conditions poses unique challenges
and opportunities (Gregory et al., 2009; Zhu et al., 2011;
Pieruschka and Poorter, 2012). Challenges are intrinsic to
roots grown in the field because the in situ belowground
imaging systems to date are unable to capture fine root
systems. As a consequence, initial attempts to charac-
terize root systems in the field focused on the manual
extraction of structural properties. Manual approaches
analyzed the root system’s branching hierarchy in rela-
tion to root length and rooting depth (Fitter, 1991). In the
late 1980s, imaging techniques were first used (Tatsumi
et al., 1989) to estimate the space-filling behavior of roots,
an estimation process that was recently automated (Zhong
et al., 2009). A weakness of such approaches is that exact

space-filling properties, such as the fractal dimension,
are sensitive to the incompleteness of the excavated root
network (Nielsen et al., 1997, 1999). In particular, the
box counting method was criticized for above-ground
branching networks of tree crowns (Da Silva et al.,
2006). The same critiques apply to root systems, because
fine secondary or tertiary roots can be lost or cutoff or
can adhere to each other during the cleaning process,
making it impossible to analyze the entire network.

As an alternative, the shovelomics field protocol has
been proposed to characterize the root architecture of
maize under field conditions (Trachsel et al., 2011). In
shovelomics, the researcher excavates the root at a
radius of 20 cm around the hypocotyl and 20 cm below
the soil surface. This standardized process captures the
majority of the root system biomass within the excavation
area. After excavation, the shoot is separated from the
root 20 cm above the soil level and washed in water
containing mild detergent to remove soil. The current
procedure places the washed root on a phenotyping
board consisting of a large protractor to measure dom-
inant root angles with the soil level at depth intervals
and marks to score length and density classes of lateral
roots. A digital caliper is used to measure root stem
diameters (Fig. 1). Observed traits vary slightly from
crop to crop but generally fit into the following cat-
egories by depth or root class: angle, number, density,
and diameter. In this way, field-based shovelomics
allows the researcher to visually quantify the excavated
structure of the root crown and compare genotypes via a
common set of traits that do not depend on knowledge or
observation of the entire root system network. Of note,
shovelomics is of particular use in developing countries,
which have limited access to molecular breeding plat-
forms (Delannay et al., 2012), and for which direct phe-
notypic selection is an attractive option.

Nonetheless, direct phenotypic selection for root traits of
field-grown root systems comes with a number of caveats
and drawbacks. To date, the quantification of mature root
systems is highly dependent on the researcher, reducing
the repeatability of measured quantities (Gil et al., 2007). In
addition, manual approaches impose limitations on both
the number of accessible traits and the number of samples
collected. For example, a typical shovelomics phenotyper
can gather 10 to 12 traits from a sample in 2 min or ap-
proximately 200 samples in a typical workday (Trachsel
et al., 2011). This means that evaluating a statistically more
significant trial of 1,000 samples may take 5 d or more.
Such a time span introduces variation owing to plant
growth and phenology. On the other hand, shovelomics
is adaptable to both monocot and dicot roots; therefore,
its procedure can be scaled over the huge variety of root
morphologies in dicots and monocots. For these rea-
sons, we contend that shovelomics represents a valued
target for an automated high-throughput phenotyping
approach in the field.

We introduce an imaging approach for high-throughput
phenotyping of mature root systems under realistic soil
conditions to address the limitations of manual data
collection (Fig. 2, I and II). Our new algorithms directly
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extract root architecture traits from excavated root
images (Fig. 2, III and IV). Rapid imaging of the roots
and decoupled analysis of the collected data at a later
time improve both the throughput and synchroniza-
tion of experiments. In addition to traits that are de-
veloped from shovelomics, our algorithms extract
previously inaccessible traits such as root tip diameter,
spatial distribution, and root tissue angle (RTA). Overall,
our approach allows imaging directly at field sites with
an easily reproducible imaging setup and involves
no transportation cost or expensive hardware. We
demonstrate the utility of our approach in the field-based
analysis of maize and cowpea (Vigna unguiculata)
architecture.

RESULTS

Low-Cost, Reproducible, and Field-Based Protocol for
Imaging Plant Roots

We extend the manual trait estimation procedures
described in shovelomics (Trachsel et al., 2011) in order
to facilitate estimation of root traits based on digital
images taken under field conditions. Similar to shovelomics,
the root crown is excavated, washed in water, and then
placed on a board to estimate root traits. Image-based
estimation of root traits requires improvements in the
contrast between root and board object segmentation on
the board and automated labeling. To address these
challenges, we developed a new imaging board and

Figure 1. A, Classic shovelomics scoring board to
score the angle of maize roots with the soil tissue. B, An
example to score rooting depth and angle in common
bean.

Figure 2. I, Imaging board on the
example of a maize root. The experi-
ment tag is used to capture an exper-
iment number, and the scale marker
allows the correction of camera tilting
and transforming image coordinates
into metric units. II, Camera mounted
on a tripod placed on top of the
imaging board coated with black-
board paint. Note that images
were taken with protection against
direct sunlight not shown in the im-
age. III, Example of the segmentation
of the original image into a binary
image and then into a series of im-
age masks that serve as input to es-
timate traits for monocot and dicot
roots. The sample is that of a maize
root, 40 d after planting at the
URBC. IV, The imaging pipeline for
dicot roots and sparse monocot
roots: Original image on the imaging
board (a), derived distance map
where the lighter gray level repre-
sents a larger diameter of the imaged
object (b), medial axis includes loops
(c), and loop RTP with a sample of
the root branching structure (d). Colors
are randomly assigned to each path.
The sample is that of a cowpea root,
approximately 30 d after planting at
the URBC.
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imaging protocol. The new imaging board consists of a
black background with diffuse reflectance properties on
which a circle of known diameter is freely positioned,
which enables calculation of units (Fig. 2I; “Materials
and Methods”). Next, images of the root system were
photographed using a digital camera mounted on a
tripod (Fig. 2II; “Materials and Methods”). Finally,
we developed an automated pipeline to derive mea-
surements from the root crown and the excised root
samples. In the first step, the objects on the imaging
board are detected and segmented into individual
image masks. Each individual mask represents the root
crown, excised root sample, experimental tag, and scale
marker (Fig. 2III). As a precursor to trait estimation, the
algorithm automatically detects the marker and tag using
geometric priors; the geometry of the marker is then used
to automatically calibrate the trait measurements. In the
second step, a structural description of the root crown and
the excised root is computed. The structural description,
called the root-tip path (RTP), is a curve representation
that samples the root architecture (Fig. 2IV). The sampling
is necessary because the actual root networks of mature
root systems occlude its interior, and smaller roots may
bind together when the roots are excavated and washed.
Finally, we utilize the image masks and RTP to estimate
architectural traits of dicot and sparse monocot root sys-
tem based on angle, diameter, length, width, and density
measures (“Materials and Methods”).

The Digital Image Analysis Pipeline Enables Field-Based
Estimation of Root Traits

All trait measurements rely on the computation of
root length, diameters, branching angles, density, and
spatial root distribution estimations. These measurements,
whose distributions are summarized in trait values,
characterize the root architecture. Technically, traits
are distinguished based on whether they are computed
from (1) the image mask, (2) the RTP skeleton (Fig. 2IV;
“Materials and Methods”), or (3) the excised root com-
ponent. The image mask (Fig. 2IIIc) enables estimation
of the root-width profile as well as root density. The RTP
skeleton is a loop-free sampling of the medial axis de-
rived from the root shape visible in the image. The RTPs
describe significant root parts by the number of paths
passing through the same location in the image deter-
mined on the basis of detectable tips in the image.
As a consequence, the RTP skeleton allows the calcula-

tion of the length of significant root parts, the radius at each
location as the distance to one of the at least two closest
pixels on the root mask boundary, branching frequencies,
and path length from the distance between branching
points and angles between a root part emerging from the
tissue of a parent root. Our segmentation of the original
images enables separate analysis of an excised crown root
(Fig. 2, IIId and IIIe). The intermediate mask images used
in our pipeline allow a user to visually identify possible
miscalculations due to substandard imaging conditions.
Tables I and II summarize all currently computed traits.

We determined the technical error of our pipeline with
five persons that were untrained in the imaging protocol
(“Materials and Methods”). We used a black block with a
cylindrical groove to hold the maize root crown and in-
crease the repeatability of the placement. We additionally
placed a bean root without the groove to demonstrate the
concept of the RTA compared with the soil tissue angle
(STA). For maize, we obtained relative SDs below 10%
except for average root density, diameter at 90% depth,
and the spatial root distribution in X. The majority of
traits such as D and DS values (“Materials and Methods”)
showed relative SDs below 5.0%. For the freely placed
bean, we found that the RTA measurements are more
robust to placement errors than the STA measurements.
The median RTA resulted in an average residual of 3.0o,
which corresponds to a relative SD of 5.2%. By contrast,
the median STA showed an average residual of 9.4°
corresponding to a relative SD of 22.7%. The maximal
width measurements resulted in a relative SD less than 1%
in maize, but 7.0% in bean depending on root placement.
Overall, in both cases, our test showed the expected
robustness of our traits to translational and rotational
differences in the placement of the root. Nevertheless,
we suggest the use of tools to guide the root placement
to further improve the collected data quality. The full
test results are available in the Supplemental Data Sets
S9 and S10.

Validation of Image-Based Traits

We validated the diameter traits, which were derived
with a caliper in the field on 1,445 cowpea roots rep-
resenting 188 genotypes. Figure 3 shows the correlation
of taproot diameters (see Supplemental Fig. S25 for di-
cot nomenclature) at two depth levels derived as field
measurements (Fig. 3A), the direct comparison between
manually and image-based derived diameters (Fig. 3B),
and image-based measurements at two depth levels
(Fig. 3C). All three comparisons yield similar Pearson
correlations of 0.496 0.02 with P, 0.001. The conceptual
difference between field- and image-based measurement
is that manually measured diameters are taken at a certain
depth below the soil line, not accounting for differences in
plant age. Continuing growth induces errors emerging
from simultaneous lateral thickening and elongation in
depth. By contrast, the image-basedmeasurement is taken
as a certain percentage of the maximal depth to com-
pensate for differences in plant age, assuming a linear
scaling of length and thickness within the given time
frame. In addition, we found strong correlations between
image-based and field-measured traits, which were not
accessible in the image. For example, the number of third-
order roots scored in the field was correlated with a strong
Pearson r = 0.8 to the number of detectable RTPs as shown
in Figure 3. Because RTPs are derived from the number of
tips visible in the image, the Pearson r = 0.8 is explained by
the exponentially growing amount of branches. Further-
more, the RTPs are correlated with the nodulation score
for the cowpea data set (r = 0.59), which again is explained
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by the exponentially growing amount of branches with
increasing hierarchies allowing more nodulation.

In addition to the correlations found for cowpea, we
found strong correlations for nine available maize geno-
types (Fig. 4). Measurements of manually scored lateral
root length and image-based estimated lateral root length
of the brace root resulted in a Spearman (P = 0.0367).
Together with the caliper and image-basedmeasurements
of stem diameters (Spearman r = 0.83, P = 0.0053), the
measurements validated our image-based measurement
pipeline (Supplemental Figs. S1 and S2). As expected, the
crown and brace root angles were correlated with the D10
trait (Supplemental Figs. S3 and S4) and yielded significant
Spearman r = 20.82 and r = 20.69 (P = 0.0072 and
P =0.0379), respectively. The negative correlations are
explained with the geometric constraint that the steeper

the root angles to the soil line are, the less width is accu-
mulated at the D10 level. The surprising result in maize is
the opposite correlation of the number of crown and brace
roots at the D20 to D60 values. For example, the D20 value
resulted in a negative Spearman r =20.73 (P = 0.0379) with
the manually counted number of brace roots. By contrast,
the D20 value and the number of crown roots significantly
correlated with a positive Spearman r = 0.88 and a signif-
icance value of P = 0.0018 (Supplemental Figs. S5 and S6).
Under the assumption that crown roots maximize in
number within the available volume enclosed by brace
roots, the correlation is then positive because increasing
width accumulation yields more crown roots at the given
depth range. We conjecture that width accumulation of
crown roots increases with an increasing number of crown
roots and leads to shallower root angles because larger

Table II. Overview of traits computed for the excised root sample

Name Definition Closest Trait Analog in Shovelomics

Nodal root length Length of the central path along the excised root Scored from representative sample
Average nodal root diameter Average root diameter along the central path of the excised root N/A
Distance to first lateral Path length from the top pixel of the excised root to the first

detected emerging lateral of the filtered medial axis
Distance to first lateral as score

Lateral branching frequency Estimate of the lateral branching frequency calculated as:
(number of laterals)/(nodal root path length)

Density scores

Average lateral length Average length of the detected lateral roots emerging from the
central path long the excised roots

Length score

Lateral min/mean/max RTA Minimal/mean/maximal angle of detected laterals emerging from
the central path along the excised root

N/A

Median/mean lateral diameter Median/mean of all lateral tip diameters N/A

Table I. Overview of crown traits derived for the root stock

N/A, Not available.

Name Definition
Closest Trait Analog in

Shovelomics

Average root density Ratio between foreground and background pixels of the extracted root Scoring of density
STA X Angle between an RTP at x% length and the x axis calculated as arctan

(m), where m is the slope of the fit line
Shovelomics angle at certain
depth for dicots

Dominant STA 1 and 2 Average of the first and second significant peak in the in the histogram of
calculated solid tissue angles binned in 10˚ steps

Shovelomics angle for dicots

Min/median/max STA Minimal, median, and maximal of all calculated STAs N/A
Dominant RTA 1 and 2 Average of the first and second significant peak in the histogram of

calculated RTAs binned in 10˚ steps
N/A

Min/median/max RTA Minimal, median, and maximal of all calculated RTAs N/A
Median/max width Median/maximum of the calculated width in the width height diagram Only max width or selected

representative width
D10 to D90 Accumulated width over the depth at x%. The change in width

accumulation denotes a change of the root-top angle
N/A, but closely related to the
root-top angle for maize

DS10 to DS90 Slope of the graph of D values N/A
Spatial root distribution

(as separate X and Y
components)

Displacement of the center of mass between the bounding box of the
RTP skeleton and the RTP skeleton excluding the central path

N/A

Stem diameter Diameter at the beginning of the root top. We use the first branching
point of the filtered medial axis as a characteristic diameter

Caliper measurement

Central path diameter X The diameter at x% length of the central path Diameter at a defined depth
below the soil line

Max diameter at 90% depth Maximal tip diameter in the last 10% of the image Measured for dicots
Tip diameter distribution Exponent of the exponential function fitted through the tip

diameter histogram
N/A

Median/mean tip diameter Median and mean tip diameters of all tips N/A
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initial width accumulation is associatedwith shallower root
angles for brace and crown roots (see above for D10
analysis and Supplemental Fig. S24 for nomenclature).
Additional analysis on the level of individual plants can be
found in Supplemental Figures S31 to S36. The correlations
to manual measured traits have known or hypothetical
importance in soil resource acquisition (Lynch, 2011 and
Lynch, 2013).

Image-Based Traits Exhibit High Differentiation Potential

We selected nine maize genotypes for diversity in
lateral root density, nodal root angle, and nodal root

number (see Fig. 4 for examples). In the following, we
characterize the maize data set by comparing relative
phenotypic variation (RPV) as estimated using shovelomics
and image-based traits. The RPV of a trait for a given data
set is heuristic, defined as the ratio between the varianceVd
of the trait of all roots of the data set and the average trait
variance per genotype Vavg as follows:

RPV ¼
Vd

Vavg

Traits are more likely to be useful in differentiating
genotypes when their RPV is significantly greater than 1.

Figure 3. Trait correlations in cowpea. A, Results from field measurements of taproot diameters at 5- and 10-cm depth show
correlations close to r = 0.5 for Spearman and Pearson coefficients. Note that not all plants reached 10-cm depth. B, An example of
confirming results with r = 0.5 for Spearman and Pearson coefficients was achieved in correlation between the field-measured 5-cm
depth level and the diameters at 75% of the central path length. C, The central path diameters extracted from images are shown with
similar correlation coefficients than observed with manual field measurements. D, A surprising correlation: The number of third order
basal roots in cowpea is highly correlated with the overall number of RTPs. Both correlation measures together (Spearman r and
Pearson r) suggest even linear dependency. The ANOVA analysis confirms that both measurements are taken from different quantities
for both correlations. All diameter measurements are in millimeters and data points represent averages per genotype.
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An RPV of approximately 1 indicates that a given phe-
notypic trait is similarly distributed over given genotypes.
In Figure 5, we show the RPV values of all traits for the
maize crown roots. Manual measurements of the rootstock
yielded only the stem diameter with an RPV above 2.5. By
contrast, the absolute image-based measurements such as
root density, median/maximum width, and spatial root
distribution show RPV values above 2.5, suggesting differ-
entiation between phenotypes in the given data set. Note
that the stem diameter estimated from the images shows
lower RPVs than themanually derived stem diameter. The
difference in the RPV for the stem diameter is a conse-
quence of the visual choice of a representative measure-
ment location by the phenotyper. By contrast, the
relative measurements of D and DS values show often
greater RPVs than the comparable crown root angle
measured in the field.

The RPV of the excised root sample traits reveals
differences in the measurement methodology. Whereas
a field phenotyper scores the average lateral length on a
scale from 0 to 9 (RPV . 3.5), the length of the RTPs is

determined in centimeters with an RPV close to 1. This
effect can be explained by a binning effect induced by
the scoring scheme of the researcher, that does not re-
flect the variation in length (compare visually Fig. 4). By
contrast, we observed an RPV . 2 from images for the
brace root (Supplemental Fig. 11). Similarly to the RPV
value, we obtain the broad sense heritability (H2) from
our trait data (Einspahr et al., 1963).

H2
¼

Vd

Vavg þ Vd

The crown root traits resulted in 0.55 , H2
# 0.81 for

traits measured manually and 0.56 , H2
# 0.83 from

images (Supplemental Fig. S12). The largest H2 was
obtained for the lateral density (top) in the case of
the manual measurements and for the median width
and D10 in the case of the image-based measurement.
For the brace root traits, we observed 0.66 , H2

# 0.85
for traits measured manually and 0.56 , H2

# 0.80

Figure 4. Examples of maize ge-
notypes selection from theWisconsin
diversity panel. The figure shows in-
creasing root system width and shov-
elomics angle from left to right. The
top row shows the complete root
crown, and the bottom row shows the
root crown with brace roots removed
to reveal the crown roots. All six im-
ages show a selected representative
nodal root at the right of the root
crown.

Figure 5. RPV analysis of the crown
root measurements. Traits are more
likely to be useful in differentiating
genotypes when their RPV is signif-
icantly greater than 1 (blue line).
Trait definitions are found in Tables I
and II. TD, Tip diameter.
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from images (Supplemental Fig. S13). The most heritable
traits were lateral length (bottom) for the manual mea-
surements and average root density for the image-based
measurement. Note here that the heritability measure
often results in a similar trait ranking than the RPV
value, but does not reflect the strength of genotype
differentiation.
We demonstrate the intergenotype versus the intra-

genotype variability for the crown root traits obtained
with our imaging algorithms in Figure 6 and themanually
derived traits in Figure 7. In both figures, we highlight the
genotypes OH43, 4226, and B103 for direct comparison.
Here we derived the normalized mean values as the robust
samplemean from the z-score values within the three-sigma
interval (Maronna et al., 2006). The associated SEs (of the
mean, shown as error bars) in both figures give insight
into the precision of the population mean. Nonoverlapping
error bars visualize that the three example genotypes can
be distinguished by the mean of a subset of traits. Pairwise
comparison of genotypes per trait reveals that each geno-
type is distinguishable by at least eight image-based traits
and one manually measured trait (Figs. 6 and 7, bottom).
Most notably, we observed improved distinction for the
distance to the first lateral for the image-based traits. Al-
though field practice assigns a researcher-dependent dis-
tance score showing no variation between eight of the
chosen genotypes, the image-based measurement still
distinguishes different distances. The comparison of root
angle measurement in the field and D and DS values
that describe the cumulative width over the depth shows
that distinctions between genotypes can be made with
both the absolute angle measurement in the field and the
D and DS values derived from the images. Supplemental

Figures S7 to S10 and S14 to S17 contain the intragenotype
variation and full-resolution figures for brace and crown
root images (see Supplemental Data Sets S6 to S8).

Differentiating Genotypes in Massive Diversity Panels

We evaluated image-based traits on a cowpea diversity
panel consisting of 188 genotypes (see Fig. 8 for exam-
ples). Such large diversity panels pose a trade-off between
two additional problems. First, long harvesting times
introduce phenological effects requiring robustness to
varying plant age in the trait definition. In our example,
the harvesting duration was 14 d. Second, The large
amount of genotypes requires high sensitivity of the traits
to extract and differentiate the phenotypes present in the
data set. In our cowpea study, comparable differentiation
of phenotypes with diameters measured in the field and
in images was achieved. Overall, the RPV values of the
cowpea study are lower (,2.4) than the RPV values of
the maize study (up to 7 for the brace root and up to 4.5
for the crown root; Fig. 9). Lower RPV values can be
explained with the far larger amount of genotypes (188
for cowpea versus 9 for maize), constituting a full di-
versity panel. Directly comparable measurements such as
the stem diameter resulted in similar RPV values about 1.6
and the correlated traits number of RTP paths and third-
order roots are similarly strong at around 1.9. The diameter
measurements of tap root and comparable central path
diameter show similar differentiation potential in their RPV
values. Central path diameter at a fraction of the maximal
depth is in the range between 1.3 and 1.4, which is in
alignment with the RTP values of the taproot diameter
at 5- and 10-cm depth. The taproot diameter at 15-cm

Figure 6. Top, Image-based phenotype differen-
tiation. Normalized mean trait values of traits
derived from crown root images. The intergenotype
variation for the crown roots of the nine examined
maize genotypes is shown. The points represent
average normalized values. The connection be-
tween points allows the reader to visually identify
the three genotypes shown in Figure 4. The error
bars indicate the SEM. Note that relative traits only
differentiate at certain depth levels. Bottom, The
number of traits that distinguish a pair of genotypes
in the maize study. For each combination, at least
eight distinguishing traits were found. DD90max,
Maximum diameter at 90% to 100% depth; TD, tip
diameter.
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depth is the trait with the strongest RPV value. However,
only about 30% of all measured roots reached a taproot
length of 15 cm, which suggests that the RPV value is
artificially high and the actual presence of a 15 cm-deep
taproot might constitute a novel trait. Similarly, we ob-
served stronger differentiation for all second dominant
angles (RPV . 2.5) obtained with the image-based trait
estimation. A second dominant angle is not obtained for
all genotypes, which again suggests that the presence of
such an angle might constitute a novel trait. The second
dominant RTA showed the strongest differentiation
potential with RPV = 3.2. Mean and maximum width
differentiated with an RPV value around 1.5, similar to
the related measures of basal and adventitious root
angles, whereas D and DS values performed less strong

(RPV, 1.4) compared with the maize study. The broad
sense heritability (Einspahr et al., 1963) peaked at H2 =
0.76 for the manual cowpea traits (nodulation score)
and at H2 = 0.65 for the image-based traits (number of
RTPs). Notably, these are two strongly correlated traits,
as shown in Figure 3D. The taproot diameter at 15-cm
depth and the number of first order laterals at 15-cm
depth below the soil line show a strongH2. We considered
these two heritability measures as unreliable, because only
a few roots reached 15-cm depth or length. The heritability
for all cowpea traits is shown in Supplemental Figure S20.

The absolute trait of the second dominant angle
distinguished genotypes with large angular differences
as shown in the example in Figure 10. The large SE for
the first dominant angle possibly emerges from the

Figure 7. Top, Phenotype differentiation with shov-
elomics. Normalized mean trait values show the
intergenotype variation for the crown roots of the
nine examined maize genotypes. The points repre-
sent average normalized values. The connection be-
tween points allows the reader to visually identify the
three genotypes shown in Figure 4. All density and
distance measures are researcher scores. Bottom, The
number of traits that distinguish a pair of genotypes in
the maize study. For each combination, at least one
distinguishing trait was found.

Figure 8. Six examples from the
cowpea diversity panel. Different
root architectures in mature cowpea
with the genotype denoted in each
image are illustrated.
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difference in root age and is also observable in the
angles of the field measurement (Supplemental Fig. S22).
In the selected examples in Figure 8, D and DS values
again distinguish the genotypes by means of the SE.
Nevertheless, on the large diversity panel, we found
that there exists no single trait to distinguish all
genotypes. In our example study, we found that all
188 cowpea genotypes could be distinguished by at
least one image-based trait, whereas five genotypes
could not be distinguished with the manual field
measurement. We predominately found that D and

DS values and diameter measurements of the stem
and along the central path are most suited to distin-
guish genotypes. The D and DS values differentiate
cowpea phenotypes better than corresponding an-
gle measurements collected by the field researcher,
because the traits are derived relative to the max-
imum depth of an individual root. Thus, the dif-
ference in plant age is less, influencing the actual
measurement. Large versions of the figures, the cor-
responding data sets, the intragenotype variation
(Supplemental Figs. S18–S22), and the pairwise

Figure 9. RPVs of shovelomics and
image-based traits for the cowpea
diversity panel. Traits are more likely
to be useful in differentiating geno-
types when their RPV is significantly
greater than 1. Note that the manual
traits counting first order laterals do
not include counts in the basal region
of the root. All field scores ranged
from 0 (low) to 9 (high). The figure is
comparable to Supplemental Fig. S30
showing RPVs for GIA Root traits.

Figure 10. Overall phenotype differentiation of the cowpea diversity panel. Black crosses show the trait values of the whole
data set, and the lines are three selected examples with error bars denoting the SEM. The three example genotypes distinguish by
at least one D and DS value and by the second dominant angle. The D values demonstrate that UCR 779 differentiates from
Petite n Green at higher depth levels and from Early Scarlet at deeper depth levels. UCR 779 differentiates additionally in central
path diameters from Petite n Green and Early Scarlet. The connection between points allows the reader to visually identify the three
of the six genotypes shown in Figure 8. DD90max, Maximum diameter at 90% to 100% depth; dia., diameter; TD, tip diameter;
CPD, central path diameter.
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comparison matrices can be found in Supplemental Data
Sets S1 to S3.

CONCLUSION AND FUTURE DIRECTIONS

We have developed image-processing algorithms in
alignment with the needs of current field-research prac-
tice to estimate root phenotypes in real soil conditions. In
doing so, we have (1) developed a low-cost, reproducible
protocol for image-based root analysis; (2) developed
imaging processing methods to automatically classify
multiple root components (and experimental tags) from
a single image; (3) developed a novel set of localized root
system traits based on the principle of RTPs; and (4)
demonstrated that these traits can differentiate among
genotypes of both cowpea and maize. In contrast with
algorithms available in existing software packages such
as RootNav (Pound et al., 2013), SmartRoot (Lobet et al.,
2011), or DART (Le Bot et al., 2010), which focus on the
detailed measurement of an individual root system by a
user, our algorithms allow the automatic extraction of
many root traits in a high-throughput fashion. Naturally,
our approach comes at the cost of a greater dependency
on image quality and a larger amount of root samples
to achieve significant average trait values. However,
semiautomatic approaches are equally dependent on the
visibility of root tips in images.

Overall, we found that angular, diameter, width, and
length measurements derived from images show simi-
lar or in some cases superior RPV and differentiation in
terms of the SEM compared with manual shovelomics
quantification. In our example studies, we showed that
image analysis is an attractive alternative to extract crop
root architecture traits also under field conditions. In
addition, we identified a subset of traits (central path
diameter, as well as D and DS values) that have the
potential to analyze large field studies with long har-
vesting durations. We hope that our algorithms enable
large-scale plasticity studies on roots in the field be-
cause we see high-throughput plant phenotyping under
field conditions as enabled by our approach.

We developed RTPs as a representation of significant
root parts, from which additional information can be
computed. Nevertheless, our approach has shown that
new conclusions can be drawn from the computed data,
because of increased trait robustness and measurement
resolution. In addition, we provide 13 traits previously
not accessible in the field such as tip diameter, symmetry
measures, or RTA, which enriches the set of traits to be
used by field researchers. The underlying assumptions
for the RTPs allow us to objectively simulate the scoring
and measurement of field researchers. Our traits include
localized diameter, angle, length, or width measurements
at certain depth levels of major root components. In that

Figure 11. Image masks overlaid with the width profile (red) and the corresponding cumulative width and slope function from
which the D and DS values are calculated. Top, Cowpea root. Bottom, Maize root. Note that the width profile does not have to
match the outline of the root, because the outline is not always symmetric to a vertical and straight line. It is also visible in the
cumulative curve that the D values are robust to single roots sticking out of the crown.
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sense, our algorithms are complementary to approaches
such as GiA Roots (Galkovskyi et al., 2012) that pre-
dominantly focus on global root traits. In addition to
global traits, Root Reader (Clark et al., 2011) offers
mechanisms to measure local traits for individual roots.
However, these mechanisms are designed for sparse
root networks in which root branches do not occlude
each other. We note that neither was optimized for
application to field images. Nonetheless, we provide a
direct comparison of GiA Roots to our algorithms in the
Supplemental Data Set. GiA Roots did not distin-
guish 128 genotype combinations of the cowpea data
set (compare Supplemental Figs. S29 and S30 and
Supplemental Data Set S11), whereas our algorithms
could distinguish all cowpea genotypes. Recall here
that the manually measured traits distinguished all but
five genotype combinations. Our image-based trait mea-
surement is a first step toward localized traits under field
conditions in the sense that many of our traits are defined
with respect to depth and length of the root.
Indeed, measurements of root tip diameters and di-

ameters at 90% depth could not be assessed in a shov-
elomics setting, but are accessible in gel-based systems
of younger roots. The technological possibility to extract
root tip information is demonstrated in the example of
10 rice (Oryza sativa) genotypes of a previously pub-
lished study (Iyer-Pascuzzi et al., 2010) in Supplemental
Figure S23. These images were previously used for
genotype differentiation based on global root traits with
the algorithms available in GiaRoots (Galkovskyi et al.,
2012). In addition to obvious genotype distinction in
many traits, the figure shows that mean tip diameters
and the maximal diameter at 90% depth have good
differentiation capabilities, when derived with our al-
gorithms. Indeed, many traits can be derived for both
settings and may enable translational studies from the
field to the laboratory.

The traits extracted with our imaging pipeline may
also enhance input to data-driven simulation systems
such as SimRoot (Lynch et al., 1997). Such a combi-
nation would allow the reconstruction of the complete
root system in the future even though the excavation
process cuts off some of the root system. The challenge
of such data-driven simulation is the relation between
traits extracted from images and elementary phenes
driving the simulation (York et al., 2013; Postma et al.,
2014). Combined model-based and data-supported re-
constructions have already been successfully used for
tree crowns (Côté et al., 2009). Such a simulation would
enable computational experiments of crop root responses
to varying environmental conditions such as drought,
N, P or K during root growth, even more extensive than
known for cauliflower (Brassica oleracea; Vansteenkiste
et al., 2014).

In summary, our imaging approach and algorithms
enable the possibility to phenotype mature root sys-
tems under real conditions from objective data. This

Figure 12. Principle of the RTP algorithm
as pseudocode.

Figure 13. Difference between the RTA (green) and the STA (red). The
RTA does not change if the root is rotated on the board. By contrast, the
STA on the rotated root on the right is larger than on the left.
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approach has addressed an identified need for pheno-
typing protocols for mature root systems operated in a
high-throughput fashion under real soil conditions to
extract root architectural traits (Dhondt et al., 2013). We
envision future extensions to leverage cloud and grid
computing platforms as infrastructure (Moore et al.,
2013) to calculate image-based traits from thousands of
images in parallel. In this way, field experiments may
enhance their statistical power and significance to levels
currently achieved in laboratory environments.

MATERIALS AND METHODS

Plant and Growth Conditions

We selected nine maize (Zea mays) lines from a planting of a subset of the

Wisconsin diversity panel (Hansey et al., 2011) grown for 8 to 12 weeks at the

Ukulima Root Biology Center (URBC; Alma, Limpopo Province, South

Africa). Five lines (B73, H99, Mo17, OH43, and W64A) were selected as being

well-studied lines that are also included in the EUROOT maize panel (http://

www.euroot.eu/). Four replicates of each line were planted in an incomplete

block design. A further four lines (4226, B103, Tr, and W23) were selected with

contrasting RSA, specifically to represent the range of nodal root angles, nodal

root numbers, and lateral branching density as shown in Figure 8. These lines

were replicated three times. For all of these lines, four root crowns per plot were

excavated, and two were scored, resulting in a total of 44 imaged roots and four

to six measurements per genotype. Images were taken separately for crown and

brace roots, each containing an excised crown root or brace root, respectively,

resulting in 88 images in total.

Cowpea (Vigna unguiculata) roots were collected in January 2013 at the

URBC from a 188-line diversity panel grown for 5 to 6 weeks under nonlimiting

conditions. The Supplemental Data contain a list of all genotypes used in

this study (CowpeaGenotypeMap.xlxs).

For completeness, we cite the following growth conditions of the rice (Oryza

sativa) data set given in Iyer-Pascuzzi et al. (2010): “Seeds were dehulled and

sterilized with 10% peroxide for 10 min, followed by 70% ethanol for 1 min,

and rinsing three times with sterile water. Sterilized seeds were planted at

approximately 1 cm below the surface of the gel. Plants were grown in 2 L

ungraduated borosilicate cylinders (Fisher) filled with 750 mL Yoshida’s nu-

trient solution (Yoshida et al., 1976) and 0.3% Gelzan (the highest grade of

gellan gum available; Sigma). Cylinders are approximately 520 mm high, with

an o.d. of 82.5 mm. To prevent the agar from moving during imaging, six to

eight glass pipette tips were bonded to the bottom of each cylinder with

Sylgard 184 (Robert McKeown Co.). Plants were grown for 14 d at 12-h day/

night, 28°C day, 25°C night. Images were taken 14 dap.. Twelve rice (Oryza

sativa) genotypes were used: 93-11 (9311; indica), Caipo (Cai; tropical japonica),

Basmati 217 (Ba217; Basmati), Jefferson (Jef; tropical japonica), Teqing (Teqing;

indica), Lemont (Lemont; tropical japonica), Moroberekan (Moro; tropical japonica),

Nipponbare (Nipp; temperate japonica), IR64 (IR64; indica), Carolina Gold (Gold;

japonica), Bala (indica), and Azucena (tropical japonica). Genotypes were chosen

based on parentage of available QTL mapping populations and to represent

both of the two major subpopulations of rice (indica and japonica). Analyses were

performed on six to 18 individuals of each genotype.”

Low-Cost, Reproducible, and Field-Based Protocol for
Imaging Plant Roots

We extend the shovelomics trait estimation procedures described in

Trachsel et al. (2011) with a new imaging board and imaging protocol. The

new imaging board consists of a black background with diffuse reflectance

properties on which a circle of known diameter is freely positioned (Fig. 2A).

Optionally, a rectangular marker that encodes the experimental identification

of the root crown in a sequence of letters and numbers can be placed on the

board. Suitable boards were simple cutting boards, ordinary black cloth, or

plastic painted with blackboard coating. These boards are easily cleaned with

a brush or damp cloth to remove soil and root fragments from previously

imaged roots and are low cost and suitable for fieldwork.

The protocol for imaging with this modified board is as follows. First, the

root crown is placed on the board, oriented such that the stem is perpendicular

to the horizontal edge of the board. A predefined number of excised roots (e.g.

basal or nodal roots) can be placed on the board. The placement of these elements

is arbitrary so long as none of the imaged objects (i.e. circle, marker, root crown,

and excised roots) intersects another object (Fig. 2). Including multiple root

components on the same image enables downstream analysis of multiple

root traits.

Next, images of the root system should be photographed using a digital

camera mounted on a tripod (Fig. 3) at about 30 to 50 cm above the imaging

board. We used high-end consumer cameras in this study. The known di-

mensions of the circle correct for tilting of the camera normal to the imaging

plane and enable automated correction of the trait estimations. As we describe

below, our methods provide mechanisms to deal with irregular ambient light

and visual noise that may lead to varied image quality. Nonetheless, we re-

commend cleaning the imaging board regularly, while maintaining relatively

constant diffuse lighting.

Finally, it is worth noting that our image-based phenotyping pipeline is

technologically constrained by the use of digital cameras, which rely on the

reflection of light from surfaces and therefore cannot resolve large occlusions of

the root system.As a consequence, our pipeline relies on the subjective impression

of the field phenotyper to select a representative nodal root to detail the fine root

structure. Measuring complete mature root architectures would require either

automated cutting of the root into its individual organs or field-ready three-

dimensional imaging systems such as x-ray systems, neither of which is

currently available. Given these limitations, we assumed themaize roots to be

symmetric to the shoot main axis if only imaged from one side. This as-

sumption allows that the width-related traits (e.g. median width and D and

DS values Table I) and root density estimates are the parameters closest to

the ones observed in the field.

The Digital Image Analysis Pipeline

Identifying Distinct Components

The original color image taken from the image board (Figure 2IIIa) is con-

verted into a grayscale image. The conversion uses the weighting from the PAL

television system, in which the gray value or chrominance Y is derived as the

weighted sum of Y = 0.30R + 0.59G + 0.11B, where R, G, and B are the red,

green, and blue components of each pixel, respectively. The resulting gray image

is segmented into a foreground and background by first estimating a global

threshold with the Otsu (1975) method. This thresholding method assumes a

bimodal distribution of chrominance values, from which an initial global sepa-

ration threshold is estimated. The initial threshold value is passed into an

adaptive thresholding algorithm that locally refines the global threshold in a

user-defined window around each pixel. Here, the scaled threshold is the sum of

the global threshold and the variance of a Gaussian distribution used to weight

pixels within the thresholding window. If the weighted mean of the thresholding

window is greater than the global threshold, then the pixel is classified as

foreground. Otherwise, the pixel is classified as background. Note that such

scaling influences the measurement slightly, because the root appears slightly

thicker in the binary image than in the original. The resulting binary image is a

segmentation of objects in the foreground and the background. The segmenta-

tion is shown in Figure 2IIIb, where the foreground corresponds to white pixels

and the background to black pixels. It is noteworthy that our thresholding re-

duces the number of user-controlled parameters to one if used with our field-

imaging protocol. The only user-controlled parameter is the scale parameter that

controls weighing of neighboring pixels. All other parameters can be fixed to

standard values in our setup.

To distinguish the objects on the board from noise in the foreground, we first

use connected component labeling (Samet, 1981) to identify clusters of

neighboring foreground pixels called components. We assume that none of the

four placed object classes (Fig. 2III) intersect, and no additional objects are

placed on the board. It is a prerequisite that noise pixels do not group into

clusters that take up more area than the placed objects. Keeping the board

clean from soil artifacts while images are taken can enforce this noise con-

straint. The root crown is defined as the component containing the largest

number of pixels. Circle marker, excised root, and the experimental tag are

distinguished using prior knowledge on their likely shape. The circle is

detected as the component with a side-length ratio of the bounding box closest

to 1 and is distinguished by a foreground percentage of 78%, corresponding to

the fraction of area taken up by a circle inscribed into a square. Excised roots

are detected as the next set of largest components. They are distinguished

by the ratio of foreground to background pixels within the bounding box of

the extracted object. We assume that the tag has a higher foreground to
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background ratio than the root and should be the second smallest component

in terms of overall number of pixels. As a result, we obtain an imagemask with a

separated foreground and background for each object on the imaging board.

Traits Derived from the Image Mask

The root crown image provides the input to compute the root-width profile

as illustrated in Figure 11, root width and depth, as well as root density.

The root-width profile is computed per row of the image raster. The root

width per row is given as the distance between the first and the last fore-

ground pixels in the row. From the width profile, we calculate so-called

D values as the cumulative width at a certain fraction of the maximal depth. For

example, D10 and D90 represent the sum of all root widths at rows whose

vertical location lies between 0% and 10% and between 0% and 90%, respec-

tively, of the total number of rows in the root crown. Furthermore, each D value

has a corresponding DS value that is the slope of the tangent at each D value.

Both D and DS values are novel traits in the literature and represent samples of

a polynomial as shown in Figure 11. In practice, the latter can be thought of a

normalized root-top angle, as is the case for maize. The ratio between fore-

ground pixels and background pixels in a row is the root density per row, which

is averaged to yield the overall root density. The measurements computed from

the image mask are similar to the manually measured shovelomics in that they

quantify the global shape of the RSA in absolute values of the whole root system

or at certain depth levels. Traits derived in relation to the maximal depth and/or

width in the case of D and DS values are inaccessible in the field. The latter are

said to be relative traits, whereas all other traits are absolute traits.

The individual masks of the root crown and the excised root are used to

derive estimates of root width, height, density, and angles. Traits are computed

on the basis of the extracted root masks for the crown and the excised root with

their corresponding RTPs as described in the next section.

Computing RTPs

The previously computed mask images of the root crown and excised roots

serve as input to the RTP algorithm. First, we compute the medial axis (Fig. 2IVc)

of the root object using morphological hit-and-miss transform (Serra, 1982) with

a 3 3 3 cross mask. The calculation of the medial axis implies knowledge of the

distance field (Fig. 2IVb). The distance field defines for each root pixel the

shortest Manhattan distance to a nonroot pixel. The medial axis is the collection

of points within the root that are equidistant to at least two nonroot pixels; in this

way, the medial axis approximates center lines within the segmented root system

(Supplemental Fig. 22). Ideally, the medial axis contains all branching points and

tips visible on the extracted root image. This would be the case for plant roots

that have been separated and placed on a board. Instead, for mature roots im-

aged in the field, occlusion of single roots leads to loops in the medial axis, which

does not correspond to the branching structure of the root system. The RTP

approach aims to estimate architectural traits between the computations of the

medial axis that may include loops, as extracted from the segmented root image,

and the loop-free architecture of plant roots. We define a single RTP as the

shortest path along the medial axis from a given root tip to the root top, in which

the root top is the location where the root got separated from the shoot

(Supplemental Data Set).

The computation of the shortest paths forming the RTP skeleton leverages

Dijkstra’s shortest path algorithm (Goldberg and Harrelson, 2005) from each

tip to the start of the root top along the medial axis. Each pixel belonging to the

medial axis is associated with a diameter dx derived from the previously

computed distance field. In the following, we weigh the shortest path calcu-

lation with wx1;x2 for each step from one medial axis pixel p1 to an adjacent

pixel p2 as the difference between the maximal stem diameter dmax and the

average diameter of p1 and p2.

wx1;x2 ¼ dmax 2
dx1 þ dx2

2

All RTPs of a root assemble a skeleton graph represented as a set of image pixels,

where pixels with two neighbors are elongated root parts; pixels with three or

more neighbors are a branching point where multiple root parts intersect. Pixels

with only one neighbor correspond to a root tip or the start of the root stem. The

RTP skeleton is weighted by the number of paths as a measure of root thickness at

all locations of the skeleton. Underlying the definition of RTPs is the assumption

that RTPs to all visible tips in the image approximate the actual root shape well.

The RTP skeleton describes significant root parts by the number of paths

passing through the same location in the image. Because RTPs are determined

on the basis of detectable tips in the image, a significant root part is either

roots with many child roots or larger amounts of adhered roots whose tips are

visible in the image. The pseudocode shown in Figure 12 demonstrates a simple

procedure to compute RTPs from a medial axis input.

A central path with the largest average diameter is assumed to be the taproot in

dicots. Along the central path, branches are counted and measured. For monocots

such as maize, a central root itself is not accessible via the image and the central path

only contains information about the start of the root crown, reflected in many paths

emerging within a small portion of the central path. Hence, only the fine structure of

densemonocot roots such asmaize is analyzedwithRTPs on an excised root sample.

In our example in Figure 2IId, all paths emerge from the location where the

root stem was separated from the shoot. At this location, the number of RTPs

equals the number of tips detectable in the image. At every branching point of

the RTP skeleton, a certain number of paths split off into another branch, such

that the number of paths present after the split is equal to the number of paths

in the respective subtree of the branch (Supplemental Fig. 28).

Traits Derived from the RTP Skeleton

The RTP skeleton is a loop-free sampling of the medial axis (Supplemental

Fig. S27) derived from the root shape visible in the image. As a consequence,

the RTP skeleton allows the calculation of the length of significant root parts,

the radius at each location as the distance to one of the at least two closest

pixels on the root mask boundary, and branching frequencies and path length

from the distance between branching points and angles between a root emerging

from the tissue of a parent root. Computing the root length from the point of

emergence to the tip requires care. The length from a branching point to a root

tip includes the radius at the branching point, because the skeleton is centered

within the root. The tip of the skeleton is also a center with respect to the root

tissue. Therefore, the radius at the branching point has to be subtracted from the

length and the tip radius has to be added. We used a threshold of three pixels to

eliminate spurious branches (Fig. 2, IVc and IVd) resulting from boundary

disturbances of the foreground mask. Note that this filtering is applied after the

detection of the central path. Angles are calculated as the angle between the

tangent to the parent root at location of the branching point and the line deter-

mined by the least-squares fit through the emerging path. We calculate two

different angles: the STA and the RTA. The STA is the angle formed by the fit line

and the x axis. Nevertheless, the STA is dependent on the placement of the root

on the imaging board as shown in Figure 13, if angular symmetry of root with the

stem cannot be assumed.

This dependency on the root placement motivated the development of the

RTA. A tangent is estimated as the least-square fit through a definable win-

dow size around a branching point on the central path. This angle calculation

takes the local curvature of the nodal root into account and is independent

from the root placement on the board, because it is locally related to the root.

The spatial root distribution is represented as a vector. The spatial root dis-

tribution is calculated as the difference vector between the centers of the bounding

box (Supplemental Fig. S26) of the RTP skeleton and the mean coordinate of the

RTP skeleton excluding the central path. In the given coordinate system of the

image, the x-component of the vector represents the symmetry of the root to

the y-axis, which is expected to be useful especially in dicots. The y-component

reflects the depth at which the majority of roots are located. Diameter mea-

surements of the central path in predefined intervals relative to the maximal

length of the central path can be retrieved on dicots and on excised roots. The

distance between branching points along an excised root enables the computa-

tion of branching frequency, lateral length, and diameters from the RTPs.

Imaging Specifications

The maize study was performed with a Canon PowerShot A1200 digital

camera with a focal length of 6 mm and a maximal aperture of 3.3. The cowpea

case studywas imagedwith a Nikon D70s digital camera using a focal length of

18 mm and a maximal aperture of 3.6. In both case studies, only optical zoom

was used to adjust the field of view in all studies, such that an interpolation

effect because of software-enhanced resolution could be avoided.

Images for the maize diversity panel were taken at a resolution of 4,000 3

3,000 pixels. Images for which the scale maker was not extractable were re-

moved from the data set and the comparison.

Except for the brace root images of B73, three to six images of sufficient

quality were obtained. Overall, 85 imageswere used. The scalemarker varied in

210.47 pixels in the x direction and 217.22 pixels in the y direction, with SDs of 10.31

and 9.80, respectively. The threshold scale factor for deriving the image mask was

20.0, and we used an 80 3 80 window for the adaptive thresholding.
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The images for the cowpea study were taken at a resolution of 3,0083 2,000

pixels. From the original 1,500 images taken, we used 1,444 that had sufficient

quality, such that six to eight samples per genotype were obtained. The scale

marker width is 238.45 pixels in the x direction and 237.79 pixels in the

y direction, with SDs of 5.04 and 2.44, respectively. The threshold scale factor

for deriving the image mask was 5.0, and we used an 80 3 80 window for the

adaptive thresholding.

For completeness, we cite the following imaging setup given in Iyer-Pascuzzi

et al. (2010) for the rice data set: “Plants were imaged using a Photo Capture360

turntable and software from Ortery Technologies connected to a Canon

PowerShot G7 digital camera and Dell Latitude 620 laptop computer. Cylinders

were lit from the sides with fluorescent light bulbs, and from below with a UV

light box (VWR); lighting conditions were similar for all experiments. Images from

20 angles per plant per day were acquired. The threshold scale factor for deriving

the image mask was 1.0, and we used a 80 3 80 window for the adaptive

thresholding.” The images to determine the technical error of the imaging pro-

tocol were taken with an Olympus SZ-12 camera having a focal length of 4 mm

and a maximal aperture of 3.17 on a Sony VCT-R 640 tripod with ground-level

adjustment. The images were taken at an original resolution of 4,288 3 3,216

pixels. We cut out the image portion in which the root is visible. The background

was painted with Blick Artists Black Gesso paint (1 US FL QT). Five researchers

took 10 images of a bean and a maize root crown. All persons were exposed to

the imaging procedure for the first time. All 50 images per root were correctly

computed.

Online Access to the Data and a Beta Version of the
Source Code

We provide access to the data used in this article via an online application at

http://www.dirt.biology.gatech.edu. This online tool is a system-specific so-

lution that allows other researchers to access and use the data. The source code

for the algorithms is available as a free download on the Web site. The online

platform is implemented in PYTHON 2.7 (Van Rossum and Drake, 2009)

using the libraries NumPy (Oliphant, 2006) and SciPy (Oliphant, 2007) to

derive the statistics, Mahotas (Coelho, 2013) for image processing, and the

graph library graph-tools (http://graph-tool.skewed.de). The Web application

is implemented in Drupal (Graf, 2006). The source code of our algorithms is

available at https://github.com/abucksch.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Maize trait correlation between the manually

scored lateral length and the image-based measured lateral length.

Supplemental Figure S2. Maize trait correlation between the caliper mea-

surement and the image-based measurement of the stem diameter.

Supplemental Figure S3. Correlation between crown root angle and D10

value.

Supplemental Figure S4. Correlation between brace root angle and D10

value.

Supplemental Figure S5. Correlation between crown root number and D20.

Supplemental Figure S6. Correlation between brace root number and D20.

Supplemental Figure S7. Variability of the image-based brace root mea-

surements.

Supplemental Figure S8. Variability of image-based crown root measure-

ments.

Supplemental Figure S9. Variability of the Shovelomics brace root mea-

surements.

Supplemental Figure S10. Variability of the Shovelomics crown root mea-

surements.

Supplemental Figure S11. RPV analysis of the brace root traits for maize.

Supplemental Figure S12. Heritability of maize traits derived from the

crown root images.

Supplemental Figure S13. Heritability of maize traits derived from the

brace root images.

Supplemental Figure S14. Inter- and intravarietal variation for crown root

traits computed from images.

Supplemental Figure S15. Image-based phenotype differentiation: normal-

ized mean trait values of traits derived from brace root images.

Supplemental Figure S16. Inter- and intravarietal variation for Shovelomics

crown root traits of the maize diversity panel.

Supplemental Figure S17. Inter- and intravarietal variation for brace root

traits computed from images.

Supplemental Figure S18. Image-based trait estimation variability per

genotype for the cowpea diversity panel of 188 genotypes.

Supplemental Figure S19. Shovelomics trait estimation variability per geno-

type for the cowpea diversity panel of 188 genotypes.

Supplemental Figure S20. Heritability of cowpea traits derived from the

brace root images.

Supplemental Figure S21. Variability of image-based traits for the cowpea

diversity panel consisting of 188 genotypes.

Supplemental Figure S22. Variability of Shovelomics traits for the cowpea

diversity panel consisting of 188 genotypes.

Supplemental Figure S23. Normalized mean values of rice genotypes.

Supplemental Figure S24. Monocot root nomenclature on the example of

maize.

Supplemental Figure S25. Dicot root nomenclature on the example of bean.

Supplemental Figure S26. The bounding box concept.

Supplemental Figure S27. The medial axis concept.

Supplemental Figure S28. Simplified illustration of the RTP path extrac-

tion procedure.

Supplemental Figure S29. Trait variability for the cowpea data set derived

with the software GIA Roots.

Supplemental Figure S30. RPV analysis of the GIA Root traits for the

cowpea data set.

Supplemental Figure S31. Correlation of stem diameters in cowpea to

manually measured stem diameters on a per plant basis of 1,432 indi-

vidual plants.

Supplemental Figure S32. Correlations between image-based average lat-

eral length and lateral length bins for maize crown roots.

Supplemental Figure S33. Correlation between manual density measures

and image-based measures of root density for maize.

Supplemental Figure S34. Correlation between image-based D10 trait and

the manually measured maize crown root angle on a per plant basis.

Supplemental Figure S35. Correlation of lateral density scores and lateral

branching frequency for excised maize roots.

Supplemental Figure S36. The correlation for the distance to the first lat-

eral for the excised brace roots of maize.

Supplemental Data Set S1. Genotype name to genotype ID map for the

cowpea data set.

Supplemental Data Set S2. Image-based trait values for cowpea.

Supplemental Data Set S3. Cowpea Shovelomics.

Supplemental Data Set S4. Cowpea differentiation table for image-based

traits.

Supplemental Data Set S5. Cowpea differentiation table for Shovelomics

traits.

Supplemental Data Set S6. Image-based trait values for maize.

Supplemental Data Set S7. Maize Shovelomics crown root.

Supplemental Data Set S8. Maize Shovelomics brace root.

Supplemental Data Set S9. Technical error results for bean.

Supplemental Data Set S10. Technical error results for maize.
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Supplemental Data Set S11. Differentiation table GIA Roots.

Supplemental Data Set S12. The Python Source Code used in the article.
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