
Image-Based Material Editing

Erum Arif Khan1 Erik Reinhard2,1 Roland W. Fleming3 Heinrich H. Bülthoff3

1 University of Central Florida, 2 University of Bristol, 3 Max Planck Institute for Biological Cybernetics

Figure 1: Given a high dynamic range image such as shown on the left, we present techniques to make objects transparent and translucent
(left vases in middle and right images), as well as apply arbitrary surface materials such as aluminium-bronze (middle) and nickel (right).

Abstract

Photo editing software allows digital images to be blurred, warped
or re-colored at the touch of a button. However, it is not currently
possible to change the material appearance of an object except by
painstakingly painting over the appropriate pixels. Here we present
a method for automatically replacing one material with another,
completely different material, starting with only a single high dy-
namic range image as input. Our approach exploits the fact that
human vision is surprisingly tolerant of certain (sometimes enor-
mous) physical inaccuracies, while being sensitive to others. By
adjusting our simulations to be careful about those aspects to which
the human visual system is sensitive, we are for the first time able
to demonstrate significant material changes on the basis of a single
photograph as input.

CR Categories: I.4.10 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—Image Representation
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1 Introduction

Suppose you have a photograph of some object — say a bronze
sculpture or a porcelain vase — and you want to know how it would
look if it were made out of some completely different material, such
as glass, plastic, or wax. Given nothing more than a photograph of
the object, is it possible to modify the appearance of the material in
a visually plausible way?

To do this in a physically correct way would involve accurately
estimating the lighting, and 3D geometry of the object from the
image; a task that not even state-of-the-art computer vision can
achieve to a high degree of precision. However, we have set as

our goal not a physically accurate reconstruction, but a visually sat-
isfying illusion of material transformation. Our approach relies on
the fact that human vision tolerates certain deviations from reality.
Indeed, sometimes even enormous inconsistencies go un-noticed by
observers [Ostrovsky et al. 2005]. An example is change-blindness,
the inability to detect changes in the environment [Simons and
Levin 1997].

Recent research has suggested the possibility of changing mate-
rial properties in an image using simple image processing opera-
tions [Adelson 2001; Fleming and Bülthoff 2005; Motoyoshi et al.
2005]. One of the key contributions of this paper is to show how
we may exploit limitations of human vision regarding shape per-
ception [Belhumeur et al. 1999; Koenderink et al. 2001], as well as
its inability to reliably estimate illumination [te Pas and Pont 2005a;
te Pas and Pont 2005b] for the purpose of transforming materials in
images.

Because of the inherent ambiguity of visual cues, the human vi-
sual system makes certain assumptions when reconstructing a scene
from an image. When these assumptions are violated, perception
breaks down and either a visual illusion occurs, or scene recogni-
tion is negatively affected [Metzger 1975; Tarr et al. 1999; Lawson
et al. 2003].

With this in mind, we present our work which aims to take as
input a photograph of an object as well as an alpha matte outlining
this object, and produce as output a new photograph where the ob-
ject has been given an entirely new material. The transformations
presented in this paper range from applying a texture to the sur-
face of an object, to the application of any arbitrary bi-directional
reflectance distribution function (BRDF). In addition, we present
techniques to handle light-matter interactions that are not well mod-
eled with BRDFs, such as transparency and translucency. Examples
of some of our results are shown in Figure 1. The use of this work
lies in the facilitation of digital content creation for art and design,
as well as visual effects.

1.1 Previous Work

Several related image editing techniques exist [Oliveira 2002]. For
instance, techniques have been demonstrated to change the shape,
color and illumination of objects depicted in images [Oh et al.
2001]. The lighting in a scene can also be manipulated [Eisemann



and Durand 2004]. Further, images can be used to light 3D geome-
try [Debevec 1998; Debevec 2002]. Perhaps closest to our approach
is Fang and Hart’s object re-texturing technique, which allows ob-
jects’ macro structure to be altered [Fang and Hart 2004; Zelinka
et al. 2005]. However, our work focuses on changes to objects’ mi-
cro structure that would normally be modeled with functions such
as bi-directional reflectance distribution functions (BRDFs) and re-
lated models (BSSRDFs for instance).

All other techniques require more than a single image to make
any material changes. For instance, by using precomputed informa-
tion, objects with arbitrary materials (such as glass) may be placed
in an image [Zongker et al. 1999; Chuang et al. 2000].

1.2 Problem Definition

For the purpose of manipulating images, insight into image forma-
tion may be gained from studying the rendering equation [Kajiya
1986]:

L(x, y) = Le +

∫

Ω

fr (Θi, Θo) Li (Θi) cos Θidωi (1)

For non-emitting objects, we can set Le = 0. Thus, the light L
focused onto a pixel (x,y) is formed by taking the corresponding
nearest surface point in the scene, and constructing a hemisphere Ω
around the surface normal associated with this point. Then, light
from all directions Θi covered by Ω is reflected toward the pixel by
an amount governed by the reflectance function fr .

We are interested in manipulating pixel values L(x, y) such that
objects appear to be made of different materials. Thus, we aim to
take an existing image L and transform it into a different image L′

such that:

L′(x, y) =

∫

Ω

f ′
r (Θi, Θo) Li (Θi) cosΘidωi (2)

However, in the above two equations there are several unknowns:
the orientation of the hemisphere Ω for each point on the object, the
reflectance function fr , nor the incident lighting Li are available.
All we know are the pixel values L and the desired reflectance func-
tion f ′

r . Thus, computing L′ is not possible without making further
assumptions and simplifications. The key point of this paper is that
we will show how to simplify the problem such that although the
physics of light is not strictly followed, the results remain plausi-
ble. We achieve this by exploiting limitations of human vision in a
consistent manner.

First, for each pixel belonging to the object we wish to alter, we
require an approximation of Ω, or equivalently the surface normal
n. Details of both the problem and our solution are presented in
Section 2.

It is possible to approximate the incident lighting for all direc-
tions on the basis of the partial knowledge we have given back-
ground in the input image. Dependent on the nature of the desired
reflectance function f ′

r , the approximation needs to be more or less
precise. In particular, if f ′

r is relatively diffuse, the approxima-
tion can be relatively coarse [Ramamoorthi and Hanrahan 2001].
In addition, human perception is such that relatively coarse ap-
proximations are sometimes tolerated. For instance, Ostrovsky et
al [2005] have found that deliberate inconsistencies in the direction
of illumination are very difficult to detect. Other experiments have
confirmed that humans cannot in general estimate illumination re-
liably [te Pas and Pont 2005a; te Pas and Pont 2005b]. This implies
that inaccuracies in illumination are likely to go unnoticed — a fea-
ture we actively exploit in our work.

The unknown values of Li can be classified into two groups:
values that are outside the image, for instance behind the photog-
rapher, and values coming from behind the object we wish to alter.

Figure 2: Test images used in this paper.

For these two cases we adopt different solutions because the num-
ber of missing values is different in each case, and therefore the
level of approximation can be different. Together these yield a set
of incident lighting values L′

i, as discussed further in Section 3.

After computing approximate values for the object’s surface
shape as well as the incident lighting, a new reflectance function
f ′

r can be chosen and a new image may be rendered:

L′(x, y) =

∫

Ω′

f ′
r (Θi, Θo) L′

i (Θi) cos Θidωi (3)

Finally, the types of material changes we are currently interested in
involve re-texturing of objects, increasing or decreasing specular-
ity, adding transparency and translucency, as well as replacing an
object’s BRDF. Our work on transforming materials on the basis of
a single input image is novel, and constitutes a significant general-
ization to object texturing [Fang and Hart 2004].

1.3 Overview

The general approach we adopt is first to acquire a high dynamic
range (HDR) photograph of the object of interest by concatenat-
ing multiple exposures [Debevec and Malik 1997]. Most of the
techniques we present also work to some extent with standard (low
dynamic range) images. However, HDR input yields more robust
results. The gradients used to estimate Ω′ are smoother if derived
from HDR images; highlight identification is also facilitated. Im-
portantly, estimates of Li can be directly used to light the object,
i.e. the background pixels are suitable for techniques akin to image-
based lighting [Debevec 2002; Reinhard et al. 2005b].

Second, we create an alpha matte to separate the object from
the background. Although we have created our mattes by hand,
sophisticated techniques have recently become available to assist
the user in this task [Li et al. 2004; Rother et al. 2004], or go toward
automatic alpha matte extraction [McGuire et al. 2005; Reinhard
and Khan 2005]. The pixels forming the object will be altered to fit
the object with a new material. By aligning our image processing
with the object’s boundaries, the illusion of a different material may
be created.

In the remainder of this paper, we first discuss the approaches
we have found useful for estimating Ω′ and L′

i (Sections 2 and 3),
followed by the various material transforms we have achieved (Sec-
tion 4). Some caveats and limitations are discussed in Section 5,
while general conclusions are drawn in Section 6. Edited images
are shown throughout this paper, using input images depicted in
Figure 2.



2 Object Shape (Ω′)

A hemisphere of directions Ω′ can be estimated from pixels belong-
ing to the object by first estimating the distance between the viewer
and the object, i.e. the depth. Gradients in depth are then used to
compute a surface normal n for each pixel. Each of these steps are
discussed in the following subsections.

2.1 Depth Recovery

Computing a depth map from a single image is the classic shape-
from-shading problem. Unfortunately, as this problem is severely
under-constrained, good solutions for arbitrary images do not ex-
ist [Zhang et al. 1999]. Solutions have been developed for highly
constrained cases [Kang 1998; Igarashi et al. 1999; Oh et al. 2001].
However, to date no general solution has been developed.

Fortunately, by carefully exploiting certain assumptions of hu-
man vision, we can get away with highly approximate depth recon-
structions. A surprisingly effective starting point is to assume that
surface depth is inversely related to image intensity. There is exper-
imental evidence that human observers treat lower luminance val-
ues as more distant surface locations [Langer and Bülthoff 2000],
and indeed, this is loosely what algorithms for shape from shad-
ing under diffuse illumination rely on [Langer and Zucker 1994].
Although the resulting surface reconstructions are far from perfect,
there are two main reasons why the approximations are sufficient
for our application.

First, certain errors in the depth estimates are visually masked
by subsequent processing. For example, highlights in the original
image appear as protrusions in the depth map. However, in the
final output, highlights are generally pasted back onto these surface
locations, effectively masking them. Further, because we do not
dramatically alter the illumination of the object, spurious hills and
valleys do not generate tell-tale shadows, which would undermine
the effect.

Second, visual cues to 3D shape are invariant across a wide class
of geometrical transformations. This means that as long as the dis-
tortions of the reconstructed shape belong to these transformations,
they will be undetectable by the visual system. Probably the most
important in this context is the bas-relief ambiguity, which makes it
difficult or impossible to distinguish surfaces that are related by an
affine transformation along the line of sight [Belhumeur et al. 1999;
Koenderink et al. 2001]. The bas-relief ambiguity allows shearing
in the depth map due to oblique illumination to go unnoticed, pro-
vided the line of sight is not altered, as in our application.

Further, the generic view principle helps the illusion: the visual
system assumes by default that the object is not viewed from spe-
cial viewpoints, and that there is nothing peculiar about the geom-
etry [Koenderink and van Doorn 1979; Freeman 1994; Freeman
1996].

We therefore aim to derive a locally-consistent depth-map from
the object’s luminance distribution, with higher luminance values
specifying the parts of the object closer to the observer (i.e. follow-
ing the dark-is-deep paradigm). Our approach consists of several
steps. First, we compute the luminance of each pixel [ITU 1990]:

L(x, y) = 0.213 R(x, y) + 0.715 G(x, y) + 0.072 B(x, y) (4)

An initial crude depth map d(x, y) may be computed by simply
setting d(x, y) = L(x, y). However, there are several problems
with this approach. First, an object may be textured, leading to
errors in the depth map. Second, the shape implied by the depth
values may bulge in the direction of any light sources, as argued
above. Third, highlights may cause significant distortions in the
depth map — a problem addressed in Section 4.1.

The luminance variation due to shading is useful as an indicator
of shape, whereas treating textured areas as valid depth informa-

Figure 3: The value of σspatial controls the smoothness of the depth-
map. Here, its value is doubled from 0.001 to 0.002, 0.004 and
0.008 times the width of the image.

tion is only useful for special effects (such as making an object ap-
pear embossed). The discontinuities in luminance due to silhouettes
ought to be preserved. We therefore need some means to isolate
shading from other classes of intensity variation.

While disentangling luminance variations due to several differ-
ent processes is once more an under-constrained problem, in prac-
tice shading, textures and patterns tend to occur at different fre-
quencies and/or luminance levels. We therefore require a filter that
is tunable to spatial scales as well as luminances. The bilateral filter
directly fits these requirements [Tomasi and Manduchi 1998]:

d(x, y) =

∑

u

∑

v b(x, y, u, v) Ls(x − u, y − v)
∑

u

∑

v b(x, y, u, v)
(5)

b(x, y, u, v) = Gspatial

(

√

(x − u)2 + (y − v)2, σspatial

)

×

GL (Ls(x − u, y − v) − Ls(x, y), σL) (6)

The bilateral filter kernel b is composed of two Gaussian filter ker-
nels, Gspatial and GL with kernel widths of σspatial and σL, affording
user control over the recovered object shape. For larger values of
this parameter, small details are increasingly suppressed while the
overall round shape is emphasized. Further, control over surface
indentations is afforded by σspatial, as shown in Figure 3. Dependent
on the specific shape of the object different parameter settings may
thus yield satisfactory depth maps.

The bilateral filter is typically used in the logarithmic do-
main [Durand and Dorsey 2002]. While log L is a better behaved
quantity than L, the range of values produced by taking the loga-
rithm is unconstrained. A closer model of early human vision in-
volves employing sigmoidal compression, which produces behav-
ior similar to log luminance in the mid-range of values, but addi-
tionally has a range of output values that is strictly limited between
0 and 1:

Ls(x, y) =
Ln(x, y)

Ln(x, y) + σn (7)



Figure 4: Depth maps for some of the images used in this paper.

Figure 5: Our approximate depth recovery technique is helped by
the bas-relief ambiguity, provided the viewpoint is not altered.

The exponent n is set to 0.73 by default, a value common in model-
ing for instance photoreceptor responses [Naka and Rushton 1966].
The semi-saturation constant σ determines which luminance values
are mapped in near-logarithmic fashion. A common and sensible
value is to choose σ equal to the log average luminance of the ob-
ject’s pixel values:

σ = exp

(

1

N

∑

x,y

log (L(x, y))

)

(8)

Compressing the input L as above helps make the results more ro-
bust, and additionally facilitates the choice of values for σL.

Some depth maps are shown in Figure 4, showing that the depth
is generally a smooth function following the luminance distribution.
As a consequence, for objects lit from the side, the depths are no-
ticeably skewed, as seen in the top left and bottom right images.
These maps deviate substantially from the true object geometry,
and would not be satisfactory for general use. However, subsequent
treatment of the depth maps, combined with the masking effects oc-
curring in the final results mean that for our application, the gross
inaccuracies in shape reconstruction do not interfere with the vi-
sual effect; indeed, they are largely undetectable. Finally, Figure 5
shows that distortions in depth maps thus obtained are not perceived
as long as the viewpoint is not altered, as predicted by the bas-relief
ambiguity.
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Figure 6: A family of gradient reshaping functions.

2.2 Gradients and Surface Normals

Due to the sigmoidal compression applied earlier, the range of val-
ues of d is strictly limited. This means that gradients near silhouette
edges are too small. We therefore invert the sigmoidal compression
function (7) first:

d′(x, y) =

(

−
σn d(x, y)

d(x, y) − 1

)1/n

(9)

The recovered depth d′(x, y) can now be used to estimate local
gradients and surface normals. In two dimensions, the gradient field
∇d′(x, y) is defined in terms of neighboring depth values:

∇d′(x, y) =
(

d′(x + 1, y) − d′(x, y), d′(x, y + 1) − d′(x, y)
)

(10)
As luminance values were used to derive these gradients, we can
not expect that the range of gradient values is directly commensu-
rate with the shape of the object. In addition, there is no reason to
believe that the conversion from luminance values to gradient val-
ues should be linear. We have empirically determined a non-linear
spline function which reshapes the gradient field to boost small and
large gradients, attenuating intermediate gradients, as shown in Fig-
ure 6. In addition the amount of reshaping can be adjusted by recur-
sively applying this function (also shown in this figure). Typically,
we apply this function between one and four times, dependent on
the input data.

The resulting gradient field can thus be used to compute 3D sur-
face normals, or may be applied directly to warp textures, as shown
in Section 4. We compute 3D surface normals using the following
gradient vectors:

gx =
[

1, 0, ∇xd′]T
(11)

gy =
[

0, 1, ∇yd′]T
(12)

The surface normal is given by the cross product n = gx × gy ,
which must be normalized if used in a ray tracing environment.

3 Incident Light (Li)

Given an (approximated) representation of 3D shape, from (3) we
see that a successful manipulation of an object’s material requires
knowledge of the incident lighting Li

1. Given a single photograph,

1In this and subsequent sections, we will retain the notation Li when

discussing incident lighting. However, it should be noted that while this

symbol is commonly used to denote luminance values, we will use the same

symbol to indicate RGB triplets where-ever this does not lead to confusion.



Figure 7: Removing the elephant from the original image (left) is shown in the middle. The masking effect of further processing is demonstrated
with the simulation of transparency (right).

all the background pixels together provide information for a sub-
set of the directions we are interested in. For all other directions,
namely those behind the object, and those outside the image, we
will have to substitute an approximation L′

i.

Our material edits can be grouped into full 3D simulations, as
well as 2D remapping functions. For the 3D simulations, we need
a value L′

i for every possible direction. For the 2D remapping
schemes, we may restrict ourselves to a set of directions that corre-
spond to existing image pixels. However, in both cases an impres-
sion of what lies behind the object is desirable. Solutions for both
problems are outlined in the following subsections.

3.1 Light from Behind the Object

To determine what light may come from behind the object, we may
employ an image inpainting algorithm [Bertalmio et al. 2000; Drori
et al. 2003; Sun et al. 2005]. The input to such algorithms is typ-
ically the image itself as well as an alpha matte which defines the
hole that needs to be replaced with a new background. The result is
an image with the gap filled with plausible background pixels.

While the more advanced algorithms may yield more plausible
results, after applying them to (3) the quality of the inpainting al-
gorithm is largely masked due to further processing, contorting and
warping. In the following, we demonstrate that for this particular
application the inpainted region only needs to capture the correct
image statistics, which is a weaker requirement than those met by
full inpainting algorithms. This affords a much simpler algorithm,
while still yielding satisfactory results.

An important observation is that for the background to be useful
as a complex light source, its precise configuration is unimportant.
However, the statistical properties of the inpainted pixels ought to
be similar to the remainder of the environment2. In particular the
image’s power spectral slope should be preserved [Ruderman 1997;
van der Schaaf 1998; Torralba and Oliva 2003; Reinhard et al.
2004], as well as its color composition.

The most straightforward approach that would achieve these
goals is to copy large blocks of pixels from the background into
the gap formed by removing the object. This approach would min-
imize the introduction of new edges, and thus preserve the afore-
mentioned image statistics. To minimize the introduction of arti-
facts along the gap’s boundary, we copy pixels both from the left
and from the right parts of the image, and blend them according to
how much they have been displaced.

To begin, we find the left-most and right-most extent of the gap’s
boundary, and call the corresponding x-coordinates xmin and xmax.

2This is not generally the case for inpainting algorithms, but merely a

consequence of our specific application.

The value assigned to all pixels inside the gap is then L′
i:

L′
i(x, y) = w1 L(2 xmin − x, y) + w2 L(2 xmax − x, y) (13)

w1 =
x − xmin

xmax − xmin

(14)

w2 =
xmax − x

xmax − xmin

(15)

In case the x-coordinates index outside the image’s boundaries, we
use wrap-around within the regions [0, xmin] and [xmax, Xmax] (with
Xmax being the image’s horizontal resolution). The effect of this
operation is given in Figure 7, showing the original image (left), the
result (middle), and a simulation of transparency to demonstrate the
masking effect of further processing.

3.2 Reconstructing a 3D Environment

The image with the filled-in background can be used directly
in 2D mapping operations as outlined in Section 4. For map-
ping a full BRDF onto an object, it is necessary to reconstruct a
full spherical 3D environment. In traditional image-based light-
ing approaches, photographs of mirrored spheres or the output of
scanning panoramic cameras are mapped to a spherical environ-
ment [Debevec 2002]. In our case, an approximate mapping can
be constructed between the hole-filled photograph and the desired
environment.

The plane of the image in three-dimensional space may be
thought of as partitioning the environment into two half spaces.
Our environment map is created by extruding a circular part of the
background image to form a hemisphere behind the image plane,
and again to form a hemisphere in front of the plane, as illustrated
in Figure 8. This leads to the following computation of direction
vectors for given pixel coordinates.

The center of the circle [xc yc 0]T is given by the middle of the
image, and this circle is made as large as possible, i.e. the radius R
is min(xc, yc). Next, we construct for each pixel within this circle,
a normalized coordinate pair [xn yn]:

[xn, yn]T =
[x − xc

R
,

y − yc

R

]T

(16)

A pixel [xn yn]T can now be mapped to a direction vector d with:

d =

[

xn, yn, 1 −

√

(xn)2 + (yn)2
]T

(17)

These direction vectors are equivalent to the incoming and outgoing
directions Θi and Θo in (3). This means that for every desired
direction, a corresponding index into the hole-filled image can be
computed for the purpose of solving (3).



Figure 8: The background image with the object removed is used
to create an HDR environment map. First, a circle is cut from the
middle of the image. This is then placed in the image plane, and
then extruded to become half the environment. The image is also
pulled out in the opposite direction to form the other half of the
environment.

Figure 9: Plastic torus rendered using techniques described in Sec-
tion 3.2 (left), and standard image-based lighting (right).

While this mapping distorts the environment leading to physi-
cally inaccurate lighting, the distortion is locally consistent, and
therefore largely unobjectionable to the human visual system. This
is demonstrated in Figure 9, where we used this mapping to render
a torus. This figure also shows the same torus rendered with stan-
dard image-based lighting techniques using a light probe. While
the differences are clear, each image on its own looks plausible.

As such, we have recovered both plausible surface normals for
the object itself, as well as plausible lighting to be used to relight the
object. We therefore have all the preliminaries necessary to perform
material transformations.

4 Material Transforms

Editing an object’s material properties can take several different
forms, depending on the desired target material. For instance,
increasing or decreasing the gloss on an object would require
only a straightforward luminance remapping, whereas replacing
the BRDF of an object would mean a full evaluation of (3). Re-
texturing an object as well as creating transparent and translucent
objects require techniques that sit somewhere in-between these ex-
tremes in terms of computational complexity. Hence, we discuss
each of these material transforms separately in the following sec-
tions.

Figure 10: The luminance values of the statue (left) were remapped
to create a more specular (middle) and more diffuse (right) image.

4.1 Glossy Surfaces

For objects that already exhibit some amount of glossiness, an ex-
ponential remapping of luminance values may increase or decrease
the perception of gloss [Fleming and Bülthoff 2005]. To increase
specularity, the following mapping yields acceptable results:

L′ =







Lmin + (Lmax − Lmin)

(

α
L − Lmin

Lmax − Lmin

)β

L > Lmin

L L ≤ Lmin

(18)
where Lmax is the maximum luminance of all object pixels, and
Lmin is the minimum luminance that can still be considered part of
the highlight. This is a user parameter, which may alternatively be
estimated with the highlight detection algorithm presented in Sec-
tion 4.4. To steer the amount of specularity, the user parameters α
and β are available (default values: α = 0.05 and β = 20).

To make an object appear more diffuse, we use the following
remapping:

L′ =







Lhmax + (Lmin − Lhmax)

(

L − Lhmax

Lmax − Lhmax

)β

L > Lhmax

L L ≤ Lhmax

(19)
with β typically set to 0.05. The value of Lhmax is computed by
taking the luminance associated with the peak of the histogram.

Examples of both remappings are shown in Figure 10. For high-
gloss objects, the latter remapping may also be useful as a pre-
processing step before recovering Ω′ (Section 2). This would per-
mit the shape recovery to be less sensitive to highlights.

4.2 BRDF Replacement

With estimates of surface normals n available for each point on the
object, and having constructed a mapping from a rectangular image
to a full 3D environment to provide values for L′

i, we can evalu-
ate (3) directly. While our approach follows common practice in
image-based lighting [Debevec 2002], the remainder of this section
is devoted to detailing our specific implementation.

To sample the environment for each point on the surface of the
object, a fast and efficient sampling scheme is required. One of
the most efficient ways to generate sampling points for our envi-
ronment is afforded by Ostromoukhov’s importance sampling tech-
nique [Ostromoukhov et al. 2004]. Using this algorithm as a pre-
process, we typically find up to 400 sampling coordinates [xn yn]T

in our background image, leading to an equal number of values of
L′

i. Each of these sampling points has an associated 3D direction
vector d, computed with (17). For each point on the object, we
sample only those importance samples for which d · n > 0, i.e.
those samples that lie within the hemisphere Ω′.



Figure 11: Examples of mapping arbitrary BRDFs onto an object.

A common convention is to evaluate BRDFs in a coordinate sys-
tem which is aligned with the surface normal. This is achieved by
rotating the view vector over an angle α = n · v around an axis
a = n × v. For each sample point in the environment we wish to
evaluate, its associated direction vector d is rotated over the same
angle, giving dα. Quaternion rotation should be used to avoid gim-
bal lock [Hart et al. 1994].

Although our application will work with any BRDF model, we
have chosen Matusik et al’s measured BRDFs [Matusik et al. 2003]
since these were captured in high dynamic range, and are therefore
directly compatible with our system. Thus, the equation we evalu-
ate to fit an object with a new material is:

L′(x, y) =
∑

{d|d·n>0}

fMatusik (dα, vα) L′
i (d) d · n (20)

Some results of this approach are shown in Figure 11.

4.3 Re-texturing

The machinery outlined in Section 2 is sufficient to allow objects
to be re-textured. In particular, the gradient field ∇d′ can be used
to estimate a warping of an arbitrary texture T, which can then be
applied to the object. To steer the amount of apparent curvature,
we introduce a linear scale factor s, and compute texture indices
[tx, ty]T as follows:

tx = x + s∇xd′
(21)

ty = y + s∇yd′
(22)

The indices are taken modulo the texture size and are used to
compute the new pixel colors of the object. Assuming a pixel
[x y] belonging to the object has an RGB color triplet denoted
C(x, y), the new color C′(x, y) can be derived from its original
color C(x, y) and the texture look-up value T(tx, ty). For extra
flexibility, we follow Smith and Blinn [1996] and add two user pa-
rameters, namely a scalar f ∈ [0, 1], and a new object color G,
leading to the matting equation:

C
′(x, y) = (1 − f) G T(tx, ty) + f C(x, y) (23)

The parameter f linearly interpolates between the original object
color and the texture mapped color. Results for f = 0 and G =
[1 1 1]T are shown in Figure 12. This result is included to show that
our approach is capable of reproducing Fang and Hart’s [2004]. It
also forms the basis for modeling transparency and translucency.

4.4 Transparency and Translucency

A key factor affecting the appearance of a transparent object, is its
geometric shape. It determines how light incident from the back-

Figure 12: A marble texture is applied to the left image, whereas a
stone texture is applied to the right image.

Figure 13: A texture suitable for simulating transparency (left, see
also middle panel of Figure 1, and translucency (right, as well as
the right panel of Figure 1).

ground is refracted, leading to the characteristic distortions asso-
ciated with transparent objects. With an appropriate estimation of
the object’s shape, such as Ω′ (Section 2), it should therefore be
possible to warp the background image L′

i such that it gives the
appearance of a transparent object.

Thus, rather than apply an arbitrary texture to an object, we
may use the approach of Section 4.3 to create the illusion of trans-
parency. We have found that as long as several conditions are met,
convincing results may be obtained. First, the warp needs to be con-
sistent with Ω′, which in turn needs to be at least locally consistent
with the actual geometry Ω. Note that this is a weaker requirement
than having access to the full volumetric geometry, which would
have made the problem intractable. Second, the color composition
and natural image statistics of the background image should be as
outlined in Section 3.1. Our basic approach to create transparent
and translucent objects is then given by (23), whereby T = L′

i is
called the background map (see footnote 1 on page 4).

There are various extensions to this basic solution, leading to
different types of transparent materials, from clear glass to frosted
glass, to translucency. Each of these involve pre-processing of T.
In addition, we have found value in detecting the highlights in the
original object, and preserving them. Both topics are discussed in
the remainder of this section.

To simulate objects that are not perfectly clear, we convolve the
background map T(tx, ty) with a Gaussian filter, as for example
shown in Figure 13 (left). A much larger filter kernel is used to
simulate sub-surface scattering in translucent objects.

The latter type of object additionally receives a color adjustment
to simulate wavelength-dependent absorption of light by the mate-
rial. This adjustment may be achieved by employing a color trans-
fer algorithm [Reinhard et al. 2001] whereby the background map
is given the same color statistical properties as the object’s pixels.
A typical treatment to simulate translucent materials is shown in
Figure 13 (right).

In addition to manipulating T(tx, ty), dark glass may be sim-
ulated using an exponential a after normalizing the matting func-
tion (23):

C′
dark =

(

C
′(x, y)/Cmax

)a
(24)

An exponent a of around 1.2 − 1.4 produces realistic attenuation.
The user parameter f in (23) controls the degree to which the object
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Figure 14: Histogram of an HDR image and its derivative.

Figure 15: Using the minimum in the derivative of the histogram,
highlight pixels of the left image are detected, and for demonstra-
tion purposes painted red in the right image.

is transformed — f = 0 produces a completely transparent object,
whereas f = 1 yields the original object. Inbetween values model
semi-transparent objects.

A final refinement of our transparency/translucency algorithm
involves detection and placement of highlights. For objects with
relatively sharp highlights, it may be beneficial to retain these in
the transparent and translucent versions of the same object, since
highlights generally enhance realism [Fleming and Bülthoff 2005]
and aid the perception of 3D shape [Todd and Mingolla 1983; Blake
and Bülthoff 1990; Blake and Bülthoff 1991].

As we only require detection of highlights on pixels belonging
to the object, our highlight detection task is relatively simple. In
particular, while highlights are not necessarily the brightest part of
a scene, they do tend to be the brightest part of a single object. Fur-
thermore, in conventional imaging, highlights are frequently burned
out (“clipped”) due to limitations of the capturing device. By using
HDR imaging, highlights may be captured accurately, which also
simplifies their detection. Rather than resort to one of several so-
phisticated schemes [Klinker et al. 1988; Drew 1994], we therefore
propose a simple algorithm.

We will assume that the brightest pixels of the object form the
highlights. The histogram of object pixels is analyzed to determine
the intensity of the darkest pixel that may still be considered part of
the highlight. Intensity histograms of real objects typically show a
large peak for the darker pixels, and a long tail forming the highlight
pixels (Figure 14). We have found that for many objects, the min-
imum of the histogram’s derivative is a reasonable approximation
of the start of the highlight, also shown in Figures 14 and 15. This
method is useful as a starting point, although on occasion the user
may wish to manually reduce the size of the highlight somewhat.

Figure 16: Transparency results demonstrated on different objects.

Figure 17: Colored glass (left) and darkened glass (right) simulated
with a linear attenuation to achieve color (G in 23), and non-linear
scaling to simulate dark glass (24). The refractions in these images
are different from the ones shown in Figure 16 due to a different
choice of filter kernel sizes of the bilateral filter, as well as a differ-
ent choice of scale factor s.

Once we have detected highlights in the original object, we re-
place the corresponding pixels in the new image by the pixel values
in the original image.

The results of these manipulations are shown in Figure 16. Var-
ious types of glass may be simulated, including colored and dark
glass, as demonstrated in Figure 17. Translucency is demonstrated
in Figure 18.

5 Limitations

As our techniques necessarily employ approximations, and rely on
the human visual system filling in missing pieces of information,
there are some limitations. Each of these limitations afford inter-
esting further research.

First, we assume that the input image is given as a high dynamic
range image. As the method involves the computation of gradi-
ents, it is assumed that quantized low dynamic range data will not
be amenable to the recovery of suitable gradients for further pro-
cessing. Figure 19 shows a comparison, where the middle expo-
sure of a sequence of nine images was processed separately. The
high dynamic range result shows appropriate curvature in the ob-
ject, whereas the shape has become flat in the low dynamic range
image, and loses the appearance of transparency. Skilled photogra-
phy, in combination with more forgiving scenes, may yield better
results with LDR input.

The input is further limited to objects with clearly defined bound-
aries, with a limited amount of texture. It is currently not possible
to transform transparent objects to non-transparent ones.

The parameters for the bilateral filter typically need to be chosen
such that the smoothness of the depth map, and subsequent gradi-
ent field, is matched to the type of material that is applied. Metallic
BRDFs, for instance, suggest that at the microscopic level the sur-
face is relatively smooth. Usually, this means that at the level of
geometry, the surface also needs to be relatively smooth. A similar
effect can be observed for transparency in Figure 3, where some
depth maps are more appropriate for the simulation of glass than
others.

We consider our reshaping functions of both the depth map and



Figure 18: Translucency applied to various different objects.

Figure 19: Comparison between HDR and LDR input for a trans-
formation to a glassy material. The top row shows input and output
in HDR (tonemapped for display), and the bottom row shows the
low dynamic range equivalent. The HDR images were tonemapped
with the photographic operator [Reinhard et al. 2002], whereas the
LDR images were linearly scaled to fit the display range.

the gradient fields to be temporary solutions. While in general,
plausible results can be obtained, further improvements are pos-
sible. In particular, near the silhouettes the current reshaping func-
tions allow the gradients to become too large, leading to unnatural
compression, as for instance seen in the stone texture applied to the
deer in Figure 12.

Finally, changing the material of an object will also alter its inter-
action with the environment. For instance, making an object trans-
parent will likely introduce caustics elsewhere in the environment.
An interesting avenue of further research would be to model these
interactions with the environment.

6 Conclusions

Given a single high dynamic range photograph, we have presented
tools and techniques to change the material properties of objects
found in such an image. A key observation enabling dramatic trans-
formations of object appearance is that certain aspects of the inter-
action between light and matter need to be accurately reproduced,
whereas other aspects can be approximated without harm. For in-

stance, we have found that accurate retrieval of the object’s surface
normals is much more important than the precise refraction of a
background through an object. The environment used to light the
object needs to have the correct range of colors and intensity, but the
reflections and refractions of an object do not have to be positioned
with high accuracy.

These observations allow us to produce compelling imagery use-
ful for special effects and digital content creation. We achieve this
by carefully reconstructing surface normals based on the luminance
distribution of the object. Since this aspect of image-based mate-
rial editing requires high accuracy, the use of high dynamic range
imagery is recommended as this reduces quantization errors.

Our approach thus enables extensive material manipulations us-
ing images alone, and does so without the need for expensive equip-
ment, light probes or 3D modeling. This approach does not intro-
duce significant temporal artifacts if applied to individual frames in
a sequence [Reinhard et al. 2005a]. In addition to being useful in
the special effects community, this work affords exciting opportu-
nities in the study of the human visual system and its perception of
materials.
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