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METHODOLOGY

Image-based methods for phenotyping 
growth dynamics and �tness components 
in Arabidopsis thaliana
François Vasseur1*, Justine Bresson2, George Wang1, Rebecca Schwab1 and Detlef Weigel1*

Abstract 

Background: The model species Arabidopsis thaliana has extensive resources to investigate intraspecific trait vari-

ability and the genetic bases of ecologically relevant traits. However, the cost of equipment and software required for 

high-throughput phenotyping is often a bottleneck for large-scale studies, such as mutant screening or quantitative 

genetics analyses. Simple tools are needed for the measurement of fitness-related traits, like relative growth rate and 

fruit production, without investment in expensive infrastructures. Here, we describe methods that enable the estima-

tion of biomass accumulation and fruit number from the analysis of rosette and inflorescence images taken with a 

regular camera.

Results: We developed two models to predict plant dry mass and fruit number from the parameters extracted with 

the analysis of rosette and inflorescence images. Predictive models were trained by sacrificing growing individuals for 

dry mass estimation, and manually measuring a fraction of individuals for fruit number at maturity. Using a cross-

validation approach, we showed that quantitative parameters extracted from image analysis predicts more 90% of 

both plant dry mass and fruit number. When used on 451 natural accessions, the method allowed modeling growth 

dynamics, including relative growth rate, throughout the life cycle of various ecotypes. Estimated growth-related 

traits had high heritability (0.65 < H2 < 0.93), as well as estimated fruit number (H2 = 0.68). In addition, we validated the 

method for estimating fruit number with rev5, a mutant with increased flower abortion.

Conclusions: The method we propose here is an application of automated computerization of plant images with 

ImageJ, and subsequent statistical modeling in R. It allows plant biologists to measure growth dynamics and fruit 

number in hundreds of individuals with simple computing steps that can be repeated and adjusted to a wide range 

of laboratory conditions. It is thus a flexible toolkit for the measurement of fitness-related traits in large populations of 

a model species.
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Background

Relative growth rate (RGR) and fruit number are two 

essential parameters of plant performance and fitness 

[1–3]. Proper estimation of RGR is achieved with the 

destructive measurement of plant biomass across sev-

eral individuals sequentially harvested [4, 5]. However, 

sequential harvesting is space and time consuming, 

which makes this approach inappropriate for large-scale 

studies. Furthermore, it is problematic for evaluating 

measurement error, as well as to compare growth dynam-

ics and fitness-related traits, like fruit production, on the 

same individuals. �us, a variety of platforms and equip-

ment have been developed in the last decade for high-

throughput phenotyping of plant growth from image 

analysis, specifically in crops [6–10] and in the model 

species A. thaliana [11–14]. Because commercial tech-

nologies are powerful but generally expensive [6, 8, 11, 

13], low-cost methods have been proposed, for instance 
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to estimate rosette expansion rate from sequential imag-

ing of A. thaliana individuals [14–16]. �ese methods 

can be adapted to a variety of lab conditions, but they do 

not allow the quantification of complex traits like bio-

mass accumulation, RGR and fruit production.

Strong variation in RGR has been reported across and 

within plant species [17–22], which has been assumed 

to reflect the inherent diversity of strategies to cope with 

contrasting levels of resource availability [3, 23, 24]. For 

instance, species from resource-scarce environments 

generally show a lower RGR than species from resource-

rich environments, even when they are grown in non-

limiting resource conditions [25, 26]. Ecophysiological 

studies [18, 26] have shown that plant RGR depends on 

morphological traits (e.g. leaf mass fraction, leaf dry mass 

per area) and physiological rates (e.g. net assimilation 

rate) that differ between species, genotypes, or ontoge-

netic stages. For instance, plants become less efficient to 

accumulate biomass as they get larger and older, result-

ing in a decline of RGR during ontogeny [4]. �is is due 

to developmental and allometric constraints such as self-

shading and increasing allocation of biomass to support-

ing structures, like stems, in growing individuals.

To assess plant performance, response to environment, 

or genetic effects, it is important to link individual’s 

growth trajectory to productivity, yield or reproductive 

success. However, while several methods have been pro-

posed to estimate growth dynamics from image analysis 

[8, 11–16], methodologies for automated, high-through-

put phenotyping of fruit number per plant remain sur-

prisingly scarce [27, 28]. Yet, the analysis of inflorescence 

images in A. thaliana could offer a valuable tool to con-

nect growth dynamics and plant fitness. Because of its 

small size, inflorescences can easily be collected, imaged 

and analyzed with simple equipment. Furthermore, the 

genetic resources available in this species enable large-

scale analyses (mutants screening, quantitative trait loci 

mapping and genome-wide association studies). For 

instance, the recent analysis of 1135 natural accessions 

with complete genomic sequences [29] allows conducting 

large comparative analysis of phenotypic variation within 

the species [30, 31].

With the methods proposed here, we aimed at devel-

oping flexible and customizable tools based on the auto-

mated computerization and analysis of plant images to 

estimate fruit number and growth dynamics, including 

RGR throughout the life cycle. We focused on A. thali-

ana because it is a widely used model in plant science 

and also increasingly being used in ecology, although 

the same approach could be performed on other rosette-

shaped species. �e estimation of biomass accumula-

tion was semi-invasive, as it requires sacrificing some 

individuals to train a predictive model. �is approach 

considerably reduced the number of plants needed to 

estimate RGR during ontogeny, from seedling establish-

ment to fruiting. Furthermore, the estimation of fruit 

number from automated image analysis of A. thaliana 

inflorescences could greatly help link growth variation to 

plant performance and fitness, in various genotypes and 

environmental conditions.

Results

Estimation of biomass accumulation, RGR and growth 

dynamics

Description

�e method for growth analysis requires a set of plants on 

which we want to non-destructively measure dry mass, 

and a set of individuals harvested to train a predictive 

model (Fig. 1). In the case study presented here, we eval-

uated the method on 472 genotypes of A. thaliana grown 

in trays using a growth chamber equipped with Rasp-

berry Pi Automated Phenotyping Array (hereafter RAPA) 

built at the Max Planck Institute (MPI) of Tübingen. We 

partitioned the whole population (n = 1920) in two sub-

populations: the focal population (n = 960) on which 

growth dynamics (and fruit production) were measured, 

and the training population (n = 960) on which a predic-

tive model of plant dry mass was developed.

Individuals of the focal population were daily photo-

graphed during ontogeny (Fig. 1a), and harvested at the 

end of reproduction when the first fruits (siliques) were 

yellowing (stage 8.00 according to Boyes et al. [32]). Top-

view images were manually taken during the first 25 days 

of plant growth (Additional file 6: Fig. S1). Plants of the 

training population were harvested at 16 days after ger-

mination (DAG), dried and weighed for building a pre-

dictive model of rosette biomass with top-view images 

(Fig.  1b). Predictive models were trained and evaluated 

with a cross-validation approach (Fig.  1c). Once a pre-

dictive model has been chosen and validated, rosette dry 

mass can be non-destructively estimated on all individu-

als of the focal population, which allows modeling growth 

trajectory, biomass accumulation and RGR throughout 

the plant life cycle.

Implementation

We developed an ImageJ [33] macro (Additional file 1) to 

extract shape descriptors of the rosette from tray or indi-

vidual pot images (Fig. 1a). �e macro guides users in the 

different steps of image analysis to label plant individuals, 

perform segmentation and measure rosette shape descrip-

tors. It processes all images (trays or individual pots) pre-

sent in an input folder, and returns shape descriptors of 

individual rosettes in an output folder defined by users. 

Shape descriptors include individual rosette area (RA) and 
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Fig. 1 Estimation of plant dry mass from image analysis and statistical modeling. a Example of sequential tray images, analyzed with ImageJ 

to extract individual rosette shape descriptors during ontogeny. b Dry rosettes weighed at 16 DAG in the training population. c Series of 

cross-validation performed for different predictive models with different training population size (x axis). Dots represent mean prediction accuracy, 

measured as Pearson’s coefficient of correlation (r2) between observed and predicted values. Error bars represent 95% confidence interval (CI) 

across 100 random permutations of the training dataset. d Correlation between observed and predicted values from the best model obtained after 

stepwise regression, performed 60 individuals to train the model, and tested on 300 individuals not used to train the model
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perimeter (Perim) in pixels, rosette circularity 
(

Circ = 4π ×

(

RA

Perim2

))

 , aspect ratio 
(

AR =

Major axis length
Minor axis length

)

 , 

and roundness 
(

Round =
4×RA

π×Major axis length2

)

 . Rosette area 

and perimeter can be converted into  cm2 and cm, respec-

tively, by measuring the area and perimeter of a surface 

calibrator defined by users.

Predictive models of plant dry mass from shape descrip-

tors were tested against measurements in the training 

population (R code in Additional file  2). Depending on 

the training population size, we observed variable predic-

tion accuracy for different models, as measured by the 

coefficient of correlation (r2) between measured and pre-

dicted rosette dry mass in individuals not used to train 

the model (Fig.  1c). LASSO and RIDGE models reached 

high prediction accuracy even with very small training 

population size (< 20 individuals). However, with a mini-

mum of 50 training individuals, lm and RIDGE/LASSO 

performed equally, with a prediction accuracy > 90%. 

Using stepwise regression, we showed that using only 

rosette area and circularity as predictors in a simple lin-

ear model framework can reach high prediction accu-

racy (r2 = 0.91, Fig.  1d). �us, the final equation we used 

to estimate rosette dry mass from rosette pictures was 

Rosette DM = −0.00133 + 0.00134 × RA + 0.00274 × Circ 

(cross-validation r2 = 0.91, Fig. 1d).

Application

From estimated rosette dry mass during the ontogeny and 

final rosette dry mass measured at the end of the life cycle 

(maturity), we modeled sigmoid growth curves of biomass 

accumulation (mg), M(t), for all individuals in the focal 

population with a three-parameter logistic function [4, 34] 

(Fig. 2a, b), as in Eq. 1:

where A, B and tinf are the parameters characterizing 

the shape of the curve, which differ between individuals 

depending on the genotypes and/or environmental con-

ditions. A is the upper asymptote of the sigmoid curve, 

which was measured as rosette dry mass (mg) at matu-

rity. �e duration of growth was estimated as the time 

in days between the beginning of growth after vernali-

zation (t0) and maturity. B controls the steepness of the 

curve, as the inverse of the exponential growth coefficient 

r (r = 1/B). tinf is the inflection point that, by definition, 

corresponds to the point where the rosette is half the 

final dry mass. Both B and tinf were estimated for every 

(1)M(t) =
A

1 + e
tinf −t

B

individual by fitting a logistic growth function to the data 

in R (Additional file 3).

Growth dynamics variables were computed from the 

fitted parameters, such as GR(t), the derivative of the 

logistic growth function (Fig. 2c, d), as in Eq. 2:

and the relative growth rate (mg d−1 g−1), RGR (t), meas-

ured as the ratio GR(t)/M (t) (Fig. 2e, f ), as in Eq. 3:

Comparing growth traits measured at tinf, i.e. when GR 

is maximal for all individuals [4], revealed important vari-

ations between accessions (Fig.  2g–i), with an important 

part of phenotypic variance accounted by genetic variabil-

ity, as measured by broad-sense heritability (H2 = 0.93, 0.90 

and 0.65 for M(tinf), GR(tinf) and RGR (tinf), respectively). 

To evaluate the robustness of the method, we repeated 

an experiment on 18 accessions selected for their highly 

contrasted phenotypes (Additional file 6: Fig. S2). Results 

showed a good correlation between the rosette dry mass at 

the inflection point estimated in the first experiment and 

the dry mass destructively measured in the second experi-

ment (r2 = 0.67; Additional file 6: Fig. S3a).

Estimation of fruit number from in�orescence images

Description

�e method to estimate fruit number from inflores-

cence images requires to manually counting fruits on a 

fraction of individuals in order to train predictive mod-

els (Fig.  3). All individuals were harvested at the same 

stage, when the first fruits started to dry. Inflorescence 

and rosette of individuals of the focal population were 

separated and both photographed (Fig.  3a). Fruits were 

manually counted on the inflorescence images of 352 

out of 856 plants harvested (Fig. 3b). In parallel, we ana-

lyzed the inflorescence skeletons of all the 856 harvested 

plants with a dedicated ImageJ macro (Additional file 4). 

Using the skeleton descriptors computed with the macro 

and manual measurements in the population subset, we 

evaluated the accuracy of different models to predict the 

number of fruit per individual (Fig. 3c), and applied the 

best model to the whole focal population.

Implementation

For all images present in the input folder, the “RAPA-

macro_InflorescenceSkeleton.txt” macro (Additional 

file  4) automatically performs image segmentation, 

(2)GR(t) = rM(t) ×

(

1 −

M(t)

A

)

(3)RGR(t) = r ×

(

1 −

M(t)

A

)
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skeletonization, and computation of 2D skeleton param-

eters of inflorescence (Fig. 3a). 2D skeletons analysis with 

ImageJ returns nine vectors of variables for each plant 

(described in Fig.  3), which were automatically saved 

as.xls files by the macro (in an output folder defined by 

user). �e sums of these nine vectors per individual were 

used as nine predictors of fruit number.

Using the same approach as for estimating rosette dry 

mass, we tested different models and different training 

population size with cross-validation (R code in Addi-

tional file  5). As for rosette dry mass, results showed 

that the nine skeletons descriptors predict > 90% of fruit 

number in 100 individuals not used to train the model 

(Fig.  3c). With a training population size > 30 individu-

als, lm performed equally than LASSO and RIDGE 

regressions. As for dry mass estimation, quadratic mod-

els performed poorly. For small training population size, 

LASSO and RIDGE regressions reached higher predic-

tion accuracy than linear or quadratic models. Using 

stepwise regression, we showed that the best model 

to estimate fruit number in a linear model framework 

is: Fruit Nb = 0.181 × Nb actual junctions + 0.003

×Nb slab pixels + 0.226 × Nb triple points (cross-valida-

tion r2 = 0.91, Fig. 3d).

Application

�e model to estimate fruit number from inflorescence 

images was applied on all individuals of the focal popu-

lation (Fig.  4a). We measured a relatively high broad-

sense heritability for fruit production across accessions 

(H2 = 0.68), compared to H2 estimates of morphologi-

cal and physiological traits measured in previous stud-

ies [35]. In addition, fruit number estimated from image 

analysis was well correlated with fruit number manually 

counted on 18 genotypes phenotyped in a second experi-

ment (r2 = 0.70; Additional file  6: Fig. S3b). To further 

validate the method, we applied the predictive model on 

an independent set of inflorescence images taken at the 

Fig. 2 Application of the dry mass estimation method to model growth dynamics in A. thaliana. Statistical modeling of rosette dry mass during 

ontogeny, M(t), with three-parameter logistic growth curve, on one individual (a) and 451 natural accession accessions (b); absolute growth rate 

during ontogeny, GR(t), on one individuals (c) and the 451 accessions (d); relative growth rate during ontogeny, RGR (t), on one individuals (e) and 

the 451 accessions (f). tinf (red dashed line) represents point of growth curve inflection. Individuals on the right panels are colored by duration 

(days) of plant life cycle. (g–i) Variation of M(tinf), GR(tinf) and RGR (tinf) across the 451 accessions phenotyped, with broad-sense heritability (H2) on the 

top-left corner of each panel. Dots represent genotypic mean ± standard error (n = 2)
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Fig. 3 Estimation of fruit number from image analysis and statistical modeling. a Example of inflorescence images, analyzed with ImageJ 

to extract individual skeleton descriptors after segmentation and 2D skeletonization. b Manual counting (purple dots) of fruit number on a 

subset of inflorescence images. c Series of cross-validation performed for different predictive models with different training population size (x 

axis). Dots represent mean prediction accuracy, measured as Pearson’s coefficient of correlation (r2) between observed and predicted values. 

Error bars represent 95% CI across 100 random permutations of the training dataset. d Correlation between observed and predicted values for 

cross-validation of the best model obtained with stepwise regression, performed 60 individuals to train the model, and tested on 100 individuals 

not used to train the model
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Center for Plant Molecular Biology (ZMBP, University 

of Tübingen) on the rev5 knock-out mutant. Compared 

to wild-type Col-0, rev5 produced less fruits due to the 

effect of the mutation on branching pattern and flower 

development [36]. �is was well captured by the predic-

tive model (Fig. 4b), yet trained on the natural accessions.

Discussion

Arabidopsis thaliana is the most widely used plant spe-

cies in molecular biology, ecology and evolution, but we 

still largely ignore how growth dynamics is related to 

individual performance and fitness [37]. �is is mainly 

because traits like RGR and fruit number remain difficult 

to measure in large scale experiments. �us, our goal was 

to develop a set of tools for biologists to analyze these 

traits with low-cost equipment. Rather than the devel-

opment of a new methodology or algorithm, we propose 

an application guide for the implementation of image 

computerization with free software (R, ImageJ). From 

simple top-view imaging of rosette and inflorescence, 

we built robust predictive models of plant dry mass and 

fruit number. Based on a semi-invasive approach and two 

computing steps—one to analyze images with ImageJ and 

one to model data with R –, the method allows a single 

experimenter to simultaneously measure biomass accu-

mulation, RGR and fruit production over thousands of 

plants.

For rosette-shaped species like A. thaliana, top view 

pot or tray imaging can easily be done in any labora-

tory or facilities. In this study, we used pictures of trays 

manually taken during ontogeny with a regular camera. 

�e same approach has been proposed in low-cost sys-

tems for high-throughput phenotyping in A. thaliana, 

using projected rosette area to measure growth dur-

ing several hours or days [14–16]. Comparatively, our 

method allows measuring the absolute and relative rate 

of biomass accumulation during the whole life cycle of 

a plant. �e time lapse and frequency of tray imaging is 

important for proper fitting of the growth curve. We used 

daily imaging during the 25 first days of growth after 

vernalization, although growth curves can be fitted with 

only one picture every 2–3  days. �e ImageJ macro we 

developed here automatically processes tray images when 

plants are young and do not overlap. When they become 

too large (20–25 DAG in our study), the macro offers the 

possibility to spatially separate plants (manual mode). We 

estimated that, on a desktop computer, the macro takes 

approximately 20–25  s per tray (30 individuals) when 

running on automatic mode, and between 1 and 2 min in 

manual mode (depending on the number and amplitude 

of corrections to make).

�e semi-invasive approach drastically reduces the 

number of replicates necessary to measure the growth 

dynamics, or the time needed for manual measurement 

of fruit number. Furthermore, it allows experimenter to 

compute biomass accumulation non-destructively until 

the end of the life cycle, and thus, to compare growth and 

reproductive success on the same individuals. We showed 

that the method is robust and reproducible across experi-

ments. Moreover, the model for fruit prediction correctly 

predicted the decrease in rev5 due to flower abortion in 

a complete independent experiment. However, we rec-

ommend making a new predictive model of plant bio-

mass with cross-validation for each experiment (code 

example available in Supplementary File 2), specifically 

if growth conditions change, as the relationship between 

Fig. 4 Application of the method to estimate fruit number in natural accessions and rev5 mutant of A. thaliana. a Variability in fruit number 

across 441 natural accessions, with broad-sense heritability (H2) on the top-left corner. Dots represent genotypic mean ± standard error (n = 2). b 

Prediction of fruit number (mean ± 95% CI) from model trained on accessions and applied to rev5 mutant and Col-0 wild-type (n = 5). Results are 

compared to observed fruit number manually counted at harvesting
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rosette morphology and rosette biomass is expected to 

differ depending on genotypes and environments. Fur-

thermore, our approach for estimating growth dynam-

ics was powerful in A. thaliana, a rosette-shaped species 

for which size can be estimated from on 2D images. 

Although our method must be efficient in other rosette-

shaped species, biomass estimation in plants with com-

plex 3D architecture requires more sophisticated image 

analysis. A recent study in maize offers a nice example of 

3D reconstruction and biomass prediction with a dedi-

cated phenotyping platform [8]. �e same limitations 

hold true for the estimation of fruit number: our image-

based method can only be performed on species with 

inflorescences that can be imaged on a 2D plan.

In this study, we propose flexible methods and custom-

izable tools for researchers to characterize plant pheno-

type in their own facilities. �is should lower the barriers 

of high-throughput phenotyping, and help dissect the 

relationships between growth dynamics and reproductive 

success in various laboratory conditions. Methods were 

developed for A. thaliana, which is the favorite model 

in plant genetics and molecular biology, and it is also 

becoming a model in evolutionary biology and ecology 

[30, 31, 37–39]. We hope that these tools will encourage 

researchers to analyze complex traits and fitness compo-

nents in various conditions and genotypes, thus partici-

pating to the effort to better understand the physiological 

bases of plant adaptation.

Methods

Plant material

472 natural accessions of A. thaliana were selected 

from the initial germplasm of the 1001 Genomes pro-

ject [29] (http://1001g enome s.org/; Additional file  7: 

Table  S1). Seeds used in this study were obtained from 

parental plants propagated under similar conditions in 

greenhouse. All seeds were stored overnight at − 80  °C 

and surface-sterilized with 100% ethanol before sowing. 

A transgenic line of A. thaliana affecting in branching 

pattern and fruit production was used: rev5, which is a 

strong ethyl-methylsulfonate (A260 V) knock-out muta-

tion of REVOLUTA  in the Col-0 background [36].

Growth conditions

Plants were cultivated in hydroponics, on inorganic solid 

media (rockwool cubes) watered with nutrient solution 

[40]. Four replicates of 472 accessions were grown, with 

pots randomly distributed in 64 trays of 30 pots each. 

Seeds were sowed on 3.6 cm × 3.6 cm  × 3 cm depth rock-

wool cubes (Grodan cubes, Rockwool International A/S, 

Denmark) fitted in 4.6 cm (diameter) × 5 cm (depth) cir-

cular pots (Pöppelmann GmbH and Co., Germany). �e 

pots were covered with a black foam disk pierced in the 

center (5–10  mm hole manually made with a puncher). 

Before sowing, the dry rockwool cubes were watered 

with 75% strength nutrient solution. �e chemical com-

position of the nutrient solution was obtained from Conn 

et al. [40].

After sowing, trays were incubated for 2  days in the 

dark at 4  °C for seed stratification, and then transferred 

for 6  days to 23  °C for germination. After germination, 

all plants, having two cotyledons, were vernalized at 4 °C 

during 41 days to maximize the flowering of all the dif-

ferent accessions. Plants were thinned to one plant per 

pot, and trays were moved to the RAPA room, set to 

16  °C with a temperature variability of close to ± 0.1  °C, 

air humidity at 65%, and 12  h  day length, with a PPFD 

of 125–175  µmol  m−2  s−1 provided by a 1:1 mixture of 

Cool White and Gro-Lux Wide Spectrum fluorescent 

lights (Luxline plus F36 W/840, Sylvania, Germany). All 

trays were randomly positioned in the room, and watered 

every day with 100% strength nutrient solution.

Replicates 1 and 2 (the focal population, n = 960) 

were harvested when the first fruits started to dry. Due 

to germination failure, mortality or missing data, only 

451 accessions were phenotyped for growth, and 441 

for fruit number. Replicates 3 and 4 (the training popu-

lation, n = 960) were harvested at 16 DAG for dry mass 

measurement.

A second experiment was performed on a set of 18 

contrasted accessions (Additional file 6: Fig. S2), grown in 

the same conditions. �ree replicates per genotype were 

harvested at the estimated inflection point for rosette dry 

mass measurement (inflection point estimated from the 

first experiment), and five replicates were harvested at 

the end of the life cycle for manual fruit counting.

rev5 and Col-0 were cultivated in the Center for Plant 

Molecular Biology (ZMBP, University of Tübingen, Ger-

many). Plants were grown on standard soil (9:1 soil and 

sand) under controlled conditions: in long days (16 h day; 

8 h night), low light (70–80 µE m−2 s−1) and an ambient 

temperature of 21 °C (see [41] for details).

Plant imaging and harvesting

All trays were manually imaged every day during the first 

25 days after vernalization with a high-resolution camera 

(Canon EOS-1, Canon Inc., Japan). Individual labeling 

(i.e. genotype, replicate and date of measurement) was 

performed with ImageJ [33] during the image analysis 

process with the “RAPAmacro_RosetteShape.txt” macro. 

Image segmentation was performed on rosette and inflo-

rescence, after inverting images and adjusting color satu-

ration between 35 and 255. However, it is important to 

note that color threshold for segmentation depends on 

light conditions during imaging, and thus, needs to be 

http://1001genomes.org/
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adjusted by users on a set of template images. To clean 

segmented images, undesirable dots that remained after 

segmentation were removed with the ‘Remove outliers’ 

function in ImageJ. After segmentation, inflorescence 

skeletonization and 2D skeleton analysis were automati-

cally performed with the corresponding functions in 

ImageJ (see code in Additional file  4). Skeletons were 

not pruned for loops. Extracted rosette shape and inflo-

rescence skeleton parameters were automatically saved 

as.xls files.

Plants in the training population were harvested at 

16 days after vernalization, rosette were dried at 65 °C for 

three days, and separately weighed with a microbalance 

(XA52/2X, A. Rauch GmbH, Graz, Austria). All individ-

ual rosette parameters extracted after segmentation were 

saved as.xls files, each row corresponding to a specific 

date, tray label and pot coordinates.

At the end of the life cycle, inflorescence and rosette 

of the focal population were harvested and separately 

photographed. �ey were dried at 65 °C for at least three 

days, and weighed with a microbalance (XA52/2X). In 

the experiment at ZMBP, whole plants of rev5 and Col-0 

were photographed at the end of the life cycle (first yel-

lowish fruits) by taking side pictures of each pot sepa-

rately (n = 5).

Statistical analyses

Different predictive models were evaluated for both 

the estimation of rosette dry mass and fruit number. 

We notably compared linear models, quadratic mod-

els—where each predictor was fitted as a two-order 

polynomial function, RIDGE and LASSO regressions 

(Additional files 2 and 5). Prediction accuracy was 

tested by cross-validation on 100 individuals not used 

to train the model, using the Pearson’s coefficient of 

correlation (r2) between observed and predicted trait 

values. For each model, we tested prediction accuracy 

according to training population size across 100 ran-

dom permutations of the training dataset (R code in 

Additional files 2 and 5). Training population size var-

ied between 10 and 250 for dry mass estimation, and 

between 10 and 120 for fruit number estimation. Step-

wise regression, using step function in R, was used to 

identify the best model, with minimum predictors, of 

rosette dry mass and fruit number.

Non-linear fitting of individual growth curves (Eq. 1) 

were performed with the nls function in R (Additional 

file  3). Since some plants germinated during or, for a 

few, after vernalization, we considered the first day of 

growth (t0) for each individual of the focal population 

as the day at which it had a minimum size. For conveni-

ence, we used the size of the biggest measured plant 

across all individuals at the first day of growth follow-

ing vernalization, which corresponded to a plant with 

first true leaves just emerged. Growth was expressed as 

a function of days after germination (DAG, starting at 

t0). �is procedure allowed for normalization of growth 

trajectories from the same starting point between indi-

viduals that differ in germination speed [42]. Growth 

dynamics variables were computed from the fitted 

parameters, such as absolute growth rate, GR(t), the 

derivative of the logistic growth function (Eq.  2), and 

RGR (t) (Eq. 3).

Broad-sense heritability (H2) was calculated with 

a Bayesian approach implemented in a MCMCglmm 

model performed in R, considering the accession as a 

random factor, as:

where y is trait of interest in individual k of genotype i, 

 Gi is accession i, and  eik is the residual error. H2 was cal-

culated at the proportion of genotypic variance ( σ 2

G
 ) over 

total variance ( σ 2

G
+ σ

2

E
):

y
ik

= Gi + eik

H
2

=
σ
2
G

σ
2

G
+ σ

2

E

.

Additional �les

Additional �le 1. ImageJ macro used to extract rosette shape descriptors 

from top-view tray or pot images.

Additional �le 2. R code used to predict rosette dry mass from rosette 

shape descriptors, with cross-validation approach to train and test differ-

ent models and training population size.

Additional �le 3. R code used to model sigmoid growth curves and 

growth dynamics (M(t), GR(t), and RGR (t)) from predicted rosette dry mass 

during ontogeny and measured rosette dry mass at maturity.

Additional �le 4. ImageJ macro used to extract inflorescence skeleton 

descriptors from top-view images of plant inflorescence.

Additional �le 5. R code used to predict fruit number from inflorescence 

skeleton descriptors, with cross-validation approach to train and test dif-

ferent models and training population size.

Additional �le 6: Figure S1. The RAPA facility. Entrance view of the 

growth chamber with a zoom on the camera installed between light 

tubes (top-left panel). On the right is the setup to water the plants and 

take manual tray picture. Figure S2. Representation of the 18 accessions 

phenotyped in the second experiment. Nine phenotypic groups repre-

sented by the purple circles (three groups of RGR and three groups of 

growth duration) were selected, each containing two accessions. Figure 

S3. Inter-experiment reproducibility of rosette dry mass and fruit number 

estimation. Measured across 18 contrasted accessions. (a) Pearson’s 

coefficient of correlation (r2) between rosette dry mass M estimated at 

the inflection point tinf in the first experiment and rosette dry mass M 

measured at tinf in the second experiment. (b) r2 between the number of 

fruits estimated in the first experiment and the number of fruits measured 

in the second experiment.

Additional �le 7: Table S1. List of the 451 accessions phenotyped (n = 2), 

with measured and estimated traits, and fitted model parameters of Eq. 1.

https://doi.org/10.1186/s13007-018-0331-6
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Abbreviations

t0: first day of growth after vernalization; tinf: inflection point (days) of the 

logistic growth curve; A: upper asymptote of the logistic growth curve (mg); 

B: inverse of the exponential constant of the logistic growth curve; DAG: days 

after t0; M: rosette dry mass (mg); GR: absolute growth rate (mg d−1); RGR : rela-

tive growth rate (mg d−1 g−1).
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