
Image-Based Modeling and Photo Editing

Byong Mok Oh Max Chen Julie Dorsey Frédo Durand

Laboratory for Computer Science

Massachusetts Institute of Technology ∗

Abstract

We present an image-based modeling and editing system that takes
a single photo as input. We represent a scene as a layered collection
of depth images, where each pixel encodes both color and depth.
Starting from an input image, we employ a suite of user-assisted
techniques, based on a painting metaphor, to assign depths and ex-
tract layers. We introduce two specific editing operations. The first,
a “clone brushing tool,” permits the distortion-free copying of parts
of a picture, by using a parameterization optimization technique.
The second, a “texture-illuminance decoupling filter,” discounts the
effect of illumination on uniformly textured areas, by decoupling
large- and small-scale features via bilateral filtering. Our system
enables editing from different viewpoints, extracting and grouping
of image-based objects, and modifying the shape, color, and illumi-
nation of these objects.

1 Introduction

Despite recent advances in photogrammetry and 3D scanning tech-
nology, creating photorealistic 3D models remains a tedious and
time consuming task. Many real-world objects, such as trees or
people, have complex shapes that cannot easily be described by
the polygonal representations commonly used in computer graph-
ics. Image-based representations, which use photographs as a start-
ing point, are becoming increasingly popular because they allow
users to explore objects and scenes captured from the real world.
While considerable attention has been devoted to using photographs
to build 3D models, or to rendering new views from photographs,
little work has been done to address the problem of manipulating
or modifying these representations. This paper describes an inter-
active modeling and editing system that uses an image-based repre-
sentation for the entire 3D authoring process. It takes a single pho-
tograph as input, provides tools to extract layers and assign depths,
and facilitates various editing operations, such as painting, copy-
pasting, and relighting.

Our work was inspired, in part, by the simplicity and versatility
of popular photo-editing packages, such as Adobe Photoshop. Such
tools afford a powerful means of altering the appearance of an im-
age via simple and intuitive editing operations. A photo-montage,
where the color of objects has been changed, people have been
removed, added or duplicated, still remains convincing and fully

∗http://graphics.lcs.mit.edu/

“photorealistic.” The process involves almost no automation and is
entirely driven by the user. However, because of this absence of
automation, the user has direct access to the image data, both con-
ceptually and practically. A series of specialized interactive tools
complement one another. Unfortunately, the lack of 3D informa-
tion sometimes imposes restrictions or makes editing more tedious.
In this work, we overcome some of these limitations and introduce
two new tools that take advantage of the 3D information: a new
“distortion-free clone brush” and a “texture-illuminance decoupling
filter.”

Clone brushing (a.k.a. rubberstamping) is one of the most pow-
erful tools for the seamless alteration of pictures. It interactively
copies a region of the image using a brush interface. It is often used
to remove undesirable portions of an image, such as blemishes or
distracting objects in the background. The user chooses a source
region of the image and then paints over the destination region us-
ing a brush that copies from the source to the destination region.
However, clone brushing has its limitations when object shape or
perspective causes texture foreshortening: Only parts of the image
with similar orientation and distance can be clone brushed. Arti-
facts also appear when the intensity of the target and source regions
do not match.

The existing illumination also limits image editing. Lighting de-
sign can be done by painting the effects of new light sources using
semi-transparent layers. However, discounting the existing illumi-
nation is often difficult. Painting “negative” light usually results
in artifacts, especially at shadow boundaries. This affects copy-
pasting between images with different illumination conditions, re-
lighting applications and, as mentioned above, clone brushing.

In this paper, we extend photo editing to 3D. We describe a sys-
tem for interactively editing an image-based scene represented as
a layered collection of depth images, where a pixel encodes both
color and depth. Our system provides the means to change scene
structure, appearance, and illumination via a simple collection of
editing operations, which overcome a number of limitations of 2D
photo editing.

Many processes involving the editing of real images, for aes-
thetic, design or illustration purposes, can benefit from a system
such as ours: designing a new building in an existing context,
changing the layout and lighting of a room, designing a virtual
TV set from a real location, or producing special effects. Some of
these applications already obtain impressive results with 2D image-
editing tools by segmenting the image into layers to permit sepa-
rate editing of different entities. A particular case is cell animation,
which can take immediate and great advantage of our system.

We will see that once this segmentation is performed, an image-
based representation can be efficiently built, relying on the ability
of the user to infer the spatial organization of the scene depicted in
the image. By incorporating depth, powerful additional editing is
possible, as well as changing the camera viewpoint (Fig. 1).

One of the major advantages of image-based representations is
their ability to represent arbitrary geometry. Our system can be used
without any editing, simply to perform 3D navigation inside a 2D
image, in the spirit of the Tour into the Picture system [HAA97],
but with no restriction on the scene geometry.

(a) (b) (c) (d)

Figure 1: St Paul’s Cathedral in Melbourne. (a) Image segmented into layers (boundaries in red). (b) Hidden parts manually clone brushed
by the user. (c) False-color rendering of the depth of each pixel. (d) New viewpoint and relighting of the roof and towers.

1.1 Previous work

We make a distinction between two classes of image-based tech-
niques. The first is based on sampling. View warping is a typical
example that uses depth or disparity per pixel [CW93, LF94, MB95,
SGHS98]. Higher dimensional approaches exist [LH96, GGSC96],
but they are still too costly to be practical here. The representation
is purely independent of the geometry, but for real images, depth
or disparity must be recovered, typically using stereo matching.
Closer to our approach, Kang proposes to leave the depth assign-
ment task to the user via a painting metaphor [Kan98], and Williams
uses level sets from silhouettes and image grey levels [Wil98].

The second class concerns image-based modeling systems that
take images as input to build a more traditional geometric represen-
tation [Pho, Can, DTM96, FLR+95, LCZ99, POF98, Rea]. Using
photogrammetry techniques and recovering textures from the pho-
tographs, these systems can construct photorealistic models that can
be readily used with widely-available 3D packages. However, the
use of traditional geometric primitives limits the geometry of the
scene, and the optimization techniques often cause instabilities.

Our goal is to bring these two classes of approaches together. We
wish to build a flexible image-based representation from a single
photograph, which places no constraints on the geometry and is
suitable for editing.

The work closest to ours is the plenoptic editing approach of
Seitz et al. [SK98]. Their goal is also to build and edit an image-
based representation. However, their approach differs from ours in
that their system operates on multiple views of the same part of the
scene and propagates modifications among different images, allow-
ing a better handling of view-dependent effects. Unfortunately, the
quality of their results is limited by the volumetric representation
that they use. Moreover, they need multiple images of the same
object viewed from the outside in.

We will see that some of our depth acquisition tools and results
can be seen as a generalization of the Tour Into the Picture ap-
proach, where central perspective and user-defined billboards are
used to 3D-navigate inside a 2D image [HAA97]. Our work, how-
ever, imposes no restrictions on the scene geometry, provides a
broader range of depth acquisition tools, and supports a variety of
editing operations.

Our work is also related to 3D painting, which is an adaptation
of popular 2D image-editing systems to the painting of textures and
other attributes directly on 3D models [HH90, Met]. This approach
is, however, tightly constrained by the input geometry and the tex-
ture parameterization.

1.2 Overview

This paper makes the following contributions:

• An image-based system that is based on a depth image repre-
sentation organized into layers. This representation is simple,
easy to render, and permits direct control. It is related to lay-
ered depth images (LDIs) [SGHS98], but offers a more mean-
ingful organization of the scene. We demonstrate our system
on high-resolution images (megapixels, as output by current
high-end digital cameras).

• A new set of tools for the assignment of depth to a single pho-
tograph based on a 2D painting metaphor. These tools provide
an intuitive interface to assign relevant depth and permit direct
control of the modeling.

• A non-distorted clone brushing operator that permits the du-
plication of portions of the image using a brush tool, but with-
out the distortions due to foreshortening in the classical 2D
version. This tool is crucial for filling in gaps, due to oc-
clusions in the input image, that appear when the viewpoint
changes.

• A filter to decouple texture and illuminance components in
images of uniformly textured objects. It factors the image
into two channels, one containing the large-scale features (as-
sumed to be from illumination) and one containing only the
small-scale features. This filter works even in the presence of
sharp illumination variations, but cannot discount shadows of
small objects. Since it results in uniform textures, it is crucial
for clone brushing or for relighting applications.

• Our system permits editing from different viewpoints, e.g.
painting, copy-pasting, moving objects in 3D, and adding new
light sources.

2 System overview

2.1 Layers of images with depth

All elements of our system operate on the same simple data struc-
ture: images with depth [CW93]. This permits the use of stan-
dard image-based rendering techniques [CW93, MB95, SGHS98,
MMB97]. Depth is defined up to a global scale factor.

The representation is organized into layers (Fig. 1(a) and 2), in
the spirit of traditional image-editing software and as proposed in

layer {
reference camera : transformation matrix
color channels : array of floats
alpha channel : array of floats
depth channel : array of floats
optional channels : arrays of floats

}

Figure 2: Basic layer data structures.

computer vision by Wang and Adelson [WA94]. An alpha channel
is used to handle transparency and object masks. This permits the
treatment of semi-transparent objects and fuzzy contours, such as
trees or hair. Due to the similarity of data structures, our system
offers an import/export interface with the Adobe Photoshop format
that can be read by most 2D image-editing programs.

The image is manually segmented into different layers, using se-
lection, alpha masks, and traditional image-editing tools (Fig. 1(a)).
This is typically the most time-consuming task. The parts of the
scene hidden in the input image need to be manually painted using
clone brushing. This can more easily be done after depth has been
assigned, using our depth-corrected version of clone brushing.

A layer has a reference camera that describes its world-to-image
projection matrix. Initially, all layers have the same reference cam-
era, which is arbitrarily set to the default OpenGL matrix (i.e. iden-
tity). We assume that the camera is a perfect pinhole camera, and
unless other information is available, that the optical center is the
center of the image. Then, only the field of view needs to be spec-
ified. It can be entered by the user, or a default value can be used
if accuracy is not critical. Standard vision techniques can also be
used if parallelism and orthogonality are present in the image (see
Section 3). Note that changing the reference camera is equivalent to
moving the objects depicted in the layer in 3D space. Throughout
the paper we will deal with two kinds of images: reference images
that correspond to the main data structure, and interactive images

that are displayed from different viewpoints to ease user interaction.
The degree to which the viewpoint can be altered, without artifacts,
is dependent on the particular scene, assigned depth, and occluded
regions.

Our organization into layers of depth images is related to the
LDIs [SGHS98], with a major difference: In an LDI, the layering is
done at the pixel level, while in our case it is done at a higher level
(objects or object parts). LDIs may be better suited for rendering,
but our representation is more amenable to editing, where it nicely
organizes the scene into different higher-level entities.

Additional channels, such as texture, illuminance, and normal
(normals are computed for each pixel using the depth of the 4 neigh-
boring pixels), may be used for specific applications (relighting in
particular).

2.2 System architecture

The architecture of our system is simple, since it consists of a set of
tools organized around a common data structure (Fig. 3). It is thus
easy to add new functionality. Although we present the features
of our system sequentially, all processes are naturally interleaved.
Editing can start even before depth is acquired, and the representa-
tion can be refined while the editing proceeds.

Selection, like channels, is represented as an array corresponding
to the reference image. Each pixel of each layer has a selection
value, which can be any value between 0 and 1 to permit feathering.
Selection is used not only for copy-pasting, but also for restricting
the action of the tools to relevant areas.

The interactive display is performed using triangles [McM97,

�����������
��	���

�����������
���

�������

������
�����
��	
�
����

�������

������
�����
��	
�
����

�������

������
�����
��	
�
����

�����

������
�����
��	
�
���

����������������������

���������������

�����������

	�����������

�����������

����������

��	�
��� ���������������

���������
����� ���	� ����	��

���������

Figure 3: Architecture of our system.

MMB97] and hardware projective texture mapping [SKvW+92].
The segmentation of the scene into layers greatly eliminates
rubber-sheet triangle problems. Obviously, any other image-
based-rendering technique such as splatting could be used [CW93,
SGHS98, MB95].

The tools, such as depth assignment, selection or painting, can
be used from any interactive viewpoint. The z-buffer of the inter-
active view is read, and standard view-warping [CW93, McM97]
transforms screen coordinates into 3D points or into pixel indices
in the reference image. The texture parameter buffers of Hanrahan
and Haeberli could also be used [HH90].

3 Depth Assignment

We have developed depth assignment tools to take advantage of
the versatility of our representation. The underlying metaphor is to
paint and draw depth like colors are painted, in the spirit of Kang
[Kan98]. This provides complete user control, but it also relies on
the user’s ability to comprehend the layout of the scene. The level
of detail and accuracy of depth, which can be refined at any time,
depend on the target application and intended viewpoint variation.

However, even if a user can easily infer the spatial organization
and shapes depicted in the image, it is not always easy to directly
paint the corresponding depth. Hence we have also developed hy-
brid tools that use pre-defined shapes to aid in painting accurate
depth. In the development of our interface, we have emphasized
2D, rather than 3D interaction, the direct use of cues present in the
image, and the use of previously-assigned depth as a reference.

Depth can be edited from any interactive viewpoint, which is
important in evaluating the effects of current manipulations. Mul-
tiple views can also be used [Kan98]. We will see that some tools
are easier to use in the reference view, where image cues are more
clearly visible, while for others, interactive views permit a better
judgment of the shape being modeled.

The use of selection also permits us to restrict the effect of a tool
to a specific part of the image, providing flexibility and finer con-
trol. And since our selections are real-valued, the effect of depth
tools can be attenuated at the selection boundary to obtain smoother
shapes. In our implementation, we use the selection value to inter-
polate linearly between the unedited and edited values. Smoother
functions, such as a cosine, could also be used.

In contrast to optimization-based photogrammetry systems [Can,
DTM96, FLR+95], the field of view of the reference camera must
be specified as a first step (as aforementioned, we assume a perfect

pinhole camera). If enough information is available in the image,
the field of view can be calculated (Section 3.2). The user can also
set the focal length manually. Otherwise, the focal length is set to a
default value (50mm in practice).

3.1 Depth painting

The user can directly paint depth using a brush, either setting the
absolute depth value or adding or subtracting to the current value
(chiseling). Absolute depth can be specified using a tool similar
to the color picker, by clicking on a point of the image to read
its depth. The relative brush tool is particularly useful for refin-
ing already-assigned depth (Fig. 5(b)). The size and softness of the
brush can be interactively varied.

The whole selected region can also be interactively translated.
Translation is performed along lines of sight with respect to the
reference camera: The depth of each selected pixel is incremented
or decremented (Fig. 4). However, it is desirable that planar objects
remain planar under this transformation. We do not add or subtract
a constant value, but instead multiply depth by a constant value.
Depth-translating planar objects therefore results in parallel planar
objects.

�����������
��	���

���������
��	���

��������
������

Figure 4: Depth translation is performed along lines of sight with
respect to the reference camera.

In the spirit of classical interactive image-editing tools, we have
developed local blurring and sharpening tools that filter the depth
channel under the pointer (Fig. 5(c)). Blurring smooths the shape,
while sharpening accentuates relief. Local blurring can be used to
“zip” along depth discontinuities, as described by Kang [Kan98]. A
global filtering is also possible, in particular blurring to smooth the
3D shape, noise to add complexity, and median filtering to remove
outliers.

(a) (b) (c)
Figure 5: (a) Face. (b) Chiseled depth. (c) Blurred depth.

Similar to Kang’s [Kan98] and William’s [Wil98] methods, the
user can use the rgb channels to assign depth. This is motivated by
cases where darker values correspond to more distant pixels (such
as trees) or by atmospheric perspective making distant objects bluer.
The user specifies the zmin and zmax depth values, and the vector

specifying color direction �C (e.g. dark to light or amount of blue),
and the effect can be applied absolutely or relatively. In the absolute
case, for example, depth is then specified from the color at each
pixel�c(x,y) from:

z(x,y) = zmin +(zmax − zmin)∗�C ·�c(x,y).

3.2 Ground plane and reference depth

The tools presented so far work best if some initial depth has been
assigned, or if a reference is provided for depth assignment. Similar
to the perspective technique used since the Renaissance, and to the
spidery mesh by Horry et al. [HAA97], we have found that the use
of a reference ground plane greatly simplifies depth acquisition and
improves accuracy dramatically, since it provides an intuitive ref-
erence. The position with respect to the ground plane has actually
been shown to be a very effective depth cue [Pal99]. Specifying a
ground plane is typically the first step of depth assignment.

The ground plane tool can be seen as the application of a gradient
on the depth channel (Fig. 6). However, an arbitrary gradient may
not correspond to a planar surface. In our system, the user speci-
fies the horizon line in the reference image, which constrains two
degrees of freedom, corresponding to a set of parallel planes. The
remaining degree of freedom corresponds to the arbitrary scale fac-
tor on depth. We can thus arbitrarily set the height of the observer
to 1, or the user can enter a value.

(a) (b)

Figure 6: (a) Ground plane. (b) Depth map.

We have also implemented the method by Liebowitz et al.
[LCZ99] that allows the acquisition of architectural models and
camera parameters from one image using parallelism and orthog-
onality constraints. This provides both the camera parameters and
an accurate reference ground plane. This also allows us to compute
the position of the optical axis if it is not in the center of the image.

Depth picking and depth painting can then easily be used to
depth-paint billboards parallel to the image plane. Since most ob-
jects in a scene touch the ground, or their projection on the ground
can be inferred by the user, this proves to be very efficient. This
is similar to the placement of billboards on the “spidery mesh” of
Horry et al. [HAA97]. However, their system is limited to central
perspective and polygonal orthogonal objects, while we can refine
our representation and obtain arbitrary shapes.

Figure 7: Vertical tool. The user draws the contact of the vertical
geometry with the ground plane.

We have extended the notion of billboards to allow the user to
paint the depth of arbitrary vertical objects. This works best when
the interactive camera is set to the reference camera: The contact or
projection of the object on the ground plane is drawn, and a vertical
depth is extruded (Fig. 7). In practice, the contact drawn by the user
is represented as a polyline, the corresponding vertical polygons
are rendered using OpenGL, and the z-buffer is read to update the
selected pixels.

We are not limited to the use of a planar ground reference. The
3D locations of the points of the contact polyline drawn by the user
are read from the interactive z-buffer. This means that if the ground
has been chiseled or translated for better terrain modeling, vertical
objects will be extruded accordingly.

We have also implemented an automatic version that processes
the whole selection or layer at once. It assumes that the layer or
selection is in contact with the ground reference at its lowest pixels.
Each column of pixels in the reference image is assigned the depth
corresponding to its lowest visible or selected pixel.

3.3 Geometric primitives

Some geometric shapes, such as boxes, spheres, or cylinders, are
hard to depth-paint accurately. We therefore utilize geometric prim-
itives that can be drawn transparently as 2D objects. For example,
the user draws a circle or clicks on three points to assign spherical
depth. We use similar interfaces for cylinders (the user draws the
edges), boxes (the user draws three edges of a corner), and pyra-
mids (the user draws the base and apex). These tools work best
when used from the reference camera.

The primitive is rendered from the reference camera using
OpenGL, and the z-buffer is read to assign depth. This requires
the use of a depth buffer at the resolution of the reference image.
Since our system treats images that can be larger than the screen,
we use tiling.

Once the image projection of the primitive has been provided, its
distance must be specified. The user can use an arbitrary distance
and then refine it with the translation tool. He can also use the
already-assigned depth as a reference by clicking on one point. By
default, the first point clicked by the user is used as a reference
depth (e.g. corner of a box).

To improve the quality of depth when a ground plane has been
assigned, the user can use primitive snapping to enforce the verti-
cality of boxes, cylinders or pyramids, or to constrain them along
the normal of a given pixel. A least-square error minimization is
then run to optimize the 3D shape position.

3.4 Organic shapes

In the spirit of Williams [Wil98] and related to the Teddy fast-
modeling system [IMT99], we propose a tool that assigns depth
using level sets. It is well suited to giving organic shapes a bulgy
appearance, by specifying more distant depth at the boundary and
closer depth in the center (Fig. 8(a) and (b)). This tool is relative,
and the range r of depth addition is specified by the user.

We compute the level sets using an erosion technique (e.g.
[SD95]). The initial active interior of the object is defined as the
set of pixels of the layer or selection with non-null alpha. The dis-
tance to the boundary dbound is initialized to 0, and we iteratively
“erode.” For each iteration, we discard pixels that have a non-active
neighbor, and increment the distance of active pixels by 1.

We use the normalized distance to the centroid d′ = 1− dbound

dboundmax

and update depth according to z = z+ r
√

1−d′2. This formula was
chosen because it assigns a spherical shape to a disk under ortho-
graphic projection.

3.5 Faces

The specific case of human faces is important. The output of the
impressive morphable model of Blanz et al. [BV99] could be used
to retrieve accurate depth. However, this technique is not easy to
implement since it requires a large database of 3D face scans, and
unfortunately, it takes tens of minutes to acquire the geometry of a
face from a photograph.

We have developed a simpler method that trades accuracy and
user intervention for speed and simplicity. This method could be
further generalized to a broader class of template shapes. We use a
generic arbitrary 3D face model, optimize its 3D position to match
the photograph, and then use 2D morphing to refine the match
(Fig. 8).

The user specifies correspondence points between the image and
the 3D model. These points are used to find the rotation, scale, and
position of the 3D model using Levenberg-Marquardt optimization
[PSVF92]. Rotation and scale are optimized independently to avoid
shear in the resulting transformation. The 3D face is rendered,
and the z-buffer is read back. We then use the same correspon-
dence points to morph the z-buffer and obtain a better match with
the image using triangle-based morphing and linear interpolation
[GDCV98].

4 Non-distorted clone brushing

Standard clone brushing has its limitations when perspective causes
texture foreshortening (Fig. 9(a)). In practice, only parts with sim-
ilar orientation and distance to the camera can be clone brushed.
Moreover, only regions of similar intensity can be copied. The for-
mer problems will be treated in this section, while the latter will be
addressed in the next section.

Since our system has information about depth, we can correct
distortion due to both perspective and surface shape. In the general
case of arbitrary geometry, the problem is similar to low-distortion
texture mapping: We want to map the source region of the image-
based representation to the destination, with as little distortion as
possible. Our idea is to compute a (u,v) texture parameterization
for both the source and destination regions, and use this mapping
for the clone brush.

4.1 Non-distorted parameterization

Our parameterization optimization is based on the work by Levy et
al. [LM98, Mal89], with three important differences: Our approach
is local around the clone-brushed regions, has no boundary condi-
tion, and needs to run in real-time. We first quickly review the key
points of their method in order to describe the specifics of our flood-
fill adaptation. This overview is presented in our specific context,
where each pixel is seen as a vertex connected to its 4-neighbors.
We refer the reader to their article for details [LM98, Mal89].

Levy et al. propose to minimize two classes of distortions: angu-
lar (preserve orthogonal angles) and iso-parametric distance (make
isolines equidistant). The former requires that the gradient of u and
v be orthogonal, and the latter requires constant magnitude for their
gradients. Different weights can be assigned to emphasize one con-
straint over another.

They use discrete smooth interpolation [Mal89], where each dis-
crete value (u or v at a pixel in our case) is smoothed using a linear
combination of its neighbors. The combinations minimize a rough-
ness function to obtain a valid mapping, and quadratic constraints
to minimize distortion. Smoothing steps on u and v are interleaved
and iterated.

In our case, the roughness R for a pixel p depends on its 4-
neighbors N(p):

(a) (b) (c) (d) (e)

Figure 8: Organic and face tools. (a) Initial statue image. (b) False-color depth map after level set tool. (c) User-specified correspondence
points. (d) Transformation after optimization. (e) Face from new viewpoint after depth is applied.

R(u,v) =

∑
p

(

−4up + ∑
p′∈N(p)

up′

)2

+

(

−4vp + ∑
p′∈N(p)

vp′

)2

. (1)

The minimum of R is reached when its partial derivatives ∂R
∂u

and
∂R
∂v

are null for each pixel p. This yields an expression of u and v at
a pixel as a linear combination of the values of the neighbors of its
neighbors:

up = ∑
p′∈N(N(p))

au
p,p′up′

vp = ∑
p′∈N(N(p))

av
p,p′vp′ ,

(2)

where the ai
j are given coefficients.

Distortions are minimized by introducing a set of linear con-
straints C depending on the gradients of u and v. Levy et al. use a
least-square approach, which defines a generalized roughness R⋆:

R⋆(u,v) = R(u,v)+

∑
c∈C

{(

∑
p

Ac,u
p up

)

−bu
c

}2

+

{(

∑
p

Ac,v
p vp

)

−bu
c

}2

, (3)

where the Ai
j and bi

j are given coefficients when one parameter, u or

v, is assumed constant. The smoothing on u and v are interleaved,
which means that the values of Ai

c,u depend on v, and vice-versa.

This generalized roughness R⋆ reaches its minimum when its

partial derivatives, ∂R⋆

∂u
and ∂R⋆

∂v
, are null for each pixel p. This

can be expressed as a set of linear equations:

up = ∑
p′∈N(N(p))

au
p,p′up′ +αu

p,p′up′

vp = ∑
p′∈N(N(p))

av
p,p′vp′ +αv

p,p′ vp′ ,
(4)

where αu
j are coefficients that depend on v, and αv

j depend on u.

This method is, however, too slow to optimize over an entire
layer in our interactive context. Moreover, it requires boundary
conditions. We therefore adapt it using two strategies: a flood-fill
approach and a simple but effective initialization.

4.2 Flood-fill parameterization

We adapt the discrete smooth interpolation method in a “flood-fill”
manner to optimize the parameterization around the current posi-
tion of the clone brush. We compute the parameterization for only
a subset of pixels, called active pixels. This subset is expanded
as time progresses and the user drags the brush. We describe the
method for a single layer, however, it runs concurrently for both
the source and destination layers. We interleave optimization steps,
where coordinates are refined, and expansion steps, where new pix-
els are declared active and initialized. We moreover freeze the co-
ordinates of already-brushed pixels.

To initialize the process, we use the first point clicked by the user
as a seed, assign it the coordinates (0,0), and set the gradient of u,
�∇u orthogonal to the vertical direction and to the pixel normal. �∇v

is then orthogonal to �∇u.
The set of pixels at the boundary of the active region is called the

active front. More formally, a pixel is declared in the active front if
it is active and if one of its 4-neighbors has an inactive 4-neighbor
(Fig. 9(c)). Intuitively, the active front corresponds to pixels that
lack neighbors necessary to compute smoothing in Eqs. (2) and (4).
Active pixels not in the active front are said to be fully active.

Optimization

The optimization steps follow the lines of the original discrete
smooth interpolation. Optimizations on u and v are interleaved,
and active pixels are treated as vertices of a mesh and smoothed
accordingly using linear operations.

The active front requires special care. Due to the absence of
some neighbors, Eq. (4) cannot be directly used. If these neigh-
bors are simply discarded from the formula, the parameterization
will “shrink,” because the roughness term R from Eq. (1) is no
longer balanced. We thus only optimize the gradient constraints
for these pixels and omit the mapping of the roughness term (the ai

j

in Eq. (4)). A good initial value for the active-front pixels is then
the key to the stability of the process.

Expansion and initialization

An expansion step extends the active region by one pixel in the
direction of the current mouse location. The active front is accord-
ingly updated, and each new active pixel receives initial coordinate
values. This is done according to its active neighbors, by using a
local planar approximation of the geometry. For each neighbor, the
coordinates (u′,v′) of the new pixel are computed using the current

gradients of an active neighbor, �∇u and �∇v, and the object-space

vector �d between the two pixels (Fig. 9(c)):

(u′,v′) = (u+ �d ·�∇u,v+ �d ·�∇v).

��� ���
�

�

�

�����

��
��������

��������
���

����
���

(a) (b) (c)

Figure 9: (a) Classical clone brushing. The user first clicks on i0 to specify the source region and then paint brushes starting at b0, which
assigns the translation. b is then a simple copy of i. (b) Perspective-corrected clone brushing. The column geometry has been changed to
a cylinder, and the carpet has been removed and clone brushed onto the ceiling. (c) Flood-fill parameterization. Fully active pixels are in
red. The active front is in yellow. The green pixel is set active, and its initial (u′,v′) parameters are computed using the gradient of its active
neighbors.

The average of the values computed from the active neighbors is
used. This formula results in an optimal initial value, provided the
geometry is planar.

Freezing and clone brushing

The parameterization proceeds as the user interactively clone
brushes. It must be faster than the speed of the brush to ensure
smooth interaction. In practice, we have found that subsampling
the layer was necessary in order to obtain real-time feedback. We
compute (u,v) values every 4×4 pixels and interpolate bilinearly.
This process does not take into account the local bumps in the ge-
ometry, but fits the global shape.

As soon as a pixel has been clone brushed, its (u,v) coordinates
must be frozen to avoid artifacts that would occur if the same pixel
were re-used with different coordinate values due to subsequent op-
timization iterations.

Clone brushing a destination pixel with coordinate (u,v) involves
inverting the mapping of the source image. Note that in the general
case, no pixel will have the exact (u,v,) coordinates. We thus use
the four pixels with the nearest coordinates and perform bilinear in-
terpolation. To find these pixels, we use a marching method. Since
a brush corresponds to a set of contiguous pixels, we only need to
compute a seed value and march from it along the gradient to find
the inverse mapping of subsequent pixels.

Our optimization is clearly not as accurate as the method of Levy
and Mallet [LM98, Mal89]. However, it provides an exact solu-
tion in the case of planar geometry and has worked well in practice
for curved geometry. This is because our case is simpler than the
general mesh-parameterization problem. Our data is a height field
transformed by a perspective matrix, which greatly decreases po-
tential distortions. Moreover, our layers are segmented by the user
into different spatial objects that prevent strong discontinuities.

5 Texture-illuminance decoupling filter

We now present a filter that factors the image into a texture compo-
nent and an illumination component. This is useful both for relight-
ing and clone brushing, since the decoupled texture channel has a
uniform level of illumination.

Most previous relighting work relies on a light transport simu-
lation to remove the effect of existing lighting [FGR93, DRB97,
Deb98, YDMH99, LFD+99, LDR00]. Loscos et al. use texture
synthesis to remove artifacts along shadow boundaries, but still re-
quire an initial physical simulation [LDR00]. In contrast, our ap-
proach is not physically based. It is an image-processing filter that
removes lighting effects from uniformly textured objects.

A related approach was introduced by Nayar and Bolle [NB93].
Our approach differs from theirs in that they deal with non-textured
regions and focus on the segmentation and computation of re-
flectance ratios, while we deal with texture extraction.

5.1 Large- and small-scale feature separation

We make the following simple assumption: Large-scale luminance
variations are due to the lighting, while small-scale details are due
to the texture. In practice, this means that large stains will be treated
as illuminance variations (which is actually desirable in most prac-
tical cases), while shadows of small objects will not be handled
correctly. Small detailed shadows are the main limitation of our
technique.

We have developed a non-linear filter that factors an image into
a texture channel and an illuminance channel respecting the above
assumption. We do not claim that these are the true texture and illu-
minance, but we will use these terms for simplicity. This problem is
related to image denoising, but the “noise” in this case is the texture
information that we want to retrieve.

To begin, the user specifies a feature size of the texture by drag-
ging a line segment over a pattern. The basic idea is to blur the
image with a low-pass Gaussian filter G , specified by the feature
size (in practice we use σspatial = f eature size). If I0 is the input

image, and p and p′ are pixel locations, we have:

I1(p) =
Σp′G(p, p′,σspatial)I0(p′)

Σp′G(p, p′,σspatial)
. (5)

Only large-scale illuminance variations remain. We moreover as-
sume that the average color comes from the texture component, so
we divide the illuminance obtained by the normalized average color
value. We then divide the initial image by this blurred version to
compute a uniform texture component (Fig. 10(b) and (c)).

(a) (b) (c) (d)
Figure 10: Texture-illuminance decoupling. (a) Input image. (b) Initial illuminance estimation using simple Gaussian filtering. (c) Initial
texture estimation, note the artifacts corresponding to shadow boundaries. (d) Texture computed using bilateral filtering.

This approach works well for slowly varying illumination,
but fails at shadow boundaries, where haloing effects occur (see
Fig. 10(c) and 11). This simply means that shadow boundaries in-
troduce frequencies that are in the range of the feature size, and that
they are treated as texture frequencies by the Gaussian blur. In ad-
dition, texture foreshortening needs to be treated to make consistent
use of the feature size.

�

��������	
��������	���������

�����	�
�����

��������
��	�������

	����	�
��������

��������
��	����	���	�
��������

��������

��������
��	��	�

	����	�

�	�
�

	����	�

����������	����	��

��	��	�

	����	�

���	���	�
������

�

Figure 11: Texture-illuminance decoupling in 1D. The example ex-
hibits sharp illumination variations, which cannot be captured using
simple Gaussian filtering. This first pass is, however, used for the
bilateral filtering pass, to average only pixels with similar illumina-
tion, due to the use of an additional range Gaussian.

5.2 Depth correction

Due to foreshortening and surface orientation, the feature size is
not constant in image space. We therefore use the depth channel
to compensate for foreshortening, and normals for orientation. The
user specifies feature size at a reference pixel pre f . For other pixels,

the spatial kernel is scaled by
zre f

z
. To compensate for orientation,

we use a local planar approximation of the surface: Gaussian el-
lipses oriented along the scene surfaces (Fig. 12(a)).

Let �N be the unit normal and �E the unit viewing direction. The
small axis of the ellipse is along �n, the unit image projection of
�N. We note �a the long axis of the ellipse, which is a unit vector
orthogonal to�n. The small/large ratio σ2

σ1
is given by the dot product

�N ·�E, where σ1 = zre f

z(p)
σspatial as described above. We then have:

Kspatial(p′, p,σspatial) = G(�pp′ ·�n,σ2)G(�pp′ ·�a,σ1). (6)

��

��

		
�

��

�

�� 	

	�

	�

�	�
����������

��� ���

������

�����������
�
���
�

Figure 12: (a) Orientation correction of the spatial Gaussian. (b)
The kernel filter for pixel P is the product of the spatial and range
Gaussians: The weight of point p′′ is lower than the weight of p′

although it is closer, because the estimated illuminance of p′ is more
similar to that of p.

5.3 Bilateral filtering

To handle discontinuities, we use a non-linear edge-preserving fil-
ter. Anisotropic diffusion could be an option [PM90], but since we
have information about the feature size, we prefer the use of bilat-
eral filtering [TM98], which is more controllable. The principle is
to use an additional Gaussian in the range domain to average only
pixels of similar intensity. The total kernel is the product of the
spatial Gaussian (Eq. (5)) and this range Gaussian (Fig. 12(b)).

We adapt this method to our particular case. It is iterative, and
the current estimate of the illuminance is used to drive the range
Gaussian:

Ii+1(P) =
Σp′K(p′,p)I0(p′)

Σp′K(p′,p)

K(p′, p) = Kspatial(p′, p,σspatial)Grange(Ii(p), Ii(p′),σrange).

The main difference between this approach and standard bilat-
eral filtering is that we always filter the initial image I0. Unlike
denoising approaches, we are interested in factoring the initial im-
age, not in removing noise. Because the kernel averages only pixels
of similar estimated illuminance, the filter captures shadow bound-
aries (Fig. 10(d) and 11). The process converges quickly, and we
use I3 as our final illuminance estimate. The only hard-coded pa-
rameter is the variance of the range Gaussian. In practice, we have
found that σrange = 0.01max(I1) gives good results.

This filter is very effective on high-dynamic range images
[DM97]. For 24-bit images, it works best if the illumination does
not vary too dramatically. Otherwise, very dark or very bright re-
gions can lead to artifacts, because the texture information has been
destroyed by color quantization. In this case, texture synthesis is
the only solution to resynthesize the lost information.

6 Implementation and Results

Our system has been implemented on SGI workstations using the
QT GUI library and the graphics API OpenGL. The accompanying
video demonstrates a variety of results obtained with the system. In
this section, we first describe in detail how the church example was
acquired and then describe other examples and editing operations.

6.1 Church example

For the church example (Fig. 1), we used a single 24-bit 1000x1280
scanned input photograph. The most time-consuming part of the
acquisition was the manual segmentation of the input image into
layers. Because our system uses only one input photograph, the
area behind the church was manually clone brushed (Fig. 1(b)).
The segmentation and clone brushing took about 10 hours. 52 dif-
ferent layers were extracted: Each tree is represented as a separate
layer, and the church itself is decomposed into 13 layers for easier
depth assignment and to allow for occlusion and parallax effects
(Fig. 1(a)).

(a) (b)

Figure 13: St Paul’s Cathedral acquired geometry. (a) Coarse depth
after the use of the vertical tool. (b) Refined depth. Note the chis-
eling on the façades and the shapes of the trees, obtained using a
combination of level sets and depth-from-rgb.

Depth acquisition took an additional three hours. We first de-
fined the ground plane and camera parameters using the method by
Liebowitz et al. [LCZ99]. Three orthogonal pairs of parallel lines
were specified. Each layer was given a coarse billboard depth by
utilizing the automatic vertical plane tool. For those layers without
a clear point of contact with the ground, we used a user-specified
vertical plane. Fig. 13(a) shows this initial coarse depth. We then
used the level-set method to provide the trees and bushes with a
bulgy appearance, which we refined using the depth-from-rgb tool.
The depths for the cars and street furniture were refined with the
box tool.

The church depth was acquired using several tools. The coarse
depth from the vertical tool provided a starting point. We used the
push/pull tool to add relief to the façade windows and buttresses.
We then used the pyramid tool for the tower and turrets, and the
plane tool for the roofs (Fig. 13(b)).

6.2 Editing and other examples

Various editing operations are possible including painting, filter-
ing, and clone brushing. The ability to paint from different view-
points makes it easy to edit foreshortened surfaces and obtain cor-
rect perspective. Copy-pasting, 3D scaling, translation, and rotation

of objects are also possible. The range of rotation, like changes in
viewpoint, are ultimately limited by the geometry of the scene and
disocclusion artifacts.

We also demonstrate relighting applications. Texture and illu-
minance are decoupled using our new filter. Then, the illuminance
channel is modified and multiplied by the texture channel to obtain
the new image. The illuminance can be edited either by specify-
ing 3D light sources, or by directly painting light on the channel.
The latter solution often provides simpler interaction. This is due
to the difficulty of specifying 3D positions and anticipating the re-
sulting lighting effects. Sketching approaches, e.g. [PRJ97] could
be helpful in this context.

We also use cubical panoramas as input, representing them as
a collection of six images (Fig. 14). This provides a dramatic im-
mersive experience and could greatly improve techniques such as
Quicktime VR [Che95] at a reasonable cost.

7 Conclusion and Future Work

We have presented an image-based modeling and editing system
that takes a single photo as input, and allows a user to build a rep-
resentation consisting of layers of images with depth. Interactive
views and a variety of editing operations permit the definition and
manipulation of image-based scenes. The system has been demon-
strated on several examples, including relighting.

Future work includes the merging of this approach with 3D
painting programs, or with alternative image-editing approaches
[EG01]. Many other techniques could be incorporated into our
system. For example, depth assignment could benefit from shape
from shading or from multiple images via stereo correspondence
and epipolar geometry. In addition, handling multiple images of
the same portion of a scene would permit the inclusion of view-
dependent effects.

We believe that our clone brushing and texture-illuminance de-
coupling tools have application beyond the scope of this system.
For example, a simpler version of clone brushing could be adapted
to the 2D case for simple configurations. Our decoupling filter
could be useful in a variety of contexts, including enabling classical
image-based modeling to retrieve uniform texture or to preprocess
the input of texture generation algorithms.

Acknowledgments

We would like to thank Aparna Das, Rujira Hongladaromp, and Sini
Kamppari for experimenting with the system, providing feedback,
and working on the examples. Thanks to Steven Gortler, George
Drettakis, Nicolas Tsingos, Leonard McMillan, and Neel Master
for encouragement and helpful discussions. Barry Webb and Asso-
ciates, Lighting and Technology Consultants in Sydney, Australia,
kindly provided the photograph of St. Paul’s Cathedral in Mel-
bourne. This work was supported by an NSF CISE Research In-
frastructure Award (EIA-9802220) and a gift from Pixar Animation
Studios.

(a) (b) (c) (d)

Figure 14: Panoramic view of a hotel lobby. (b) is the original viewpoint, and (a),(c) are synthetic viewpoints. (d) visualizes the representation
from a birds-eye view. The red arrow shows the original acquisition point and direction of the panorama. Although the geometry is coarse,
the immersive experience within the room is very convincing.

References

[BV99] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces.

Proc. of SIGGRAPH, 1999.

[Can] Canoma. http://www.canoma.com.

[Che95] E. Chen. Quicktime VR - an image-based approach to virtual environ-

ment navigation. Proc. of SIGGRAPH, 1995.

[CW93] E. Chen and L. Williams. View interpolation for image synthesis. In

Proc. of SIGGRAPH, 1993.

[Deb98] P. Debevec. Rendering synthetic objects into real scenes: Bridging tra-

ditional and image-based graphics with global illumination and high dy-

namic range photography. In Proc. of SIGGRAPH, 1998.

[DM97] P. Debevec and J. Malik. Recovering high dynamic range radiance maps

from photographs. Proc. of SIGGRAPH, 1997.

[DRB97] G. Drettakis, L. Robert, and S. Bougnoux. Interactive common illumi-

nation for computer augmented reality. Eurographics Rendering Work-

shop, 1997.

[DTM96] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architec-

ture from photographs: A hybrid geometry- and image-based approach.

In Proc. of SIGGRAPH 96, 1996.

[EG01] J. Elder and R. Goldberg. Image editing in the contour domain. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 23(3), 2001.

[FGR93] A. Fournier, A. Gunawan, and C. Romanzin. Common illumination

between real and computer generated scenes. Graphics Interface, 1993.

[FLR+95] O. Faugeras, S. Laveau, L. Robert, G. Csurka, and C. Zeller. 3-d re-

construction of urban scenes from sequences of images. In A. Gruen,

O. Kuebler, and P. Agouris, editors, Automatic Extraction of Man-Made

Objects from Aerial and Space Images. Birkhauser, 1995.

[GDCV98] J. Gomes, L. Darsa, B. Costa, and L. Velho. Warping And Morphing Of

Graphical Objects. Morgan Kaufman, 1998.

[GGSC96] S.. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph.

In Proc. of SIGGRAPH, 1996.

[HAA97] Y. Horry, K. Anjyo, and K. Arai. Tour into the picture: Using a spi-

dery mesh interface to make animation from a single image. In Proc. of

SIGGRAPH 97, 1997.

[HH90] P. Hanrahan and P. Haeberli. Direct wysiwyg painting and texturing on

3d shapes. Proc. of SIGGRAPH, 1990.

[IMT99] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface

for 3D freeform design. In Siggraph, Los Angeles, 1999.

[Kan98] S. Kang. Depth painting for image-based rendering applications.

Tech. report, CRL, Compaq Cambridge Research Lab, 1998.

http://www.research.microsoft.com/Users/sbkang/publications/index.html.

[LCZ99] D. Liebowitz, A. Criminisi, and A. Zisserman. Creating architectural

models from images. In Proc. of Eurographics, 1999.

[LDR00] C. Loscos, G. Drettakis, and L. Robert. Interactive virtual relighting of

real scenes. IEEE Trans. on Visualization and Computer Graphics, 6(3),

2000.

[LF94] S. Laveau and O. Faugeras. 3-D scene representation as a collection of

images and fundamental matrices. In Proc. of 12th Int. Conf. on Pattern

Recognition, volume 1, pages 689–691, 1994.

[LFD+99] C. Loscos, M.C. Frasson, G. Drettakis, B. Walter, X. Granier, and

P. Poulin. Interactive virtual relighting and remodeling of real scenes.

Eurographics Rendering Workshop, 1999.

[LH96] M. Levoy and P. Hanrahan. Light field rendering. In Proc. of SIG-

GRAPH, 1996.

[LM98] B. Lévy and JL Mallet. Non-distorted texture mapping for sheared tri-

angulated meshes. In Proc. of SIGGRAPH, 1998.

[Mal89] JL Mallet. Discrete smooth interpolation. ACM Trans. on Graphics,

8(2):121–144, 1989.

[MB95] L. McMillan and G. Bishop. Plenoptic modeling: An image-based ren-

dering system. In Proc. of SIGGRAPH, 1995.

[McM97] L. McMillan. An Image-based Approach to Three-Dimensional Com-

puter Graphics. PhD thesis, U. of North Carolina, Chapel Hill, 1997.

[Met] MetaCreations. http://www.metacreations.com.

[MMB97] W. Mark, L. McMillan, and G. Bishop. Post-rendering 3D warping. In

ACM Symp. on Interactive 3D Graphics, 1997.

[NB93] S. K. Nayar and R. M. Bolle. Computing reflectance ratios from an

image. Pattern recognition, 7, 1993.

[Pal99] S. Palmer. Vision Science : Photons to Phenomenology. MIT Press,

1999.

[Pho] Photomodeler. http://www.photomodeler.com.

[PM90] P. Perona and J. Malik. Scale-space and edge detection using anisotropic

diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence,

12(7):629–639, July 1990.

[POF98] P. Poulin, M. Ouimet, and M.C. Frasson. Interactively modeling with

photogrammetry. In Eurographics Workshop on Rendering, 1998.

[PRJ97] P. Poulin, K. Ratib, and M. Jacques. Sketching shadows and highlights

to position lights. In Proc. of Computer Graphics International 97,

1997.

[PSVF92] W. Press, S.Teukolsky, W. Vetterling, and B. Flannery. Numerical

Recipes. Cambridge Univ. Pr., 2nd edition, 1992.

[Rea] Realviz. Image modeler. http://www.realviz.com.

[SD95] F. Sillion and G. Drettakis. Feature-based control of visibility error: A

multi-resolution clustering algorithm for global illumination. In Proc.

SIGGRAPH, 1995.

[SGHS98] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth images. In

Proc. of SIGGRAPH, 1998.

[SK98] S. Seitz and K. Kutulakos. Plenoptic image editing. In Proc. 5th Int.

Conf.on Computer Vision, 1998.

[SKvW+92] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli.

Fast shadows and lighting effects using texture mapping. Proc. of SIG-

GRAPH, 1992.

[TM98] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color im-

ages. In IEEE Int. Conf. on Computer Vision, 1998.

[WA94] J. Y. A. Wang and E. H. Adelson. Representing moving images with

layers. IEEE Trans. on Image Processing, 3(5):625–638, 1994.

[Wil98] L. Williams. Image jets, level sets and silhouettes. Work-

shop on Image-Based Modeling and Renderingt, http://www-

graphics.stanford.edu/workshops/ibr98/, March 1998.

[YDMH99] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumina-

tion: Recovering reflectance models of real scenes from photographs.

Proc. of SIGGRAPH, 1999.

