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Abstract—Computational models of cardiac electromechan-
ics (EM) are increasingly being applied to clinical problems,
with patient-specific models being generated from high
fidelity imaging and used to simulate patient physiology,
pathophysiology and response to treatment. Current struc-
tured meshes are limited in their ability to fully represent the
detailed anatomical data available from clinical images and
capture complex and varied anatomy with limited geometric
accuracy. In this paper, we review the state of the art in
image-based personalization of cardiac anatomy for bio-
physically detailed, strongly coupled EM modeling, and
present our own tools for the automatic building of anatom-
ically and structurally accurate patient-specific models. Our
method relies on using high resolution unstructured meshes
for discretizing both physics, electrophysiology and mechan-
ics, in combination with efficient, strongly scalable solvers
necessary to deal with the computational load imposed by
the large number of degrees of freedom of these meshes.
These tools permit automated anatomical model generation
and strongly coupled EM simulations at an unprecedented
level of anatomical and biophysical detail.

Keywords—Mesh, Myocardial fiber architecture, Finite ele-

ment, High performance computing, Strong scaling.

INTRODUCTION

The heart is an electrically controlled mechanical

pump, which transforms chemical energy into kinetic

energy. Each beat starts with the spontaneous depo-

larization of cells in the sinoatrial node on a timescale

of milliseconds, and ends with blood flowing out of the

heart to the rest of the body approximately once every

second. This transduction across multiple physical

systems [electrophysiology (EP), cardiac muscle

mechanics, and fluid flow], multiple spatial scales

(from subcellular processes to the whole cardiovascu-

lar system), and temporal scales (from fast switching of

gates in the microsecond range to slower processes

such as the formation and sustenance of arrhythmias

on the order of seconds to minutes) makes the heart an

inherently challenging organ to study through reduc-

tionist approaches. The use of biophysical models to

efficiently encapsulate wider physiology and provide a

simulated context for the interpretation of measured

data, generate new hypotheses and predict outcomes is

increasingly realized as a necessary rather than a novel

element of advanced cardiac physiology and pathology

studies. These models facilitate the mechanistic analy-

sis of cause-effect relationships at high spatio-temporal

resolutions in the intact organ, something not achiev-

able with any other experimental modality.

Computational models of cardiac electromechanics

(EM) are increasingly being considered in clinical

applications as an additional modality to optimize

therapies42 or understand therapy mechanisms.43

While detailed EP models have been used to study

primarily electrophysiological diseases such as

arrhythmia,38 other diseases such as dilated car-

diomyopathy require a complete representation of

EM.43 This growth of models beyond basic physiology
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into the clinic poses many opportunities for advancing

patient care, but also poses challenges in the person-

alization of models to the complex and diverse cardiac

anatomy and function in the patient population. Al-

though every patient’s heart must achieve some com-

mon basic function, refilling and pumping blood with

each beat, the variation within the population is non-

negligible. This can stem from anatomical differences,

for example where the right ventricular apex attaches

to the left ventricle, the number of pulmonary veins, or

the orientation and location of the heart within the

thorax. Additional morphological and functional

variations become apparent as patients age and

pathologies develop with distinct scar, fibrosis, hyper-

trophic or dilated remodeling and cellular physiology

abnormalities. Accounting for such variations

requires a move away from modeling the representa-

tive heart, as has been applied in numerous animal

species,22,34,62,67 towards modeling individual hearts.

In theory, this approach should be as easy as

applying model creation techniques that have been

developed for animal models to human cases. How-

ever, the majority of animal models were developed

from work intensive and destructive ex vivo analysis,

which is not applicable in clinical scenarios where

model construction relies upon in vivo imaging. A

number of publicly available models of the canine,45

rabbit7,67 and porcine61 cardiac anatomy have pro-

vided the anatomical basis for cardiac modeling for

almost twenty years, progressing from early idealized

geometric representations45 to more anatomically

accurate models with a high level of detail.7

While cardiac function is often approximated as a

unidirectional electro-mechano-fluidic causality chain,

the coupling between the physics is bidirectional.

Electrical activation and repolarization steer mechan-

ical contraction and relaxation through excitation–

contraction coupling (ECC).6 Any disturbances in the

controlling EP acutely impair pump performance and,

if they persist, trigger maladaptive remodeling pro-

cesses. Conversely, alterations in mechanical environ-

ment influence EP through mechano-electric feedback

(MEF),26 which performs important acute and regu-

latory roles in the adaptation of the heart’s pumping

performance to metabolic demand.

While there is a clear recognition that bidirectional

EM coupling is crucial to the function of the heart, this

has not been reflected in the development of cardiac

EM models. The vast majority of EP modeling studies

ignore the effects of mechanical deformation, and most

mechanical modeling studies do not explicitly represent

EP as the physics controlling deformation. Most EM

modeling studies have made the assumption of weak

coupling, where EP feeds into mechanics but MEF

mechanisms are not taken into account. While such

models have proven suitable for addressing a variety of

questions,22,43 bidirectionally or strongly coupled EM

models are clearly preferable as there is clear evidence

that EP is modulated by tissue distension.21,27

Among reasons why the majority of modeling

studies preferred weakly coupled EM models, technical

considerations rank highly. One major motivation for

solving weakly coupled EM models has been the desire

to use numerical approaches that are tailored to a

specific physics, as the numerical requirements of EP

and mechanics are strikingly different. EP models

feature fast transients in time which translate into steep

wave fronts in space. State of the art EP organ scale

models are therefore discretized at high spatio-

temporal resolutions to accurately capture these

dynamics9,44 while also resolving fine scale structural

detail50,69 and functional heterogeneities.20 In contrast,

due to the smoother spatio-temporal characteristics of

deformation14 numerical constraints upon discretiza-

tion are less severe. Much coarser discretizations are

used and fine scale anatomical features or functional

heterogeneities are omitted. Furthermore, in a weak

coupling scenario, EP and mechanical models can be

developed independently, reducing the complexity of

implementation and numerical scheme construction.

This split into two sequentially executed solution

steps is reflected in a notable divergence in the em-

ployed numerical methods between EP and mechanics

modeling communities. This is apparent when consid-

ering the degrees of freedom (DOF) required to dis-

cretize a human heart: in EP models DOF are on the

order of tens of millions,41,52,55 whereas in mechanical

models the DOF required are much lower, on the order

of thousands22 to tens of thousands.13 To achieve

sufficiently short simulation cycles in EP modeling

studies, two approaches are currently being investi-

gated: either spatio-temporally adaptive methods are

employed, realized by spatial h-adaptivity10 or poly-

nomial p-adaptivity,1 or, strongly scalable solvers are

used, which reduce execution times by engaging a

larger number of computational units, be it traditional

CPUs41,55 or acceleration devices such as GPUs.39

Most mechanical modeling studies have relied upon

direct solvers, which tend to be less suitable for high

resolution problems.17 Exceptions exist where strongly

scalable iterative solvers were employed, but these have

only been used for vascular models.3,24

In coupled EM models a balance has to be struck

between the competing demands of EP and mechanics

modeling. One approach is to use overlapping meshes

of different resolutions: a fine mesh for discretizing EP

and a coarser mesh for mechanics.14,43 While this is

readily achieved with anatomically simplified EM

models,40 with geometrically detailed, image-based

models the implementation of this approach may be
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more demanding under two conditions. Firstly, in

cases where a perfect overlap cannot be achieved,

extrapolation or projection of data between meshes

will be required. Secondly, the need for the higher

resolution mesh to conform to the nodes of the coarse

mesh may place undue constraints on meshing and

degrade mesh quality. Further, with strongly coupled

EM models the computational savings may be lim-

ited, as the spatio-temporal dynamics of coupling

variables impose additional spatial discretization

constraints, necessitating finer spatial resolutions as

it would be necessary for a weakly coupled EM

problem.47

Alternatively, the same mesh can be used for both

EP and mechanics.15 However, with biophysically de-

tailed EP models, spatial resolutions <250 lm are

necessary to achieve acceptable accuracy.9,44 Dis-

cretizing human hearts at such resolutions gives rise to

upwards of 108 mechanical DOF. To deal with such

vast computational loads, the use of strongly scalable

iterative solvers seems necessary.2 Alternatively, dis-

cretization constraints can be relaxed by resorting to

low dimensional EP models with slow upstroke

velocities combined with simplified active stress mod-

els.4,40 This approach is less suitable for studying more

subtle coupling mechanisms, as none of the key phys-

iological quantities of interest are explicitly repre-

sented.

Despite impressive methodological advances,

translating the use of computational EM models into

tangible clinical benefits remains a challenging task.

Construction of patient-specific anatomical models

and their parameterization typically requires a com-

plex workflow: tomographic images are acquired;

image data are segmented and registered; anatomical

meshes are generated54 and fiber architecture is map-

ped onto them;5 EP models are parameterized to

approximate a patient’s electrical activation pattern

and functional EP gradients to match recorded elec-

trograms;53 the unstressed reference geometry is esti-

mated and parameters describing material properties,

active stresses and models of circulatory dynamics are

identified based on hemodynamic data.28,43 A high

degree of automation is necessary for all processing

steps to minimize errors and to keep processing times

within bounds compatible with clinical workflows.

While all processing stages are of high relevance, we

focus this review on developments in creating person-

alized, anatomically accurate, computational models

of coupled EM from in vivo imaging data, and the

mapping of fiber architecture to these models for

clinical applications such as cardiac resynchronization

therapy in which the representation of both EP and

mechanics is important. We also elucidate the corre-

sponding computational implications regarding dis-

cretization and solving the resulting system of

equations. Finally, these techniques are contrasted

with a novel automatic model generation approach for

high throughput modeling studies. The method is able

to capture all anatomical detail that can be delineated

from images with high geometric fidelity. Combined

with scalable solvers for both EP and mechanics, this

method enables EM modeling studies at an unprece-

dented level of detail without compromise of

anatomical fidelity or representation of biophysical

mechanisms.

ANATOMICAL MODEL PERSONALIZATION

Medical imaging plays a pivotal role in the

anatomical personalization process,32 as it provides

both anatomical information describing the shape of a

patient’s heart and structural information on fiber

architecture,64 such as the location of scar, fibrosis, fat

deposits and vascularization. The conversion of such

tomographic imaging data into a discrete finite element

(FE) model relies upon model generation pipelines,

comprising the processing stages illustrated in Fig. 1.

In practice, the accuracy of the model anatomy is

limited by the resolution and quality of the source

medical images, uncertainties in their segmentation,

and the resolution and type of FE mesh used. In gen-

eral, computed tomography (CT) offers superior res-

olution and contrast than Magnetic Resonance

Imaging (MRI) (with resolutions on the order of 350

and 1000 lm possible respectively), however the latter

is more commonly used in clinical cardiology and

therefore as a basis for in vivo computational mod-

elling.

Anatomical Segmentation

MRI or CT images can be segmented automatically

or semi-automatically by a variety of methods, with

contrast-guided region growing algorithms being

popular.68 More advanced methods register an atlas of

cardiac segmentations71 or a geometric model48 with

the image to be segmented, with some using machine

learning to ensure a regular and robust model fit.70

These techniques significantly reduce the time and

propensity to operator bias of manual or semi-auto-

matic methods. Tissue classification is also often per-

formed at the image segmentation stage, assisting the

later imposition of boundary conditions and hetero-

geneous assignment of electro-mechanical properties.

Delineation of functionally different regions, such as

fibrosis or scar, is possible by segmentation and reg-

istration of specialized imaging, as highlighted in

Fig. 1.
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Anatomical Mesh Generation

The choice of method used to discretize the cardiac

anatomy has significant consequences for the level of

detail and accuracy of the anatomical model and for

the computational cost of simulation, especially for

cardiac mechanics.

High Order Structured Meshes for Mechanics

Historically, whole organ cardiac EM models have

used a weakly coupled approach, solving EP first on a

fine mesh before transferring results to a coarser, high

order mesh for the mechanical simulation.14,43 Struc-

tured meshes have been preferred for modeling cardiac

mechanics as they facilitate geometric representations

of the heart with a smaller number of elements and

their regular structure often allows generating meshes

of better quality. This provides computational benefits

as the construction of solvers may be easier, the

resulting matrices have better condition numbers,

which leads to faster convergence of iterative solvers.

While approaches for the image-based generation of

high resolution, unstructured meshes for simulation of

EP are well developed,54 the personalization of struc-

tured, high order meshes for the simulation of cardiac

mechanics is a more difficult task. Initial personalized

EM studies used a labour intensive manual manipu-

lation approach, with additional optimization steps to

improve the match with the cardiac anatomy.14,43 As

illustrated in Fig. 2, later developments have enabled

the semi- or fully automatic generation of such meshes,

by automating the processes of mesh topology gener-

ation and template mesh alignment, combined with a

robust fitting method.30

While many of the hurdles restricting the usefulness

of high order structured meshes have been overcome,

some fundamental limitations remain. A simplified and

smoothed representation of the cardiac anatomy was

advantageous when computing power was limited,

however with continuing advances in hardware and

numerical techniques alleviating this restriction, the

smoothing cubic Hermite basis functions now restrict

our ability to capture thin or fine structures such as the

atria or endocardial trabeculations. Indeed, while the

structured high order mesh approach has permitted the

simulation of biventricular electromechanics, the right

ventricular wall thickness is often overestimated for the

sake of simulation stability.33 In addition, the use of a

template based on a priori knowledge of the ventricular

shape leads to fitting errors where the patient-specific

anatomy has a different structure (Fig. 3).

Unstructured Meshes for Mechanics

While the use of structured meshes for modeling

cardiac mechanics prevails, unstructured meshes, con-

structed with tetrahedral15,60 or hybrid elements,13 can

also be used. As unstructured meshes are well estab-

lished in EP modeling, mature tools are already well

developed for their generation.7,50,54 Their key advan-

tage is that geometrically complex objects can be

automatically tessellated with smooth surface repre-

sentations, including finer anatomical detail (Fig. 4).

Thus the implicit smoothing and a priori shape

assumptions of structured mesh fitting is avoided.

FIGURE 1. Illustration of typical workflow for generation of a personalized anatomical model of the heart from medical images.
Acquired anatomical imaging, such as from MRI, is segmented, and structural or functional imaging, such as contrast-enhanced
MRI for imaging scar tissue, is registered with the anatomical imaging. A FE mesh is generated from the anatomical segmentation,
fiber orientations are assigned (potentially from imaging, not shown), and regional tags are mapped based on registered struc-
tural/functional data.
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In principle, the same unstructured mesh can be

used for the simulation of EP and mechanics. How-

ever, a mesh of sufficient spatial resolution to accu-

rately solve EP equations with a biophysical cell

model9,44 would be so large as to make the solution of

mechanics computationally intractable using standard

numerical software.

This problem is often circumvented by using sim-

plified representations of cardiac EP, such as the

Eikonal equation23,60 or the Fitzhugh–Nagumo

model.4,22 Thus steep wave fronts associated with

biophysically detailed EP models are avoided, which

relaxes spatial discretization constraints and reduces

computational costs. While such approaches may suf-

fice in studies where EP serves solely as a trigger of

contraction, for investigating complex EP or EM

mechanisms, such as the formation and sustenance of

arrhythmias38 or MEF effects,35 these models fail to

capture the necessary level of detail.

Another viable approach is to use separate

unstructured meshes at different resolutions for EP and

mechanics. While this offers the benefit of a good

accuracy to computational cost balance for both phy-

sics, it introduces a number of practical challenges in

linking the simulations together, as data must be pro-

jected between two imperfectly overlapping meshes,

which differ in spatial discretization and parallel par-

titioning.

Fiber Architecture

Geometric models derived from imaging data de-

scribe the cardiac anatomy and the location of regional

tissue variations, but do not include information

regarding the distribution of fiber orientations.

Architectural knowledge of the tissue’s structural ani-

sotropy is vitally important to faithfully model elec-

trical conduction and active force generation.

However, the fiber architecture of the myocardium

cannot yet be acquired clinically with a sufficiently high

resolution.64 Modeling studies therefore determine the

fiber architecture from histology or ex vivo diffusion

tensor MRI (DT-MRI), applied to the personalized

anatomical model using mathematical ‘rules’ or more

complex approaches, as discussed below.

Early modelling studies used detailed histology to

determine fiber orientations in the heart,67 with more

recent application of confocal imaging permitting the

delineation of fiber architecture in isolated regions of

the ventricle in healthy tissue51 and around regions of

infarct scar56 as well as the entire atria.69 DT-MRI,

whilst having lower resolution than histology, as well

as potential errors due to partial volume effects or

changes in tissue properties following the processing of

ex vivo samples,16 has the distinct advantage of pro-

viding fiber orientation information throughout the

entire subject heart in a relatively efficient manner.

Rule-Based Methods of Assigned Fiber Architecture

The first of the so-called ‘rule-based’ methods for

assigning fiber orientation to ventricular cardiac

models defined a transmural variation in fiber helix

angle52 based on histological data.63 Despite their

simplicity, simulation studies have shown that rule-

based fiber orientations produce electrical activation

sequences that closely match those from models with

fibers from high resolution ex vivo DT-MRI.5 How-

ever, a key limitation of these simple rule-based

approaches is that they only represent fiber architec-

ture within the bulk of the ventricular wall. Additional

rules may be required to represent fiber structure

within complex endocardial structures, as well as

around intramural structures. Rule-based fibers may

be assigned to the anatomical model by a method

utilising solutions of a Laplace-Dirichlet problem to

compute a local reference frame.5

Atlas-Based Methods

Atlas-based approaches are increasingly being used

as a reliable means of assigning fiber architecture. In its

simplest form, the fiber architecture from one heart

may be directly mapped over to a new geometry.28,31,65

Here, a mesh warping process is used to register the

geometrical mesh associated with the DT-MRI fiber

data onto an idealized template mesh. Any new model

requiring fiber vectors is similarly warped onto the

template, and the fibers incorporated in the new model

using the same variational warping technique used in

the anatomical fitting process.31 Such single-dataset

methods have been shown to successfully incorporate

fiber architecture information into new image-derived

geometries with no significant errors in clinically rele-

vant electrophysiological characteristics.31,65 Atlas-

based methods also have the advantage of automati-

cally incorporating heterogeneity in fiber architecture,

which may be overly complex to represent in rule-

based methods.

Atrial Fiber Architecture

While ventricular fiber architecture has been studied

extensively and numerous fiber assignment methods

have been developed, less attention has been paid to

atrial fiber architecture.18 Significant limitations of

in vivo imaging of the thin walled atria have motivated

comprehensive anatomical and morphological ex vivo

studies.18,66,69

The majority of atrial modeling studies have incor-

porated fiber architecture using rule-based approaches,
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where the defined rules qualitatively approximated

reports in the literature. However, due to the complex

nature of atrial fiber architecture, deriving a set of rules

sufficiently generic to be applicable to the entire atria

remains a challenge; rather, rules are generally assigned

manually to specific atrial regions.11,58 Various rule-

based approaches have been proposed, all of which

require varying degrees of manual intervention.29,57

FIGURE 2. Examples of structured meshes used for anatomical modeling of the ventricles in the literature. Gurev et al.14 de-
formed a double sheet layer with a split for the RV using a semi-automatic method (a) to generate a mesh personalized to the
ventricular anatomy (b). Lamata et al.30 generated a template mesh from ellipsoidal shells (c), which was fitted to the ventricular
anatomy by an automated method utilising image registration methods (d).

FIGURE 3. Comparison (b) of a tricubic Hermite anatomical model (c) with the source segmentation (3D isosurface, a) at the
basoanterior join of the RV wall with the LV. The template-based cubic Hermite mesh cannot accurately capture the ventricular
anatomy at joins such as this where the template does not conform to anatomical structure.
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More recently, atlas-based methods using a number of

distinct landmarks have been proposed.37,57 Modeling

studies which accounted for the complex atrial fiber

architecture demonstrated its influence on both atrial

EP and mechanics.29,57,69

HIGH RESOLUTION WHOLE ORGAN EM

MODEL GENERATION PIPELINE

The modeling of strongly coupled EM poses a

particular challenge for the discretization of the solu-

tion domain. Historically, studies have used coarse,

high order meshes for simulating mechanics to keep

computational costs low, though other practical con-

siderations limit the coupling of such a model to spa-

tially converged EP.

We have therefore developed a simulation software

capable of simulating whole organ mechanics at a high

spatio-temporal resolution, so that both EP and

mechanics can be solved, and spatially converged, on

the same grid.2 Not only does this alleviate the prac-

tical problems of projecting information between

computational meshes of complex topolgies and dif-

ferent resolutions, but it also enables the automatic

generation of anatomical models for EM from medical

images using existing mesh generation tools54 with a

high geometric fidelity. Building on these tools, we

have developed a robust pipeline for the generation of

personalized models of cardiac EM from clinical

imaging. Except for the initial segmentation stage

which requires interactive processing, the entire model

building workflow is fully automatable.

Model Generation

Image Segmentation

In our model generation pipeline, the cardiac anat-

omy is first segmented from source medical imaging by

one of the semi- or fully automatic methods discussed

above. The segmentation is tagged by anatomical re-

gion, assisting the later imposition of boundary con-

ditions and regional differences in electrical and

mechanical material properties.

The anatomical model shown in Fig. 5 illustrates

our anatomical model processing pipeline. The dataset

shown was derived from a whole heart, end diastolic,

3D, steady state free precession (SSFP) MRI with an

isotropic resolution of 1.3 mm. Segmentation was

performed by a model-based method.48

Segmentation Smoothing and Upsampling

Prior to the generation of a FE mesh, a smoothing

and upsampling step is performed on the segmented

FIGURE 4. Image-based unstructured mesh generation: Shown is an anterior view of a tetrahedral FE representation of rabbit
ventricles, generated from a high resolution (�25lm isotropic resolution) ex vivoMRI scan.7,50 A frontal cut exposes complexity of
endocardial structure such as papillary muscles and trabeculation. The mesh accounts for all geometric features which can be
resolved at the chosen average mesh resolution of �110lm.
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image stack . The upsampling step, which increases

spatial resolution from clinical resolution (�1 mm) to

modeling resolution (�100 lm) is performed to avoid

‘staircase’ effects that occur when meshes are generated

at a much higher resolution than the source segmen-

tation, as the mesh traces the boundaries of the rela-

tively large voxels of the segmentation. A combined

smoothing and upsampling step attenuates this effect,

resulting in a significantly improved representation of

myocardial surfaces in the model.

Starting from a lower resolution, anatomically tag-

ged image segmentation, we generate a three dimen-

sional surface mesh delineating the boundaries

between anatomical tags. A binary segmentation of

each tag is created, and its bounding surface is trian-

gulated using the marching cubes method.36 The

resulting surfaces are combined, with redundant

interfaces removed.

A variational method25 is then employed to correct

for low resolution artifacts of the surface. Smoothing is

achieved by minimizing a high order penalty,8 in this

case the quadratic norm of the Laplacian of the surface

nodes, subject to neighborhood box constraints im-

posed on surface nodes. The maximum displacement

of the surface from its initial state is restricted to �0:5

of the voxel size, ensuring that the result is within the

margin of error of the segmentation. The resulting

smoothed surface representation is then rendered,

generating a new tagged image segmentation of arbi-

trary resolution.

Mesh and Fiber Generation

A high resolution mesh of a four chamber heart is

created using the Tarantula mesh generation software

(CAE Software Solutions, Eggenburg, Austria), which

builds unstructured, boundary fitted, locally refined

tetrahedral meshes54 and maps classification tags from

the input segmentation onto the generated mesh. Or-

thotropic eigenaxes are assigned in both ventricles

using the Laplace-Dirichlet rule-based method.5 This

method requires the selection of LV endocardium, RV

endocardium and biventricular epicardium, plus apex

and base of the heart. These selections are automat-

able using the assigned classification tags by extracting

surfaces of individual tag sets and performing logical

set operations on these surfaces. For instance, the

epicardial surface, Cepi, is found as the combination

Cepi ¼ CLVepi \ CRVepi, where CLVepi and CRVepi
are RV and LV epicardium, respectively, which in turn

are found as the intersectionsCLVepi ¼ CLV [ CB and

CRVepi ¼ CRV [ CB, where CLV, CRV and CB are

the surfaces of the tag sets RV, LV and background.

Figure 6 shows the generated fiber orientations.

Simulation Results

Feasibility of our approach is demonstrated by

simulating a heart beat of a human Langendorff setup

using the high resolution four chamber anatomical

FIGURE 5. Workflow for the generation of tagged, high resolution models of the cardiac anatomy from a medical image seg-
mentation. The segmentation is tagged by anatomical region and separately smoothed by a variational method. The smoothed
surface is re-rasterized at a high resolution and regional tags are mapped to the new image stack. This image stack is finally fed
into an image-based mesh generator to construct a high resolution, tagged, 3D anatomical model which closely matches the
source segmentation.
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model illustrated in Figs. 5 and 6. The model was

discretized at an average resolution of 220 lm, yielding

a mesh of 184.6 million tetrahedral elements and 95.9

million displacement DOF (Fig. 7a). The cost of

solving the large systems of equations was addressed

by developing a highly parallel, strongly scalable a

domain decomposition algebraic multigrid precondi-

tioner for an iterative Krylov solver,39,49 adapted for

nonlinear biomechanics.2 The solver converged on

avarge in �6 Newton iterations with an average

number of �250 iterations per linear solver step. The

bidomain equations were solved as described previ-

ously.39 The same mesh was used for discretizing both

EP and mechanics equation. Cellular dynamics was

represented by the Grandi–Pasqualini–Bers human

ventricular myocyte model,12 strongly coupled to the

Land–Niederer active stress model,34 with the ortho-

tropic Holzapfel–Ogden constitutive model.19 Spatial

distribution of intracellular calcium ½Ca2þ�i, fiber

stretch k, displacement norm jjujj and active stress Sa
are shown in Fig. 7c. The simulation of a single

heartbeat took 235.3 minutes using 8 192 compute

cores on the SuperMUC high performance computing

(HPC) resource.

FUTURE DIRECTIONS AND CHALLENGES

Developments in the field of personalized EM

modeling are primarily focused on the drive towards

clinical utility and application of models in an ad-

vanced diagnostic workflow. While personalized

models have been used in a single case to investigate

problems of clinical interest,42,43 the complex and la-

bor-intensive process of generating models from clincal

data restricts their application as a regular diagnostic

or treatment planning tool in the clinic, where rela-

tively fast turnaround times are required. While ad-

vances in the tools and processing pipelines for model

building, as discussed in this paper, have made signif-

icant progress towards this goal, further streamlining is

required.

FIGURE 6. Visualization of fiber structure generated by a
rule-based method.5 Shown are the principal fiber direction in
the ventricles, with layers of the LV cut away to reveal the
transmural variation.

FIGURE 7. (a) Four chamber heart model discretized at a spatial resolution of 220lm. Dirichlet boundary conditions were applied
at the termini of the meshed superior and inferior cavae, all pulmonary veins and at the bottom of a soft material block attached to
the apex (orange). Insets illustrate geometric detail and smoothness of the discretized model. (b) Electrical activation was initiated
by stimulating the ventricular endocardia. Local activation times are shown from anterior and posterior views. (c) An entire heart
beat was simulated over 500 ms. The spatial distribution of intracellular calcium ½Ca2þ�i, fiber stretch ratio k and displacement norm
jjujj at t ¼ 130ms, and active stress Sa at t ¼ 190ms are shown. Due to strong coupling, where calcium binding of troponin C is a
function of stretch, heterogeneity in k is reflected in ½Ca2þ�i.

CROZIER et al.66



Computer models are inherently approximations

and are not able to reliably capture every aspect of

cardiac function. A key component in modeling the

heart are the cellular models that couple EP, calcium

handling and contraction. Current models are built by

combining multiple existing models, but the increased

need for well described coupled cell models for organ

scale simulations will hopefully lead to dedicated

coupled models in the future. Such models allow us to

simulate cardiac cells under physiological loading

conditions to improve determining the parameters for

cellular model under in-vivo physiological conditions.

Including the interaction between EP and mechanics

will move us closer to simulating the complex regula-

tion and physiology of the heart.

Beyond building anatomical models, the parametriza-

tion of EM models as well as their validation and

verification is an open challenge46 that needs to be

addressed to gauge the reliability of model predictions.

However, most model parameters cannot be measured

in vivo with sufficient accuracy, or they cannot be

measured at all and have to be identified, something

that is not feasible today for EM models in a unique

manner. The development of robust data assimilation

strategies is therefore of utmost importance.59

Computations in cardiac EM modeling software are

increasingly being performed on accelerators such as

GPUs,39 which opens up exciting new directions for

the possible applications of EM modeling software.

High resolution models of whole organ function, as

discussed in this paper, must be computed on HPC

resources, which due to their expense and size are

usually shared and off-site. Particularly when com-

bined with simpler models with less demanding spatial

resolution requirements, such as the Eikonal equation,

GPU computation permits rapid computation of a

personalized EM model on hardware of a size and

price compatible with on-site deployment in a clinical

setting.

CONCLUSIONS

Over the past decade, a number of effective work-

flows have been developed for creation of patient-

specific, anatomically accurate EM models. Template-

based automatic structured mesh generation tech-

niques can provide personalized biventricular ana-

tomies with few DOF, but a significant degree of

geometric simplification is inevitable and exact

anatomical correspondence cannot be guaranteed.33

Conversely, fully automatic, image-based unstructured

meshing techniques have reached a level of maturity

that enables the generation of large cohorts of models

in high throughput modeling studies without com-

promising geometric fidelity.54

The disadvantage of this latter approach is the large

number of DOF incurred by a discretization which is

sufficiently fine for the computation of nearly con-

verged solutions9,44 when considering biophysically

detailed strongly coupled EM models. While the use of

such a high resolution is accepted as necessary for

modeling EP, this is not yet the case for mechanics.

However, computational limitations are steadily being

alleviated as more and more powerful hardware

becomes available in the era of Exascale computing

and better scalable numerical methods are devel-

oped.2,24

These technologies are poised to enable a new car-

diac EM modeling paradigm in which cardiac anatomy

is represented with high geometric fidelity, and where

the level of biophysical detail is chosen according to

the questions being addressed, without the tight tech-

nical limitations of weakly coupled EP and mechanics

modeling tools.
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