
Image-based Plant Modeling

Long Quan Ping Tan Gang Zeng Lu Yuan Jingdong Wang Sing Bing Kang∗

The Hong Kong University of Science and Technology ∗Microsoft Research

(a) (b) (c) (d)

Figure 1: Image-based modeling of poinsettia plant. (a) An input image out of 35 images, (b) recovered model rendered at the same viewpoint
as (a), (c) recovered model rendered at a different viewpoint, (d) recovered model with modified leaf textures.

Abstract

In this paper, we propose a semi-automatic technique for modeling
plants directly from images. Our image-based approach has the dis-
tinct advantage that the resulting model inherits the realistic shape
and complexity of a real plant. We designed our modeling system to
be interactive, automating the process of shape recovery while rely-
ing on the user to provide simple hints on segmentation. Segmenta-
tion is performed in both image and 3D spaces, allowing the user to
easily visualize its effect immediately. Using the segmented image
and 3D data, the geometry of each leaf is then automatically recov-
ered from the multiple views by fitting a deformable leaf model.
Our system also allows the user to easily reconstruct branches in a
similar manner. We show realistic reconstructions of a variety of
plants, and demonstrate examples of plant editing.

CR Categories: I.3.5 [Computer Graphics]: Computational ge-
ometry and object modeling—Modeling packages; I.4.5 [Image
Processing and computer vision]: Reconstruction.

Keywords: Tree modeling, plant modeling, image-based model-
ing, photography.

1 Introduction

Plants remain one of most difficult kinds of object to model
due to their complex geometry and wide variation in appearance.
While techniques have been proposed to synthetically generate
realistic-looking plants, they either require expertise to use (e.g.,
[Prusinkiewicz et al. 1994]) or they are highly manual intensive.
Current image-based techniques that use images of real plants
have either produced models that are not easily manipulated (e.g.,
[Reche-Martinez et al. 2004]) or models that are just approxima-
tions (e.g., [Shlyakhter et al. 2001]).

Our approach is image-based as well, but we explicitly extract
geometry and we strictly enforce geometric compatibility across
the input images. Image acquisition is simple: The camera need
not be calibrated, and the images can be freely taken around the
plant of interest. Our modeling system is designed to take advan-
tage of the robust structure from motion algorithm developed in
computer vision community. It is also designed to allow the user
to quickly recover the remaining details in the form of individual
leaves and branches. Furthermore, it does not require any expertise
in botany to use. We show how plants with complicated geometry
can be constructed with relative ease. One of the motivations for
developing an image-based approach to plant modeling is that the
geometry computation from images tend to work remarkably well
for textured objects [Hartley and Zisserman 2000], and the plants
are often well textured.

Once the realistic geometry of a plant has been extracted, it can
be used in a number of ways, for example, as part of an architectural
design, in games, or even for the scientific study of plant growth.
Furthermore, since geometry is available, it can be easily manip-
ulated or edited. We show examples of plant reconstruction and
editing in this paper.

2 Prior work

Many approaches have been proposed to model plants and trees,
and they can be roughly classified as either rule-based or image-
based.

Rule-based methods. Rule-based methods use compact rules or
grammar for creating models of plants and trees. As a prime
example, Prusinkiewicz et al. [1994] developed a series of ap-
proaches based on the idea of the generative L-system. Weber and
Penn [1995] use a series of geometric rules to produce realistic-
looking trees. De Reffye et al. [1988] also use a collection of
rules, but the rules are motivated by models of plant growth. There
are also a number of techniques that take into account various
kinds of tree interaction with the environment (e.g., [Mech and
Prusinkiewicz 1996; Prusinkiewicz et al. 2001; Van Haevre and
Bekaert 2003; Noser et al. 2001; Noser and Thalmann 1994]).

While these methods are capable of synthesizing impressive-
looking plants, trees, and forests, they are based on rules and param-
eters that are typically difficult to use for a non-expert. Plants have
specific shapes that are formed naturally (inherent growth pattern),

��������	
���

���

������������ ��������	��
����������

��������
��

�����

�����

���	��
����������������
��
�����

�����������
��

Figure 2: The overview of our image-based plant modeling approach.

caused by external biological factors (such as disease), a result of
human activity (such as localized pruning), or shaped by other ex-
ternal factors (such as fire, flood, or nearby structures). Generating
a model that very closely resembles an actual plant under a vari-
ety of real-world conditions would not be easy using such type of
approach.

Image-based methods. Image-based methods directly model the
plant using image samples (our proposed technique is one such
method). Han et al. [2003] described a Bayesian approach to mod-
eling tree-like objects from a single image using good priors. The
prior models are ad hoc, and the type of recovered 3D model
is rather limited. The approaches described in [Sakaguchi 1998;
Shlyakhter et al. 2001] mainly use the visual hull of the tree com-
puted from silhouettes to represent a rough shape of the tree. The
tree volume is then used to create the tree branching structure for
synthesizing leaves. Shlyakhter et al.’s system [2001] starts with
an approximation of medial axis of the estimated tree volume, and
ends with a simple L-system fit. Sakaguchi et al. [1998; 1999]
use simple branching rules in voxel space instead of L-system for
building the branching structure. All these methods generate only
approximate shapes with limited realism.

More recently, Reche et al. [2004] proposed a technique for com-
puting a volumetric representation of the tree with opacity. While
their results look impressive, their approach does not recover ex-
plicit geometries of the branches and leaves. As a result, their tech-
nique is limited to visualization only, with no direct means for ani-
mation or editing.

3 Overview of Plant Modeling System

Our plant modeling system uses only images for modeling. There
are three parts in our system: image acquisition and structure from
motion, leaf segmentation and recovery, and interactive branch re-
covery. The system is summarized in Figure 2.

We use a hand-held camera to capture images of the plant at
different views. We then apply a standard structure from motion
technique to recover the camera parameters and a 3D point cloud.

Next, we segment the 3D data points and 2D images into in-
dividual leaves. To facilitate this process, we designed a simple
interface that allows the user to specify the segmentation jointly us-
ing 3D data points and 2D images. The data to be partitioned is
implemented as a 3D undirected weighted graph that gets updated
on-the-fly. For a given plant to model, the user first segments out a
leaf; this is used as a deformable generic model. This generic leaf
model is subsequently used to fit the other segmented data to model
all the other visible leaves. Our system is also designed to use the
images as guides for interactive reconstruction of the branches.

The resulting model of the plant very closely resembles the ap-
pearance and complexity of the real plant. Just as important, be-
cause the output is a geometric model, it can be easily manipulated
or edited.

4 Preliminary Processes

Image acquisition is simple: the user just uses a hand-held camera
to capture the appearance of the plant of interest from a number of
different overlapping views. The main caveat during the capture
process is that appearance changes due to changes in lighting and
shadows should be avoided. For all the experiments reported in this
paper, we used between 30 to 45 input images taken around each
plant.

Prior to any user-assisted geometry reconstruction, we extract
point correspondences and ran structure from motion on them to
recover camera parameters and a collection of 3D points. Standard
computer vision techniques have been developed to estimate the
point correspondences across the images and the camera parame-
ters [Hartley and Zisserman 2000; Faugeras et al. 2001]. We used
the approach described in [Lhuillier and Quan 2005] to compute a
semi-dense cloud of reliable 3D points in space. This technique is
used because it has been shown to be robust and capable of pro-
viding sufficiently dense point clouds for depicting objects. This
technique is well-suited because plants tend to be highly textured.

The semi-dense feature points used in [Lhuillier and Quan 2005]
are not the points of interest [Hartley and Zisserman 2000], but
regularly re-sampled image points from a kind of disparity maps.
One example is shown in Figure 2. We are typically able to ob-
tain about a hundred thousand 3D points that unsurprisingly tend
to cluster at textured areas. These points help by delineating the
shape of the plant. Each 3D point is associated with images where
it was observed; this book-keeping is useful in segmenting leaves
and branches during the modeling cycle.

5 Graph-based Leaf Extraction

We next proceed to recover the geometry of the individual leaves.
This is clearly a difficult problem, due to the similarity of color be-
tween different overlapping leaves. To minimize the amount of user
interaction, we formulate the leaf segmentation problem as inter-
active graph-based optimization aided by 3D and 2D information.
The graph-based technique simultaneously partitions 3D points and
image pixels into discrete sets, with each set representing a leaf. We
bring the user into the loop to make the segmentation process more
efficient and robust.

One unique feature of our system is the joint use of 2D and 3D
data to allow simple user assist, as all our images and 3D data are
perfectly registered. The process is not manual intensive as we only
need to have one image segmentation for each leaf. This is be-
cause the leaf reconstruction algorithm (see Section 6) needs only
one image segmentation boundary per leaf. This is sub-optimal but
substantially more efficient.

There are two main steps to the segmentation process: automatic
segmentation by a graph partition algorithm, followed by user in-
teraction to refine the segmentation. Our system responds to user
input by immediately updating the graph and image boundaries.

5.1 Graph partition

The weighted graph G = {V, E} is built by taking each 3D point as
a node and connecting it to its K-nearest neighboring points (K=3)
with edges. The K-nearest neighor is computed using 3D Euclidean
distance, and each connecting edge should at least be visible at one
view. The weight on each edge reflects the likelihood that the two
points being connected belong to the same leaf. We define a com-
bined distance function for a pair of points (nodes) p and q as

d(p, q) = (1 − α)
d3D(p, q)√

2σ3D

+ α
d2D(p, q)√

2σ2D

,

where α is a weighting scalar set to 0.5 by default. The 3D distance
d3D(p, q) is the 3D Euclidean distance, with σ3D being its vari-
ance. The 2D distance measurement, computed over all observed
views, is

d2D(p, q) = max
i

{ max
ui∈[pi,qi]

gi(ui)}.

The interval [pi, qi] specifies the line segment joining the projec-
tions of p and q on the ith image. ui is an image point on this line
segment. The function g(·) is the color gradient along the line seg-
ment, it is approximated using color difference between adjacent
pixels. σ2D is the variance of the color gradient. The weight of a

graph edge is defined as w(p, q) = e−d2(p,q).

The initial graph partition is obtained by thresholding the weight
function w(·) with k set to 3 by default,

w(p, q) =

{

e−d2(p,q), if d3D < kσ3D and d2D < kσ2D,

0, otherwise.

This produces groups that are clearly different. However, at this
point, the partitioning is typically coarse, requiring further subdivi-
sion for each group. We use the normalized cut approach described
in [Shi and Malik 2000]. The normalized cut computation is effi-
cient in our case as the initial graph partition significantly reduces
the size of each subgraph, and the weight matrix is sparse as it has
at most (2K + 1)N non-zero elements for a graph of N nodes for
K-nearest neighbors. This approach is effective due to the joint
use of 2D and 3D information. Figure 3 shows that if only 3D dis-
tance is used (α = 0), a collection of leaves are segmented but not
individual ones. When images are used (α = 0.5) as well, each col-
lection is further partitioned into individual leaves using edge point
information.

5.2 User interface

In general, the process of segmentation is subjective; the segments
that represent different objects depend on the person’s perception of
what an object is. In the case for partitioning the image into leaves,
while the interpretation is much clearer, the problem is nonetheless
still very difficult. This is because leaves in the same plant look
very similar, and boundaries between overlapping leaves are often
very subtle.

We designed simple ways the user can help refine areas where
automatic segmentation fails. In the interface, each current 3D
group is projected into the image as a feedback mechanism. The
user can modify the segmentation and obtain the image boundary
segmentation in any of the following ways:
Click to confirm segmentation. The user can click on an image
region to indicate that the current segmentation group is accept-
able. This operation triggers 2D boundary segmentation, described
in Section 5.4.
Draw to split and refine. The user can draw a rough boundary to
split the group and refine the boundary. This operation triggers two
actions: First, it cuts off the connecting edges crossing the marked

(a) (b) (c)

Figure 3: Benefit of jointly using 3D and 2D information. (a) The
projection of visible 3D points (in yellow) and connecting edges (in
red) are superimposed on an input image. Using only 3D distance
resulted in coarse segmentation of the leaves. (b) The projection of
segmented 3D points with only the connecting edges superimposed
on the gradient image (in white). A different color is used to in-
dicate a different group of connecting edges. Using both 3D and
2D image gradient information resulted in segmentation of leaflets.
(c) Automatically generated leaflets are shown as solid-colored re-
gions. The user drew the rough boundary region (thick orange line)
to assist segmentation, which relabels the red points and triggers a
graph update. The leaflet boundary is then automatically extracted
(dashed curve).

boundary, so that points inside the boundary are relabelled, which in
turn causes an update of the graph partition by splitting the group
into two subgroups. The graph updating method is described in
Section 5.3. Second, it triggers 2D boundary segmentation.

Click to merge. The user can click on two points to create an
connecting edge to merge the two subgroups.

5.3 Graph update

The graph update for affected groups is formulated as a two-label
graph-cut problem [Boykov et al. 2001] that minimizes the follow-
ing energy function:

E(l) =
∑

l

(1 − δ(lp, lq))
1

d2(p, q) + ǫ
+

∑

l

D(lp),

where δ(lp, lq) is 1 if lp = lq, 0 if lp 6= lq, and lp, lq = {0, 1}. ǫ
is a very small positive constant set to 0.0001. The data term D(·)
encodes the user-confirmed labels:

{

D(0) = 0,
D(1) = ∞,

if lp = 0 and

{

D(0) = ∞,
D(1) = 0,

if lp = 1.

It is implemented as a min-cut algorithm that produces a global
minimum [Boykov et al. 2001]. The complexity of the min-cut is
O(N3), with N nodes and at most 5N edges for our graph. Since
each group is usually rather small (a few thousand nodes), the up-
date is immediate, allowing the interface to provide real-time visual
feedback.

5.4 Boundary segmentation

The image segmentation for a given group of 3D points in a given
image is also solved as a two-way graph-cut problem, this time us-
ing a 2D graph (not the graph for our 3D points) built with pixels
as nodes. Our segmentation algorithm is similar to that of [Li et al.
2004]. However, for our algorithm, the foreground and background
are automatically computed, as opposed to being supplied by the
user in [Li et al. 2004].

The foreground is defined as the entire region covered by the pro-
jected 3D points in a group. The background consists of the projec-
tions of all other points not in the group currently being considered.
As was done in [Li et al. 2004], we oversegment each image using

(a) (b)

Figure 4: Leaf reconstruction for poinsettia (Figure 1). (a) Re-
constructed flat leaves using 3D points. The generic leaf model is
shown at top right. (b) Leaves after deforming using image bound-
ary and closest 3D points.

the watershed algorithm in order to reduce the complexity of pro-
cessing. Any reference to the image is actually a pointer to a color
segment rather than to a pixel.

6 Model-based Leaf Reconstruction

Since leaves in the same plant are typically very similar, we adopt
the strategy of extracting a generic leaf model from a sample leaf
and using it to fit all the other leaves. This strategy turns out to be
more robust as it reduces uncertainty due to noise and occlusion by
constraining the shapes of leaves.

6.1 Extraction of a generic leaf model

To extract a generic leaf model, the user manually chooses an ex-
ample leaf from its most fronto-parallel view, as shown in Figure 4.
The texture and boundary associated with the leaf are taken to be
the flat model of the leaf. The leaf model consists of three poly-
lines: two for the leaf boundary and one for the central vein. Each
polyline is represented by about 10 vertices. The leaf model is ex-
pressed in a local Euclidean coordinate frame with the x−axis be-
ing the major axis. The region inside the boundary is triangulated;
the model is automatically subdivided to increase the accuracy of
the model, depending on the density of points in the group.

6.2 Leaf reconstruction

Leaf reconstruction consists of four steps: generic flat leaf fit, 3D
boundary warping, shape deformation, followed by texture assign-
ment.
Flat leaf fit. We start by fitting the generic flat leaf model to the
group of 3D points. This is done by computing the principal com-
ponents of the data points of the group via SVD decomposition. A
flat leaf is reconstructed at the local coordinate frame determined
by the first two components of the 3D points. Then, the flat leaf is
scaled in two directions by mapping it to the model. The recovered
flat leaves are shown in Figure 4(a).

There is, however, an orientation ambiguity for the flat leaf. Note
that this orientation ambiguity does not affect the whole geometry
reconstruction procedure described in this section, so that the am-
biguity is not critical at this point. A leaf is usually facing up and
away from a branch. We use this heuristic to find the orientation
of the leaf, i.e., facing up and away from the vertical axis going
through the centroid of the whole plant. For a complicated branch-
ing structure, the leaf orientations may be incorrect. Once the
branches have been reconstructed (Section 7), the system will au-
tomatically recompute the leaf orientation using information from
the branching structure.
Leaf boundary warping. While the 3D points of a leaf are ade-
quate for locating its pose and approximate shape, they do not com-
pletely specify the leaf boundary. This is where boundary informa-

tion obtained from the images is used. Each group of 3D points are
associated with 2D image segmentations at different views (if such
segmentation exists). A leaf boundary will not be refined if there
is no corresponding image segmentation for the leaf. On the other
hand, if multiple regions (across multiple views) exist for a leaf, the
largest region is used.

Once the 3D leaf plane has been recovered, we back-project the
image boundary onto the leaf plane. We look for the best affine
transformation that maps the flat leaf to the image boundary by
minimizing the distances between the two sets of points of the
boundaries on the leaf plane in space. We adapted the ICP (Iter-
ative Closest-Point) algorithm [Besl and McKay 1992] to compute
the registration of two curve boundaries. We first compute a global
affine transformation using the first two components of the SVD
decomposition as the initial transformation. Correspondences are
established by assigning each leaf boundary point to the closest im-
age boundary; these correspondences are used to re-estimate the
affine transformation. The procedure stops when the mean distance
between the two sets of points falls below a threshold.

Shape deformation. The final shape of the leaf is obtained by lo-
cally deforming the flat leaf in directions perpendicular to the plane
to fit the nearest 3D points. This adds shape detail to the leaf (Fig-
ure 4(b)).

Texture reconstruction. The texture of each leaf first inherits that
of the generic model. The texture from the image segmentation is
subsequently used to overwrite the default texture. This is done to
ensure that occluded or slightly misaligned parts are textured.

7 Branch Extraction and Reconstruction

Once the leaves have been reconstructed, the next step would be
to reconstruct the branches to complete the plant model. Unfortu-
nately, the branching structure is difficult to reconstruct automati-
cally from images due to occlusion and segmenting difficulties sim-
ilar to those for leaves. One possible approach would be to use rules
or grammar (L-systems). However, it is not clear how these can be
used to fit partial information closely or how the novice user can
exercise local control to edit the 3D branches (say, in occluded ar-
eas).

Our solution is to design a data-driven editor that allows the user
to easily recover the branch structure. We model each branch as a
generalized cylinder, with the skeleton being a 3D spline curve. The
cylindrical radius can be spatially varying. It is specified at each
endpoint of each branch, and linearly interpolated between the end-
points. While the simple scheme may not follow specific botanical
models, it is substantially more flexible and easier to handle—and
it can be used to closely model the observed plant.

The user is presented with an interface with two areas: an area
showing the current synthesized tree (optionally with 3D points
and/or leaves as overlay), and the other showing the synthetic tree
superimposed on an input image. The image can be switched to any
other input image at any time. User operations can be performed in
any one area, with changes propagated to the other area in real-time
as feedback. There are four basic operations the user can perform:

Draw curve. The user can draw a curve from any point of an ex-
isting branch to create the next level branch. If the curve is drawn
in 3D, the closest existing 3D points are used to trace a branch. If
drawn in 2D, at each point in the curve, its 3D coordinate is as-
signed to be the 3D point whose projection is the closest. If the
closest points having 3D information are too far away, the 3D posi-
tion is inherited from its parent branch.

Move curve. The user can move a curve by clicking on any point
of the current branch to a new position.

Edit radius. The radius is indicated as a circle (in 2D) or a sphere
(in 3D). The user can enlarge or shrink the circle or sphere directly

Figure 5: Branch structure editing. The editable areas are shown:
2D area (left), 3D space (right). The user modifies the radii of
the circles or spheres (shown in red) to change the thicknesses of
branches.

on the interface, effectively increasing or reducing the radius, re-
spectively.
Specify leaf. Each branch can be specified whether it can grow
a leaf at its endpoint, as illustrated as green branches in Figure 5.
A synthesized leaf will be the average leaf over all reconstructed
leaves, scaled by the thickness of the branch.

Once the branching structure is finalized, each leaf is automati-
cally connected to the nearest branch. The orientation of each leaf,
initially determined using a heuristic as described in Section 5, is
also automatically refined at this stage. The plant model is produced
by assembling all the reconstructed branches and leaves.

8 Results

Figure 6: An indoor tree. Left: an input image (out of 45). Right:
the recovered model, inserted into a simple synthetic scene.

We have reconstructed a variety of plants with different shapes
and densities of foliage. In this section, we show results for four dif-
ferent plants: nephthytis, poinsetta, schefflera, and an indoor tree.
Because of variation in leaf shape, size, and density, the level of dif-
ficulty for each example is different. We typically capture about 35
images, more for plants with smaller leaves (specifically the indoor
tree). The captured image resolution is 1944×2592 (except for the
poinsettia, which is 1200 × 1600). For the efficiency of structure
from motion, we down-sampled the images to 583 × 777 (for the
poinsettia, to 600 × 800). It took approximately 10 mins for about
40 images on a 1.9GHz P4 PC with 1 GB of RAM. On average, we
reconstructed about 30,000 3D points for the foreground plant (see
the accompanied video).

The recovered texture-mapped geometry models are rendered
using Maya to produce images shown in this paper. The statis-
tics associated with the reconstructions are summarized in Table 8.
About 80 percent of the leaves were automatically recovered by our

nephthytis poinsettia schefflera indoor tree

Images 35 35 40 45

3D pts 128,000 103,000 118,000 156,000

FG pts 53,000 83,000 43,000 31,000

Leaves 30 ≈120 ≈450 ≈1500

(α,k) (0,3) (0.5,3) (0.5,3) (0.3,2)

AL 23 85 287 509

UAL 6 21 69 35

ASL 0 10 18 492

All leaves 29 116 374 1036

BET (min) 5 2 15 40

Table 1: Reconstruction statistics. The foreground points are auto-
matically computed as the largest connected component in front of
the cameras; they include both the plant, pot, and sometimes part
of the floor. The segmentation parameters α and k are defined in
Section 5.1. Note: FG = foreground, AL = automatic leaves, UAL
= user assisted leaves, ASL = additional synthetic leaves, BET =
branch edit time.

system. Figure 6 shows a simple example of inserting the recon-
structed model into a synthetic scene. We also show examples of
plant editing: texture replacement (Figure 1), and branch and leaf
cut-and-paste (Figure 7).

Nephthytis. This plant has large broad leaves, which makes mod-
eling easy. The 3D points are accurate, and leaf extraction and re-
covery are fairly straighforward. Only the extraction of 6 leaves are
assisted by user, and the reconstruction is fully automatic. The 3D
points were sufficient in characterizing the spatial detail of the leaf
shapes, as shown in Figure 8.

Poinsettia and schefflera. These plants have medium sized leaves;
as a result, the recovered 3D points (see the video) on leaves were
still of high quality. Occlusion is difficult when the foliage is dense,
and the foliage for the poinsettia (see Figure 1) and schefflera is
denser than that of the nephthytis. Leaf segmentation of the schef-
flera is complicated by the overlapping leaves and the small leaves
at the tip of branches. We recovered about two-thirds of all possi-
ble leaves, and synthesized some of them (on the top most branch)
using the branching structure, as shown in Figure 7.

Indoor tree. The indoor tree, with its small leaves, was the most
difficult to model. First, the 3D points are less accurate because
they were typically recovered from 2D points on occluding bound-
aries of leaves (which are not reliable). In addition, much more
user interaction was required to recover the branching structure due
to its high complexity. The segmentation was fully automatic using
a smaller k = 2. And for each group containing more than 3 points,
the same automatic leaf fitting procedure like all other examples ex-
cept the generic model is much simpler, is used. But the geometric
accuracy of the orientation of the recovered leaves are noticeably
less reliable than that of the large leaves in the other examples. If
the group contains fewer than 3 points, it is no longer possible to
compute the pose of the leaf. In this case, the pose of each leaf was
heuristically determined using geometry information of its nearest
branch.

9 Concluding Remarks

We have proposed a general approach to modeling plants from im-
ages. The key idea is to combine both available reconstructed 3D
points and the images to more effectively segment the data into in-
dividual leaves. To increase robustness, we use a generic leaf model
(extracted from the same image dataset) to fit all the other leaves.
We also developed a user-friendly branch structure editor that is
also guided by 3D and 2D information. The results demonstrate the

Figure 7: Schefflera plant. Top left: an input image (out of 40
images). Top right: recovered model with synthesized leaves ren-
dered at the same viewpoint as the top left. Bottom right: recovered
model from images only. The white rectangles show where the syn-
thesized leaves were added in the top right. Bottom left: recovered
model after some geometry editing.

effectiveness of our system. We designed our system to be easy to
use; specialized knowledge about plant structure, while helpful, is
not required.

There are several straightforward improvements on our current
implementation. For instance, the graph-based segmentation algo-
rithm could be made more efficient by incorporating more priors
based on real examples. Our current leaf reconstruction involves
shape interpolation using the precomputed 3D points; better esti-
mates may be obtained by referring to the original images during
this process. Also, we use only one 2D boundary to refine the
shape of the 3D leaf model. It may be more robust to incorporate
the boundaries from multiple views instead. However, occlusions
are still a problem, and accounting for multiple view substantially
complicates the optimization. A more complex model for handling
complex-looking flowers could be built as suggested in [Ijiri et al.
2005]. Finally, for enhanced realism, one can use specialized algo-
rithms for rendering specific parts of the plant, e.g., leaf rendering
[Wang et al. 2005].

Acknowledgements

We would like to thank Oscar Au for helping to render results for
this paper and Yichen Wei for his technical assistance. The work
was supported by Hong Kong RGC Grant HKUST6182/04E and
HKUST6190/05E.

References

BESL, P., AND MCKAY, N. 1992. A method for registration of 3D shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence 14, 2, 239–256.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approximate energy mini-

mization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence 23, 11, 1222–1239.

DE REFFYE, P., EDELIN, C., FRANCON, J., JAEGER, M., AND PUECH, C. 1988.

Plant models faithful to botanical structure and development. SIGGRAPH, 151–

158.

Figure 8: Nephthytis plant. An input image out of 35 images on
the left, and recovered model rendered at the same viewpoint as the
image on the left.

FAUGERAS, O., LUONG, Q., AND PAPADOPOULO, T. 2001. The Geometry of Multi-

ple Images. The MIT Press, Cambridge, MA, USA.

HAN, F., AND ZHU, S.-C. 2003. Bayesian reconstruction of 3d shapes and scenes

from a single image. In Proc. IEEE Workshop on Higher-Level Knowledge in 3D

Modeling and Motion Analysis, 12–20.

HARTLEY, R., AND ZISSERMAN, A. 2000. Multiple View Geometry in Computer

Vision. Cambridge University Press, June.

IJIRI, T., OWADA, O., OKABE, M., AND IGARASHI, T. 2005. Floral diagrams and

inflorescences: Interactive flower modeling using botanical structural constraints.

ACM Transactions on Graphics (SIGGRAPH) 24, 3 (July), 720–726.

LHUILLIER, M., AND QUAN, L. 2005. A quasi-dense approach to surface reconstruc-

tion from uncalibrated images. IEEE Transactions on Pattern Analysis and Machine

Intelligence 27, 3, 418–433.

LI, Y., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazy snapping. SIGGRAPH

2004, Los Angeles, USA 23, 3, 303–308.

MECH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of plants interacting with

their environment. SIGGRAPH, 397–410.

NOSER, H., AND THALMANN, D. 1994. Simulating life of virtual plants, fishes

and butterflies. In Artificial Life and Virtual Reality, N. Magnenat-Thalmann and

D. Thalmann, Eds. John Wiley and Sons, Ltd.

NOSER, H., RUDOLPH, S., AND STUCKI, P. 2001. Physics-enhanced L-systems.

In Procs. 9th International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision, vol. 2, 214–221.

PRUSINKIEWICZ, P., JAMES, M., AND MECH, R. 1994. Synthetic topiary. SIG-

GRAPH, 351–358.

PRUSINKIEWICZ, P., MUENDERMANN, L., KARWOWSKI, R., AND LANE, B. 2001.

The use of positional information in the modeling of plants. SIGGRAPH, 289–300.

RECHE-MARTINEZ, A., MARTIN, I., AND DRETTAKIS, G. 2004. Volumetric recon-

struction and interactive rendering of trees from photographs. ACM Transactions

on Graphics (SIGGRAPH) 23, 3 (August), 720–727.

SAKAGUCHI, T., AND OHYA, J. 1999. Modeling and animation of botanical trees

for interactive virtual environments. In Procs. ACM Symposium on Virtual Reality

Software and Technology, 139–146.

SAKAGUCHI, T. 1998. Botanical tree structure modeling based on real image set. In

SIGGRAPH 1998 (Tech. Sketch), 272.

SHI, J., AND MALIK, J. 2000. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence 22, 8, 888–905.

SHLYAKHTER, I., ROZENOER, M., DORSEY, J., AND TELLER, S. 2001. Reconstruct-

ing 3d tree models from instrumented photographs. IEEE Computer Graphics and

Applications 21, 3 (May/June), 53–61.

VAN HAEVRE, W., AND BEKAERT, P. 2003. A simple but effective algorithm to

model the competition of virtual plants for light and space. In Procs. International

Conference in Central Europe on Computer Graphics, Visualization and Computer

Vision (WSCG’03).

WANG, L., WANG, W., DORSEY, J., YANG, X., GUO, B., AND SHUM, H.-Y. 2005.

Real-time rendering of plant leaves. SIGGRAPH 2005, Los Angeles, USA 24, 3,

712–719.

WEBER, J., AND PENN, J. 1995. Creation and rendering of realistic trees. In SIG-

GRAPH, 119–127.

