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Abstract 

Non-Darcy flow is often observed near wellbores and in hydraulic fractures where 

relatively high velocities occur. Quantifying additional pressure drop caused by non-Darcy flow 

and fundamentally understanding the pore-scale inertial flow is important to oil and gas 

production in hydraulic fractures.  

Image-based pore-scale modeling is a powerful approach to obtain macroscopic transport 

properties of porous media, which are traditionally obtained from experiments and understand 

the relationship between fluid dynamics with complex pore geometries. In image-based 

modeling, flow simulations are conducted based on pore structures of real porous media from X-

ray computed tomographic images. Rigorous pore-scale finite element modeling using 

unstructured mesh is developed and implemented in proppant fractures. The macroscopic 

parameters permeability and non-Darcy coefficient are obtained from simulations. The inertial 

effects on microscopic velocity fields are also discussed.  

The pore-scale network modeling of non-Darcy flow is also developed based on 

simulation results from rigorous model (FEM). Network modeling is an appealing approach to 

study porous media. Because of the approximation introduced in both pore structures and fluid 

dynamics, network modeling requires much smaller computational cost than rigorous model and 

can increase the computational domain size by orders of magnitude. The network is validated by 

comparing pore-scale flowrate distribution calculated from network and FEM. Throat flowrates 

and hydraulic conductance values in pore structures with a range of geometries are compared to 

assess whether network modeling can capture the shifts in flow pattern due to inertial effects. 

This provides insights about predicting hydraulic conductance using the tortuosity of flow paths, 
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which is a significant factor for inertial flow as well as other network pore and throat geometric 

parameters. 
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1. Introduction 

Transport through porous media has gained considerable attention in recent decades due 

to its relevance in a wide range of applications such as biological processes, water movement in 

geothermal reservoirs, flow in packed bed reactors, underground spreading of chemical waste, 

and enhanced recovery of petroleum reservoirs. 

In order to understand and quantify transport processes in porous media, models for flow 

in porous media have been developed over many years. They occur over a vast range of length 

scales depending on the transport problem of interest. Two distinct length scales are used in flow 

modeling of porous media: the continuum scale and the pore scale. The continuum-scale 

approach assumes a porous material is continuous and homogeneous and macroscopic properties 

such as porosity, permeability and saturation are used to describe porous media. The continuum 

scale in porous media can range from mm to meters or kilometers in scale. In the oil and gas 

industry, for example, continuum scale flow models are used to predict recovery rates by 

numerically solving mass conservation equations with macroscopic properties over large 

subsurface reservoirs. Darcy’s law, which describes the linear relationship between pressure drop 

and flow rate, is widely used in the governing equation of reservoir simulation. However, there 

exist some cases where Darcy’s law fails to be valid because inertial effects becomes significant. 

Researchers have observed non-Darcy flow behavior (additional pressure drop) in many 

scenarios, especially in the near wellbore area of gas reservoirs and in hydraulic fractures. The 

Forchheimer equation is used to describe the non-Darcy flow behavior, by adding a quadratic 

term to Darcy’s law to account for additional pressure drop. The non-Darcy coefficient in the 

Forchheimer equation is a parameter that quantifies non-Darcy flow behavior. Similar to 

permeability, the non-Darcy coefficient is a pore-structure-dependent parameter. Macroscopic 
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parameters such as porosity, permeability, non-Darcy coefficient are required as input for 

reservoir simulations. Traditionally, experiments or empirical correlations are used to obtain 

these properties. However, experiments are generally time-consuming and expensive, and 

empirical correlations are not always general enough to represent various ranges of porous media 

with different topologies.  

 Pore scale models, on the other hand, provide an alternative way to determine 

macroscopic parameters for input to reservoir simulations. The flow and transport process is 

solved in the void structure (order of micrometer or millimeter scale) of a porous media. Because 

permeability and the non-Darcy coefficient are ultimately affected by the pore-scale fluid 

dynamics, another important motivation is to fundamentally study how pore structure affects 

pore-scale flow behavior in addition to macroscopic properties.  

The development of 3D imaging techniques as well as increasing computational capacity 

has opened up tremendous interest in image-based pore-scale modeling of flow in porous media. 

3D imaging technology provides a detailed and accurate description of pore structures of real 

porous materials. The workflow for image-based pore-scale modeling involves four steps: Image 

acquisition, image processing (e.g. filtering and segmentation), pore-scale flow modeling and 

simulation and macroscopic parameter calculations.  

Two different approaches are widely used in pore-scale modeling: network modeling and 

direct simulation. In network modeling, void structures in digital images are approximated as 

pores connected by throats. Pore size, pore-center location, throat radius and pore-throat 

connectivity are geometric information from network models to account for pore-level 

heterogeneity and interconnectivity in the porous media. Using network models significantly 

reduce the size of the image structure data; therefore network modeling is very computationally 
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efficient. The mass conservation equation is imposed in each pore of a network model, and the 

hydraulic conductance value in the mass conservation equation is approximated based on pore-

throat geometries and fluid dynamics. Because of the approximations introduced in the pore 

geometry and hydraulic conductance, network modeling is less rigorous than direct simulation 

models, which are based on basic principles (e.g. the Navier-Stokes equations).  

Direct simulation techniques including Lattice Boltzmann modeling (LBM) or traditional 

computational fluid dynamics (CFD) modeling provide a more rigorous approach but with with 

larger computational cost. Lattice Boltzmann modeling is a widely used method for pore-scale 

modeling in complex geometries. LBM directly operates on voxel grids from digital images. 

This, in turn, results in a direct correlation between computational cost and image resolution 

(higher image resolution results in more voxel grid number). There is always a tradeoff between 

computational cost and image resolution in LBM. Computational fluid dynamics modeling, 

which directly solves the Navier-Stokes equations using finite difference, finite volume or the 

finite element method, is a traditional approach for solving engineering problems that involve 

fluid flow. It is a powerful tool for engineering design and analysis, but few researchers have 

applied this technique to pore-scale modeling until recently. The work of this dissertation is 

mainly focused on finite element modeling. Since one challenge of using structured grids (e.g., 

directly from voxel images) is the high computational cost of high-resolution images, the finite 

element method offers the option of using unstructured meshes to represent the domain 

geometry. It is important to point out several advantages of unstructured meshing in porous 

media flow modeling. First, the number of elements in the unstructured mesh can be decoupled 

from image resolution. Multiple meshes of different refinements can be generated from the 

structure of a specific image resolution. The numerical accuracy of flow simulation is dependent 
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on mesh refinement assuming the image resolution captures the pore structure accurately. 

Second, unstructured meshes better conform to complex geometries and offer flexible local mesh 

refinement. Using multiple mesh refinement levels in the same domain allows efficient and 

accurate simulation. This is significant for the study of non-Darcy flow where the mesh can be 

refined in regions of interest that show strong inertial effects.   

Understanding the pore structure effects on pore-level flow behavior and flow parameters 

(permeability, non-Darcy coefficient) is important in order to accurately predict non-Darcy flow. 

In the current pore-scale modeling efforts, simplified geometries of porous media are mostly 

used, which are not representative enough to capture flow behavior in the 3D real porous media. 

The consequence of coarsening pore space in the network modeling is that sub-pore level 

transport phenomena cannot be simulated, therefore a rigorous pore-scale model (direct 

simulation) is critical to solve the pore-level non-Darcy (inertial) flow behavior. In order to study 

the non-Darcy flow in real porous materials, we develop a new image-based pore-scale finite 

element model using unstructured meshing. This model is applied to proppant packings and 

propped hydraulic fractures under different loading stresses. Hydraulic fracturing is a process in 

which liquid mixed with proppants and chemicals is injected into wellbore at high pressure and a 

network of fractures are created in the rock formation to enhance the production of oil and gas. 

Proppants are injected because they remain in the formation to hold (or “prop”) the fracture 

open. This technique is widely used in low permeability reservoirs to increase production rate. 

Hydraulic fractures are paths of high flow rate, which mean that non-Darcy flow has a significant 

effect on the productivity rate of these fractures. Although there are experiments reporting the 

effects of loading stress on fracture conductivity and non-Darcy flow coefficient as well as non-

Darcy flow effects on the fracture conductivity (C. E. Cooke, 1973; Fredd, McConnell, Boney, & 
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England, 2001; Much & Penny, 1987), a fundamental understanding of stress effects on pore 

structure and flow dynamics is still unknown. Image-based pore-scale modeling provides details 

of the proppant structure change as a function of stress and also inertial flow behavior in 

different pore space geometries.   

The outline of this dissertation is the following: 

Chapter 2 introduces the different continuum flow regimes within laminar flow in porous 

media. Research work evaluating non-Darcy coefficients and non-Darcy flow behavior at the 

pore scale is reviewed. Background on image-based pore-scale modeling is presented, including 

image acquisition, image processing and numerical modeling.  

In chapter 3, the method of image-based finite element modeling and network modeling 

is presented in detail. It includes micro-tomography X-ray image processing, unstructured mesh 

generation based on digital images and the solution of the governing equations. The calculation 

of macroscopic parameters for porous media are also presented.  

Chapter 4 compares pore-scale LBM and FEM simulations of Stokes flow in random 

consolidated sphere packings. The accuracy of both simulations with various image resolutions 

is studied. The difference between these two numerical methods is discussed based on 

comparison of transport properties and pore-level velocity fields obtained from the simulations.  

In chapter 5, image-based pore-scale FEM modeling is applied in proppant packings and 

propped fractures under various loading stresses to predict non-Darcy flow behavior. The 

loading stress effect on permeability, non-Darcy coefficient, void space geometry, and pore-level 

flow behavior are investigated.  

In chapter 6, methods that can be used to improve network modeling of non-Darcy flow 

are developed and analyzed.  
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Chapter 7 summarizes the major conclusions of this dissertation and future work is 

discussed.  
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2. Background 

2.1 Flow Regimes in Porous Media at the Macroscopic Scale 

Numerous experimental and theoretical studies have been conducted on single-phase 

flow through porous media. Within the laminar regime, it is widely accepted that a linear Darcy 

flow is valid at low Reynolds number while a quadratic Forchheimer flow appears at larger 

Reynolds number. A cubic or weak inertial regime has been proposed to exist between the Darcy 

and Forchheimer regime. In addition, flow behavior beyond the Forchheimer regime has been 

studied (Barree & Conway, 2004). In all, four regimes exist within laminar flow: (1) Darcy 

regime (2) Weak inertia regime (3) Forchheimer regime (4) Beyond Forchheimer regime. 

2.1.1 Darcy Regime 

Darcy’s law was proposed (Darcy) through a series of experiments on fluid flow through 

a packed gravel bed. Darcy’s law is a linear relationship between flow rate and applied pressure 

gradient and it was formulated through this equation:    

 
dp v

dx k


    (2-1) 

where 
dp

dx
  is the pressure drop across the sample, v is the superficial velocity, µ is the fluid 

viscosity, and k is the permeability. Permeability is a property of the structure of the porous 

media and it is independent of the nature of the fluid. Darcy’s law has been validated by 

theoretically deriving the Stokes equations from volume averaging (Whitaker, 1986). 

Theoretically, Darcy’s law is strictly valid for Stokes flow, but usually it is applicable for flow 

with a Reynolds number of less than one. Some experimental results show that flows with a 

Reynolds number higher than one is still Darcy’s flow regime (Comiti, Sabiri, & Montillet, 
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2000; Scheidegger, 1958). Darcy’s law is usually a valid assumption for flow in reservoirs and 

aquifers, because the combination of pressure gradient, fluid viscosity, and permeability. 

2.1.2 Weak Inertia Regime 

As velocity increases, a nonlinear deviation from Darcy’s law begins to occur. Numerical 

simulations (Hill, Koch, & Ladd, 2001) and theoretical analyses (Mei & Auriault, 1991) have 

shown that the cubic law that occurs at the onset of nonlinear behavior is formulated as:     

 
2

3dp v
v

dx k

 


     (2-2) 

It only appears as a narrow flow regime in the velocity beyond the Darcy regime and is 

termed as the weak inertia regime. It is important to point out that most of the numerical 

simulations which prove the existence of cubic law are performed in 2D periodic porous media. 

Fourar, Radilla, Lenormand, and Moyne (2004) present numerical simulation results in both 2D 

and 3D periodic porous media and conclude that this weak inertia regime in 3D-flow is not 

significant compared to 2D-flow, so it can be ignored in practical cases.  

2.1.3 Non-Darcy (Forchheimer) Regime 

With further increase in flow velocity, inertial effects become more important and the 

nonlinear deviation between pressure drop and flow rate is more significant. This phenomenon is 

often observed in hydraulic fractures and near the wellbore of gas reservoirs. Forchheimer (1901) 

discovered from experiments while flowing gas through a coal bed that the relationship between 

pressure gradient and flow rate is non-linear at sufficiently high velocity. He proposed an 

equation by adding a quadratic term to Darcy’s equation:   

 2dp v
v

dx k

      (2-3) 
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where β is referred as the non-Darcy coefficient. The quadratic term is small compared to the 

linear term at low velocities and Darcy’s law is still valid. The Forchheimer equation is generally 

considered to be a good description of non-Darcy flow in 3D-flow and many researchers have 

theoretically derived the Forchheimer equation from the Navier-Stokes equations using 

averaging theorem (Ruth & Ma, 1992) and homogenization (Marušić-Paloka & Mikelić, 2000). 

Different opinions existed about the source of non-Darcy effects. Hassanizadeh and Gray (1987) 

explained that interfacial viscous drag forces were the source of this nonlinearity. However, Ma 

and Ruth (1993) argued that microscopic inertial forces leaded to distorted velocity and pressure 

fields with the consequence of non-Darcy effects.   

2.1.4 Beyond Forchheimer Regime 

This regime is referred to as an unsteady laminar regime, the transition regime from the 

laminar flow to turbulent flow regimes. Local experimental measurement within the pore space, 

to detect flow fluctuations, has been used to determine the upper limit of the Forchheimer 

regime. The onset of fluctuations usually happens at a Reynolds number around 100 in packed 

bed (Jolls & Hanratty, 1966). Few researchers have studied the flow behavior in this regime. 

Barree and Conway (2004) proposed that velocity fluctuation can cause a permeability plateau at 

high Reynolds number, and Huang and Ayoub (2008) showed that the Forchheimer equation is 

still valid in this regime but the permeability and non-Darcy coefficient is different than in the 

Forchheimer regime.  

2.2 Non-Darcy Flow  

Non-Darcy flow has been a popular subject in the oil and gas industry. In subsurface 

applications such as oil and gas production or groundwater transport, the vast majority of a 

domain can be governed by Darcy flow. However, the regions where inertial flow occurs can 
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have a disproportionate effect on the system behavior. One example is the near-wellbore region, 

where radial flow patterns can increase the fluid velocity significantly, and where most of 

pressure loss occurs. A second example is in hydraulic fractures, which are held open by 

proppant and are designed to carry high flowrates of oil or gas toward the wellbore. 

Understanding and predicting flow in propped fractures has taken on extra importance in recent 

years due to the increased use of hydraulic fracturing in both conventional and unconventional 

oil and gas operations. Quantifying the additional pressure drop caused by non-Darcy effects is 

part of this overall problem, especially as it can have adverse effects on production. 

Many research works have demonstrated the significant reduction on production rate 

caused by non-Darcy effects. Friedel and Voigt (2006) predicted cumulative productions of 

fractured wells in tight-gas reservoir from reservoir simulators and showed that the production 

was reduced by as much as 33% when considering non-Darcy flow effects. Mohan, Pope, and 

Sharma (2009) showed the production of gas condensate in the Darcy flow regime was 10 to 100 

times higher than in the non-Darcy flow regime. Vincent, Pearson, and John (1999) also 

demonstrated the significant overestimation of production rate from deep gas wells, shallow gas 

wells, moderate depth oil wells and lower rate oil wells, caused by disregarding non-Darcy 

effects.  

One aspect of this problem is optimal fracture design and proppant selection. Handren et 

al. (2001) compared production rates of lightweight ceramic proppants (LWC), resin coated sand 

proppants (RCS) and sand proppants using the Darcy flow model and little difference was 

shown. However, numerical flow modeling that included non-Darcy effects indicated that LWC 

proppants led to significantly increased production rates compared to sand and RCS proppants. 

Lopez-Hernandez, Valko, and Pham (2004) illustrated that the non-Darcy flow coefficient was 
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critical to calculate the optimum fracture width and length. An optimal fracture geometry design 

helped to reduce the additional pressure drops caused by non-Darcy effects. Both of these studies 

proved that fracture designs and proppant selections including non-Darcy effects increased the 

production rates up to 30% compared to the design based on the Darcy flow model.  

Non-Darcy effects also impact well testing in fractured systems. Alvarez, Holditch, and 

McVay (2002) showed effects of analyzing pressure build up and draw down test data without 

considering non-Darcy effects, which resulted in wrong estimation of fracture conductivity and 

fracture half-length. Umnuayponwiwat, Ozkan, Pearson, and Vincent (2000) showed that using 

traditional pressure transient analysis neglecting non-Darcy flow leads to errors of up to 78% and 

54% in the fracture conductivity and half-length.  

2.2.1 Non-Darcy Coefficient 

In the Forchheimer equation, the non-Darcy coefficient β quantifies the extent of 

deviation from the Darcy’s flow regime. Similar to the permeability, non-Darcy coefficient is a 

property related to porous media structures.  For the calculation of β, the Forchheimer equation is 

rearranged as follows:   

 
1 1

( )
app

p v

L v k k


 


     (2-4) 

The value of β and k are calculated from a linear regression of a plot of 1/kapp versus ρv/μ in the 

Forchheimer flow regime. The fit has a slope β and intercept 1/k. Based on this regression 

calculation, van Batenburg and Milton-Tayler (2005) and Barree and Conway (2004) debated 

whether β is constant or not. Huang and Ayoub (2008) proposed that the cause of debate is that 

large portions of their data are in turbulent regimes where the Forchheimer equation is not valid. 

Therefore, in order to get accurate values of the non-Darcy coefficient, it is important to 

investigate the limit of the Darcy and Forchheimer regimes.  
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A lot of research has been performed to determine how to predict the non-Darcy 

coefficient, which has generated numerous correlations relating the non-Darcy coefficient to 

porous media properties such as permeability, porosity and tortuosity. Irmay (1958) assumed a 

porous medium that was made up of a bundle of straight, parallel capillaries with uniform 

diameters, and theoretically derived and equation for β from the Navier-Stokes equations:  

 
0.5 1.5

C

k



   (2-5) 

The parallel capillaries model proposed by Irmay (1958) oversimplifies the pore 

geometries of porous media, Scheidegger (1958) developed a serial model in which capillaries of 

different diameter were aligned in series and the correlation he derived was:   

 1C

k




   (2-6) 

There are also many different empirical expressions of β derived from experiments of 

various porous media. Pascal and Quillian (1980), based on mathematical analyses of 

experimental data from multi-rate wells in hydraulically fractured reservoirs, proposed a 

correlation given by:  

 
12

1.176

4.8 10

k
 
   (2-7) 

Jones (1987) conducted core analysis experiments on 355 sandstone and 29 limestone cores with 

various core types and the correlation he proposed from experimental data analysis was:  

 
10

1.55

6.5 10

k
 
   (2-8) 

Microscopic models were used in simplified porous media structures to derive the non-

Darcy correlation. Thauvin and Mohanty (1998) develop a pore-level cubic lattice network 

model which incorporates converging-diverging of pore throat, multiple connectedness of pore 
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and distribution of pore sizes to describe the non-Darcy flow. By analyzing all data, they 

obtained a correlation which includes tortuosity and porosity inside  

 
4 3.35

0.98 0.29

1.55 10

k





   (2-9) 

Cooper, Wang, and Mohanty (1999) added anisotropy into the previous cubic lattice network 

model and derived a new correlation:   

 
3.25 1.943

1.023

10

k




   (2-10) 

Only a few studies have applied pore-scale models in porous media with more complex 

geometries to study non-Darcy flow (M. S. Newman & Yin, 2013).  

It is interesting to notice that the non-Darcy coefficient is generally directly proportional 

with tortuosity, but inversely proportional with permeability and porosity. Although most 

proposed correlations have similar functional relationships with permeability, porosity, and 

tortuosity, a general correlation to characterize inertial flow in real porous media with complex 

geometries has not been developed.  

2.2.2 Microscopic Inertial Flow Behavior 

In order to estimate the non-Darcy flow coefficient accurately, according to Hassanizadeh 

and Gray (1987) and Ma and Ruth (1993), the source of non-Darcy flow behavior is the 

microscopic inertial force, therefore analysis of the microscopic flow is important to fully 

understand the onset of non-Darcy flow. Numerical simulations and experimental methods were 

investigated in literatures to study the microscopic flow at both high and low Reynolds number 

(Re) in porous media. Costa, Andrade, Makse, and Stanley (1999) used finite difference methods 

to solve the Navier-Stokes equation in the pore space of 2D disordered porous media. Results 

indicated that, in the Darcy flow regime, the flow field was very heterogeneous because the 
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dominant viscous force caused the flow to pass through the large void space. As the inertial force 

started to increase at higher Re, the flow field became more homogeneous. Chai, Shi, Lu, and 

Guo (2010) implemented Lattice Boltzmann methods in 2D disordered porous media composed 

of random cylinders and similar flow field patterns were observed as the Re increases. Also, 

inertial forces caused some vortexes to appear behind cylinders. Fourar et al. (2004) closely 

examined the streamline field in porous media and indicated that eddies were formed around 

solids at higher Re. Eddies become larger and longer and also occupied the whole region 

between two grains with increasing Re. Suekane, Yokouchi, and Hirai (2003) used magnetic 

resonance imaging (MRI) methods to quantify velocity fields in a uniform packed bed of 

spheres. The flow moved along sphere surfaces in the low Re and velocity decreased with the 

increase of the cross sectional area of pore space. However, at higher Re, the velocity did not 

depend on the cross sectional area and fluid penetrated through the pore space like a jet without 

changing velocity. The inertial force caused the fluid to flow fast as it passed the maximum cross 

sectional before it slowed down. Most studies mainly applied models on highly simplified porous 

media structures made up by rectangular post, cylinders and spheres, only a few studies are 

focused on complex geometries. LBM simulations were conducted in a stochastically generated 

2D porous media with complex geometries (M. S. Newman & Yin, 2013). In the Darcy flow 

regime, the velocity field showed that as the fluid moves from a pore throat to a pore body, the 

fluid spreads evenly to fill the pore space. As the Reynolds number increased, vortexes 

developed first in larger pore space and then spread into smaller pore spaces. Also flow in a pore 

channel perpendicular to the imposed pressure gradient can reverse direction. Also the viscous 

dissipation in the Darcy flow regime is localized in the pore throats and near the walls, however, 
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in the Forchheimer flow regime, it is distributed evenly in pore throats but focused along the 

streamlines.  

2.3 3D Imaging of Porous Media 

The first step of image-based pore-scale modeling is to construct a 3D digital image to 

represent the pore space geometry of porous media and then pore-scale modeling is performed to 

predict pore-scale flow behavior and macroscopic transport properties. Two different methods 

were used to characterize 3D pore structures, which can be classified as direct imaging methods 

and indirect methods. For direct imaging methods, the 3D digital image is obtained directly from 

X-ray computed tomography.  In contrast, indirect methods create the 3D image stochastically 

from high resolution 2D thin sections.  

2.3.1 3D X-ray Computed Tomography Imaging 

X-ray CT imaging is an important tool to visualize the micro-scale pore structures of 

porous media. One of its most important attributes is the ability to non-invasively describe the 

interior structure of a porous media. A grayscale image with intensity values assigned at each 

voxel is the output from X-ray CT imaging. The size of voxel is one way of defining spatial 

resolution. The intensity value is related to the X-ray attenuation coefficient of chemical species 

present in the phase and the density of the phase dictate the X-ray absorption. The solid phase in 

the porous media typically has high X-ray attenuation, resulting in good contrast between the 

solid and void space. In order to quantitatively describe the pore structure and perform pore-scale 

modeling, grayscale images need to be segmented, which assigns the voxels to either solid or 

void space. This is a crucial step to accurately characterize and analyze the pore structures. 

Segmentation often involves noise removal as a first step followed by assignment of voxel tags 
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to the respective phases based on threshold values. The quality of segmentation depends on the 

initial image resolution, removal of noise and the method for selecting binary voxel values.  

Typically, the spatial resolution of an image is the order of microns and the sample size 

of porous media is a few millimeters. There is a trade-off between image resolution and sample 

size. Images with lower resolution can cover a larger size sample which is more representative in 

terms of reservoir scale. However, it fails to capture details of pore structures smaller than the 

image resolution.  

The first high-resolution tomography image of porous media was generated by Flannery, 

Deckman, Roberge, and D'amico (1987) with resolution approaching 1 microns. Later on, 

numerous research work has used X-ray CT image techniques to study porous media, including 

characterizing high resolution 3D pore structure, measuring pore-scale fluid distributions and 

saturations during immiscible displacement and drainage/imbibition process, and calculating 

transport properties including permeability, relative permeability and capillary pressure (Coker, 

Torquato, & Dunsmuir, 1996; Hazlett, 1995; Turner et al., 2004; Youssef, Bauer, Bekri, 

Rosenberg, & Vizika, 2009). Image-based analysis and modeling provides a link between 

geometric structures of porous media and their transport properties.  

2.3.2 Stochastically Generated Imaging  

An alternative way to obtain 3D digital images is based on stochastic methods. This 

approach allows combination of images with different resolutions and offers a greater spatial 

range than direct imaging methods (Sok et al., 2010).  Several techniques have been proposed to 

statistically generate 3D pore structures from spatial information derived from 2D thin section 

images. These methods measured statistical properties such as correlation and linear path 

functions from 2D images using two-point (or multiple-point) correlation functions (Okabe & 
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Blunt, 2004), and Markov Chain Monte Carlo simulation (Wu et al., 2006).  Another approach 

for stochastic generation of 3D pore structures is a process-based reconstruction procedure which 

models particle sedimentation processes. Øren and Bakke (2002) used this method and 

incorporated grain size distributions and other petrographical data from 2D slices to reconstruct 

3D sandstone.  

2.4 Pore-Scale Modeling in Porous Media 

Based on digital images that represent the 3D pore structure, pore-scale modeling 

provides microscopic descriptions of flow behavior in the pore space. Two different modeling 

approaches used in pore-scale modeling are network modeling and direct simulation modeling. 

Direct simulation modeling includes lattice Boltzmann Modeling and traditional Computational 

Fluid Dynamics techniques such as finite element methods. This technique provides the 

preservation of the pore space geometry and usually requires high computational cost. In 

network modeling, pore structures are approximated as pores connected by throats and flow 

simulations are conducted by applying a mass balance to each pore in the network. The network 

geometry characterizes the pore geometry (pore size or volume, pore shape) as well as 

connectivity. Compared to direction simulation, network modeling allows flow to be modeled 

over orders-of-magnitude larger physical domains, because of its computational efficiency.  

2.4.1 Network Modeling 

Network modeling has been used to study a wide range of physical processes in porous 

media including drainage/imbibition process (Fenwick & Blunt, 1998), capillary pressure 

behavior (Al‐Kharusi & Blunt, 2008), non-Newtonian flow (Lopez, Valvatne, & Blunt, 2003) 

and non-Darcy flow (Balhoff & Wheeler, 2009).  
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The first network model developed by Fatt (1956) consisted of a simplified 2D network 

of tubes on square or hexagonal lattices. The pore-size distributions obtained from experiments 

were assigned to networks via the tube size distribution. This highly simplified network model 

lacks a resemblance to the pore structures of real porous media. Blunt, King, and Scher (1992) 

used 3D networks of tube to compute relative permeability and capillary pressures in drainage 

and imbibition. To build a more realistic tube networks, Wardlaw, Li, and Forbes (1987) 

measured the real rock properties including pore and throat size, number of throats connected 

with each pore, degree of pore-throat size correlation and correlate these information to 3D 

network of tubes. The relative permeability curves are compared between correlated pore-throat 

models and uncorrelated pore-throat models.  

The second generation network models were developed by Bryant, Mellor, and Cade 

(1993) who used the term “physically representative network models”. Physically representative 

network models are directly mapped from void structure of a real three-dimensional packing. 

The advantage of physically representative network models compared to the first generation 

networks are that spatial correlation is preserved, which is a crucial effect for many transport 

processes in porous media. Furthermore, transport phenomena can be modeled directly without 

any adjustable parameters, allowing the models to become more predictive, rather than 

qualitative. 

Recently, techniques that directly map digital images of porous media to network models 

have been investigated by numerous researchers due to the development of X-ray computed 

tomography techniques. This approach allows imaging and modeling of more-or-less arbitrary 

structures. The challenging part of extracting a representative network from digital images is to 

identify the pore bodies to properly connect them with pore throats. Two main algorithms have 
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been used, including medial axis based method (e.g. (Lindquist, Lee, Coker, Jones, & Spanne, 

1996)) and maximal ball method (e.g. (Silin & Patzek, 2006)). The medial axis method 

transforms the pore space into a medial axis (skeleton) to define a graph of the pore space. Pore 

locations and pore-throat geometries are then added to the skeleton to define the network model. 

Sok et al. (2002) used this method to generate networks from XCT image of sandstone to 

simulate immiscible process. The maximal ball method finds the largest inscribed spheres in the 

pore space to define pore locations. These are then connected through the remaining 

constrictions to form the complete network. Dong and Blunt (2009) used this method to extract 

networks from sandstone, carbonate and sand-pack samples. The single phase permeability, 

formation factors and two phase relative permeability calculated from networks were compared 

to direct calculations on voxel-based images.  

In network models, mass conservation of flow rate are imposed for each pore i equation 

(2-11) and the flow rate between pore i and j are described by equation (2-12):   
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where pi and pj are pressures at pore i and j, respectively, qij is the flowrate between them, μ is the 

viscosity, and gij is throat conductance that describes the flow dynamics between pores. Equation 

(2-11) and (2-12) creates a system of linear system that solves for pressure value in each pore 

and boundary condition are imposed as constant pressure gradient at inlet and outlet pores.  

The parameter gij is critical for the validity of network models and it is a physical 

quantity associated with pore structures and flow behavior in pore spaces. Much research has 

been carried out to determine throat conductance values using correlation to pore and pore-throat 

radius, pore and pore-throat surface area, throat lengths etc. The single-parameter model 
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developed by Ewing and Gupta (1993) defined conductance as a cubic function of throat radius. 

In their model, throats are assumed as ideal square cross sections and the resistance between 

adjacent pore bodies is only concentrated in the throat. Later on, two-parameter models 

developed by Bryant, King, and Mellor (1993) derived throat conductance as a function of pore-

throat radius and length. Pore throat shapes were approximated as cylinders and conductance 

equation was given by Hagen-Poiseuille equation. Thompson and Fogler (1997) mapped pore 

throat shape to a more realistic Venturi shape with converging-diverging geometry. Direct 

numerical simulations were conducted to solve the Stokes equation in pore throat and 

conductance was derived as a function of pore-throat radius, length and pore to pore-throat 

aspect ratio. Conductance was solved for noncircular throat shapes by incorporating shape 

functions (Bakke & Øren, 1997; Patzek & Silin, 2001).  

Although network models were originally developed to study Darcy flow, and the 

research summarized above was mainly restricted to the Darcy flow, some studies have extended 

network modeling to predict the non-Darcy flow. Thauvin and Mohanty (1998) used qualitative 

2D networks to produce a macroscopic relationship of pressure drop to describe non-Darcy flow. 

However, empirical correlations for turbulent flow in bends and pipes are utilized; therefore this 

model is not ideal to describe non-Darcy flow in the laminar flow regime. The hydraulic 

conductance used for Darcy flow can be found by solving the Stokes equation in pore-throat 

geometries; likewise, Balhoff and Wheeler (2009) solved the Navier-Stokes equation in the 

geometries representative of pore throat to quantify the non-Darcy flow behavior. 3D 

asymmetric diverging-converging ducts with varying diameters, length and aspect ratio were 

used to represent pore throat geometries. After solving the Navier-Stokes equation using the 

finite element method in a wide range and combination of diameters, length and aspect ratio, a 
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nonlinear empirical equation was derived to describe the relationship between pore pressure drop 

and throat flow rate with coefficients dependent on throat geometries. However, only the effect 

of individual pore-throats with divergence/convergence was considered to predict inertial 

behavior in this work, whereas both experiments and simulations have shown that tortuosity has 

significant effects on inertial flow. The network structures generated from real porous material 

are comprised of tortuous connected flow paths characteristic of real materials, which suggests 

that this effect could be taken into account using network modeling.  

2.4.2 Lattice-Boltzmann Method 

The lattice-Boltzmann Method (LBM) has been a popular method to simulate fluid flow 

in porous media. Unlike traditional CFD methods that solve the Navier-Stokes equations, LBM 

is based on microscopic models and mesoscopic kinetic equations for fluids. This is a particle-

based technique that simulates the motion and collision of particles on grids. The kinetic nature 

of LBM enables it very suitable for fluid systems involving microscopic interactions (Guo & 

Zhao, 2002). Furthermore, this method is relatively easy to code and suited for parallel 

computing platforms.  

The LBM algorithm consists of two steps: particle streaming and collision. Particle 

streaming involves a collection of molecules that travel with a particular velocity between nodes 

and particle collision is described as momentum exchange happens between particles due to 

particle collision at a certain node. The equation described these two processes is:   

 ( , ) ( )
a a a a
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Where  is the node location,  is the velocity and Ω is the collision operator.  

Succi, Foti, and Higuera (1989) was one of the first groups to utilize LBM to estimate the 

permeability of a 3D porous media with complex geometries and their results demonstrate the 
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adherence of LBM to Darcy’s law. LBM simulations of single-phase flow have been applied to 

evaluate the permeability of various types of porous media (Bosl, Dvorkin, & Nur, 1998; Jin, 

Patzek, & Silin, 2004; Schure, Maier, Kroll, & Ted Davis, 2004). It has also been used to 

investigate effects of geometric features of solid structures, such as particle shape and size, 

tortuosity and porosity, on fluid transport in porous media (A Koponen, Kataja, Timonen, & 

Kandhai, 1998).  

LBM has also been applied to study multiphase flow in porous media. In 2001, LBM 

multiphase flow simulations were conducted by Langaas and Papatzacos (2001) in a porous 

media with uniform pore-space. They showed how steady-state relative permeability depends on 

phase saturation, wettability, driving force and viscosity ratio were studied.  LBM simulations 

were successfully validated by Sukop et al. (2008) against micro-x-ray tomography data on the 

distribution of oil, water and air phases in a porous media. M. S. Newman, & Yin, X. (2013) 

used LBM simulation of multiphase flow in glass beads porous media to investigate the 

relationship between capillary pressure, wetting phase saturation and nonwetting-wetting 

interfacial area. Compared to experimental results, simulation results are reliable and capture the 

important physical process in experiments.  

2.4.3 Traditional CFD Method 

Traditional CFD methods such as the finite difference method (FDM), finite volume 

method (FVM) and finite element method (FEM) have been applied to predict transport, elastic 

and electric properties of the porous media. Most studies using CFD methods are based on 

voxels from digital image, which eliminate the need for the mesh generation. In this case, voxels 

in images are treated as structural grids. Zhan, Schwartz, Toksöz, Smith, and Morgan (2010) 

applied the FDM to solve the Laplace equation for electrical conductivity and the Stokes 
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equation for the permeability of Berea sandstone. The grid size in the FDM is exactly the same 

as the voxel grid of the XCT image. FEM was utilized to calculate elastic properties and 

electrical conductivity of the sandstones; in this method, each voxel in image was taken to be a 

trilinear element (Arns, Knackstedt, Pinczewski, & Garboczi, 2002; Knackstedt et al., 2007).  

Very few studies of CFD simulations based on unstructured meshes in porous media have 

been performed. Unstructured meshing can offer a more accurate and efficient representation of 

pore structures of porous media and also allows local mesh refinement to be used, which is 

valuable for heterogeneous systems. Generating unstructured meshes from 3D digital images of 

porous media with complex geometries is challenging. A reliable and efficient mesh generator is 

an essential prerequisite for CFD simulation.  

Two main approaches exist for tetrahedral mesh generation: methods based on Delaunay 

triangulations (e.g.(Marcum & Weatherill, 1995)) and advancing front technique (e.g.(Ito, Shih, 

& Soni, 2004)).  Delaunay triangulation involves two steps: point insertion and Delaunay 

construction. Inserting points in the domain provides flexibility for the mesh refinement. In this 

technique, points can be connected using a geometrical criterion to form a topologically valid 

non-intersecting set of tetrahedrons. Although the Delaunay geometrical construction provides a 

well-defined method with which to connect points it does not guarantee the mesh to be boundary 

conforming. The use of local transformations (Borouchaki, Hecht, Saltel, & George, 1995), mesh 

refinement (Du & Wang, 2006), and constrained Delaunay triangulations (Shewchuk, 2002) have 

helped address the problem of conformance to the boundary discretization.  

For the advancing front technique, a surface grid is first constructed on the surface 

boundaries and then tetrahedral mesh in the void space is generated bounded by the surface mesh 

using advancing front techniques. The most common algorithm to extract the initial isosurface is 
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the marching cube algorithm (Lorensen & Cline, 1987). This algorithm uses a divide-and-

conquer approach to create surface in a logical cube created from eight pixels (four each from 

two adjacent slices) to create triangle models of constant density surfaces from 3D digital image. 

Usually surface simplification algorithms are used to provide a way to reduce the number of 

triangles in the isosurface mesh while maintaining the topology of the image. The surface 

simplification significantly reduces the demand for larger element numbers and thus saves 

computational costs and memory usage. Various techniques have been proposed to simply 

surface meshes: edge collapse (Guéziec, 1996; Ronfard & Rossignac, 1996), which iteratively 

eliminates edges into vertices based upon local geometric optimality criteria and vertex 

clustering (Rossignac & Borrel, 1993), which groups vertices into clusters and for each cluster it 

computes a new representative vertex. However, neither topology nor small-scale shape details 

can be preserved with this method.  

It is important to point out that the number of elements in unstructured meshes can be 

decoupled from the number of voxels in the digital image. In other words, the pore structure of 

the high-resolution images can be accurately described by a suitable number of elements. This 

feature of unstructured meshing makes it a superior tool compared to structured-grid methods to 

conduct pore-scale simulations in large representative porous media domains. Furthermore, there 

are other features of unstructured meshes that make them well suited for pore-scale studies. The 

additional topological freedom offered by unstructured meshes enables the mesh to conform to 

complicated geometries (Maddison, Marshall, Pain, & Piggott, 2011). Also the ability to vary 

mesh resolution enables local mesh refinement. This is especially important for porous media 

because applying higher mesh refinement in some smaller pores is critical to accurately predict 

the transport phenomena without increasing the mesh refinement of the whole domain. 
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Few studies have used FEM modeling with unstructured meshes to perform pore-scale 

simulation in porous media. Akanji and Matthai (2010) presented a finite element method to 

solve the Stokes equation of single-phase incompressible flow within the pore space. This 

numerical model is verified with analytical solutions and permeability is estimated from the 

computed velocity field and compared with experimental results. The pore structures of porous 

media from XCT image are changed for mesh generation.  Interconnected pores are resolved into 

surfaces with six side boundaries and unstructured mesh is generated by using hybrids of 

tetrahedral and hexahedral elements with adaptive refinement. Lane (2011) also performed the 

Stokes flow simulation using finite element method in real porous media with complex 

geometries based on XCT image.  A rigorous unstructured tetrahedral mesh generation method 

was developed. This thesis work is the extension work of this model.  
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3. Modeling and Simulation Technology 

3.1 Image Acquisition and Processing 

X-ray micro-tomography technology can be used to image the pore structure of real 

porous material. XCT images in this work were acquired at the Louisiana State University 

Center for Advanced Microstructures and Devices (CAMD) and the Advanced Photon Source 

(APS) at the Argonne National Laboratory. 

Data from XCT images are voxel maps with each voxel assigned a grayscale value 

proportional to x-ray absorbance of the material at that location. Grayscale images are typically 

segmented in order to quantify pore structure and perform image-based pore-scale flow 

simulations, which consists of transforming the grayscale values to two or more labels that 

denote material phases. In this work, segmentation is performed using a two-step process: 

nonlinear anisotropic diffusion to remove noise followed by threshold indictor kriging for phase 

identification. The removal of noise in homogenous regions reduces the variance of grayscale 

values and this leads to narrowing of the peaks in image intensity histogram. The thresolding 

process converts grayscale values to material tags. In this work, thresholding converts to a binary 

image where labels correspond to the solid or void phase. If different material phases have good 

contrast in grayscale values, it is easy to perform threshold segmentation to separate the solid and 

void space. In many real images, however, there are overlapping peaks in the grayscale value and 

a simple thresholding value will either lead to errors in phase assignment or allow unassigned 

voxels to remain. Indictor kriging thresholding helps to address this problem by assigning 

probability to the voxels in the unassigned group (Oh & Lindquist, 1999). Refer to a separate 

paper (P Bhattad, Willson, & Thompson, 2010) for more details of image processing algorithm.   
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3.2 Finite Element Modeling Using Unstructured Mesh 

Unstructured meshes are used to discretize the pore space of porous media prior to finite 

element modeling. Mesh quality is critical for the accuracy of the flow simulation. Generating 

unstructured meshes with an accurate representation of the complex topology of the pore space 

in porous media is challenging. Two unstructured mesh generation strategy will be explained in 

detail in this section. Both of these methods have been applied to various types of porous media 

including cubic packings, random sphere packings, sandstone rocks, and proppant packs.  

The finite element method is one of many numerical methods to simulate fluid flow in 

computational fluid dynamics. In this work, single-phase incompressible viscous flow in the 

laminar flow regime is solved. Details of finite element discretization of the Stokes equations 

and the Navier-Stokes equations are described below.  

3.2.1 Unstructured Mesh Generation  

3.2.1.1 AVIZO Mesh Generation 

The commercial software package AVIZO is an industrial application for data 

visualization and analysis including 3D image data processing, mesh generation, and post-

processing of simulations. AVIZO can be used to generate unstructured tetrahedral meshes from 

3D digital image data. The workflow is as follows: 

1. Import 3D segmented (binary) images into the software with specific dimensions and 

voxel size assigned. Segmented image data contains solid/void assignment information for each 

voxel (voxels in the solid phase are assigned as 0 and in the void phase are assigned as 1).  

2. Select Image and use Convert Image Type Editor to convert image to 8-bit label image 

type.  
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3. Select 8-bit label and use Generate Surface Editor to extract the isosurface of the 

geometry boundary with triangles.  

4. Use Surface Simplification Editor to simplify surface mesh by specifying the minimum 

and maximum triangular size. Surface View Module is used to visualize the surface mesh.  

5. Select surface mesh and use Generate Tetra Grid Editor to generate a tetrahedral 

mesh. Tetra Grid View Module is used to visualize the volume mesh.  

Figure 3-1 shows the mesh generation workflow in an AVIZO project.  

 
Figure 3-1: The mesh generation workflow in an AVIZO project 

 
The details of each step are the following. Surface generation is based on the marching 

cube algorithm. Three options exist in the surface generation including no smoothing, 

constrained smoothing and unconstrained smoothing. Both unconstrained and constrained 

smoothing use Gaussian smoothing algorithms applied to label weights. In the constrained 

smoothing, any two voxel centers that have been labeled differently before the smoothing are 

separated by the generated surface, which is not necessarily the case for the unconstrained 
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smoothing. The amount of smoothing can be controlled via the smoothing extent. Usually the 

option add border is checked to ensure the resulting surface is closed and adjust cords is checked 

so that the resulting surface appears to be sharply cut off at the boundaries.  

The number of triangles resulting from surface mesh generation is usually very large and 

it is not suitable for visualization and simulation. The Surface Simplify Editor uses an edge 

collapse algorithm to reduce the number of triangles (by controlling the desired number of 

triangles on surface as well as minimum and maximum triangle edge length). Choosing different 

values for these parameters provides flexibility to generate a variety of mesh resolutions. It is 

important to choose a suitable maximum edge length value. If it is too large, mesh will be too 

coarse to preserve the topology of the pore structure. Figure 3-2 shows the surface mesh without 

simplifying and after simplifying using the maximum/minimum triangle length 3/1 and 5/1 

respectively.  It shows that original surface mesh from marching cube algorithm is uniform and 

structured. After simplifying, the elements become unstructured and larger.  

After surface mesh generation is completed, several criteria need to be checked for the 

surface mesh to be ready for tetrahedral mesh generation:  

1. Intersection test. The surface should be free of intersection triangles. If intersection 

triangles are detected, they can be repaired using edge flip.  

2. Orientation Test. The orientation test is performed after the intersection test is passed. 

The orientation of a small number of triangles may be inconsistent, resulting in a partial overlap 

of the materials bounded by the triangles. In case of such incorrect orientations, there is an 

automatic repair.  
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(a)                                                                     (b) 

 

 
(c) 

 

Figure 3-2 : (a) The initial surface mesh without simplify, (b) The surface mesh after simplifying 
with maximum triangle length 3 voxel and minimum triangle length 1 voxel, (c) The surface 
mesh after simplifying with maximum triangle length 5 voxel and minimum triangle length 1 

voxel of the 3123-voxel cubic packing sample. 
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3. Aspect Ratio calculation. This computes the ratio of the radius of the circumcircle and 

the inscribed circle for each triangle. The largest aspect ratio should be less than 20 (even better 

if it is less than 10). The aspect ratio can be improved using edge flip.  

4. Closedness Test. The surface triangles should form a closed surface.  

Once the surface mesh is created, the tetrahedral mesh (bounded by the surface mesh) is 

generated using the advancing front algorithm. It allows the user to define a desired mesh size 

(mean length of inner edges). Varying the mesh size provides flexible internal mesh resolution. 

After tetrahedral elements are generated, the grid is saved as a hypermesh format (hmascii). The 

mesh file contains information including node locations and connectivity of elements. No 

boundary condition information is included in the hypermesh.  

3.2.1.2 Implicit Voxel Meshing 

       An in-house mesh generator with a Delaunay-tessellation based algorithm has been 

developed. The algorithm is summarized as follows: 

1. A set of points is distributed into the entire domain (including both the void and solid 

space) and connected using a Delaunay tessellation. The density of points provides flexibility in 

mesh refinement. The points are always disordered at the local scale (to prevent a degenerate 

tessellation).  However, they can be either uniform or nonuniform density depending on whether 

certain regions of the domain are targeted for refined meshing. 

2. All elements that are bisected by the solid-void interface are collected.  

3. The locations where the void/solid surface cuts through edges of elements are 

identified. These elements are then split into multiple parts to respect the phase boundary.  

4. Collect the subset of elements in the void space and perform smoothing to improve the 

quality of mesh.  
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  The in-house mesh file includes node locations, node labeling (for the inlet boundary, 

outlet boundary, solid/void interface, and interior nodes), nodes numbers for each element, and 

connectivity of elements. Hypermesh files generated from AVIZO are converted to the in-house 

data format for finite element simulations using the in-house code (details described in section 

3.2.2.2).  If COMSOL is used to run FEM simulations, the in-house mesh needs to be converted 

to COMSOL native mesh format. The boundary nodes on the inlet/outlet surface are labeled 

during the conversion.  

3.2.2 Finite Element Modeling 

The incompressible Navier-Stokes equation (3-1) for single phase Newtonian fluid flow 

in the laminar flow regime is solved using the finite element method in the void space of porous 

media (discretized by mesh generation method described in the previous section).  
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 (3-1) 

In the Darcy flow regime, the inertial term in the Navier-Stokes equation can be 

neglected and the governing equation is simplified to the steady-state Stokes equation (3-2) :  
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3.2.2.1 Shape Functions  

Shape functions interpolate the solution between the discrete values of variables stored or 

computed at nodes in the mesh. Assume an element e is defined by m number of nodes: the 

dependent variable u at any point within this element can be approximated as:  
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m

i i

i

u N u


   (3-3) 

where Ni is defined as the shape function and ui are values of variable u at each node.  
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The tetrahedral P2P1 element (or Taylor-Hood element) is used in both the Stokes and 

Navier-Stokes flow simulations. This element type has quadratic shape functions used for 

velocity approximation and linear shape functions for pressure approximation. Each element has 

ten nodes: four vertexes and six edge nodes are used for velocity while only the four vertexes 

nodes are used for pressure. Figure 3-3 shows the velocity and pressure nodes in one element. 

The P2P1 element is a popular element type for the finite element method because it satisfies the 

LBB criteria (Gresho, Sani, & Engelman, 1998). Any element satisfying this condition will 

prevent the development of spurious pressure behavior (Gresho et al., 1998). Due to the higher 

order approximation of velocity in P2P1 elements, more degrees of freedom are introduced, 

which leads to a larger computational cost. For Navier-Stokes simulations, we also use the P1P1 

element. Both velocity and pressure are approximated with linear function in P1P1 elements, 

using only the four vertexes for both velocity and pressure, as shown in Figure 3-3.  

 

 
(a)                                                          (b)  

 
Figure 3-3: (a) P2P1 tetrahedral element, (b) P1P1 tetrahedral element (dots represent nodes) 

 
At any point P (x, y and z) inside one element, the volume coordinates L1, L2, L3 and L4 

for nodes 1, 2, 3 and 4, shown as Figure 3-4, are defined as: 
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Figure 3-4: A tetrahedral element with any point p inside this element 

 

 
234 134 123124

1 2 3 4

1234 1234 1234 1234

, , ,P P PP
V V VV

L L L L
V V V V

      (3-4)  

where V1234 is the volume of tetrahedron 1234; VP234 is the volume of tetrahedron P234; VP134 is 

the volume of tetrahedron P134; VP124 is the volume of tetrahedron P124; VP123 is the volume of 

tetrahedron P123.  

It can easily be confirmed that: 

 1 2 3 4 1L L L L     (3-5) 

Also it can easily be confirmed that:  

 
1 at the home node       

0 at the other nodes , ,
i

i
L

j k l


 


  (3-6) 

Therefore, the shape functions for linear approximation of pressure variable in the P2P1 element 

are given in the volume coordinates as follows: 

 i i
N L   for vertexes nodes i    (3-7) 

The shape functions for the quadratic approximation of the velocity variable in a P2P1 element 

are given in the volume coordinates as follows: 
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   for mid-edge nodes      (3-8) 

 

3.2.2.2 The Stokes Equation  

The stress form of the Stokes equation is used for finite element spatial discretization 

because it leads to the natural boundary condition (Gresho et al., 1998). This is a suitable 

boundary condition for porous media.  

 0 σ   (3-9) 

where σ is given by: 
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σ   (3-10) 

The Galerkin method is employed to derive the discrete equations of the Stokes equation. 

The first step is to obtain the weak form of the governing equations for a given element domain 

Ωe bounded by Γe, shown as follows:  

   0

e

W d


   σ   (3-11) 

Here the Bubnov-Galerkin method is applied in which the weighting function W is selected to be 

identical to the shape function N (Huebner, Dewhirst, Smith, & Byrom, 2008). Utilizing the 

Gauss theorem and substituting the stress into velocity (u, v and w) and pressure (p) variables, 

the weak form of the x component is written as: 
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(3-12) 

 
where, 
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The surface traction  
x

  in the right hand side of equation (3-12) is a true boundary condition for 

porous media. Applying inlet and outlet boundary condition in porous media is a challenging 

problem because usually the computational domain is an arbitrary sub-volume cut from a large 

porous media sample, so the detailed boundary conditions on this extracted domain is generally 

not known. The shape equation approximation for variables velocity (u, v and w) and pressure 

(p) is substituted into equation (3-12) results in: 
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where N is the shape function for velocity and Np is the shape function for pressure.  

The x, y and z components of the momentum equation and the continuity equation are 

combined together and the matrix form of the equation is given as:  
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Assume the computational domain for finite element simulation consists of Nn number of global 

velocity nodes, Np number of global pressure nodes and Ne number of elements, and each node is 

associated with dependent variables velocity (u, v and w) and pressure (p). The equation derived 

above is for one elements Ωe, and this equation for one local element which consists of m 

number of local nodes needs to map uniquely to the global elements in the mesh. Mesh data 

including the element connectivity and node numbers in the element provides the mapping 

information. Assembling the equations for all elements forms a global set of equations with 

unknown variables velocity vector {u} and pressure vector {p} is given as: 
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An in-house code for the Stokes equation developed by Lane (2011) is used for all low-

Reynolds number simulations. A constant normal stress force is applied in the inlet and outlet 

boundary faces. The no-slip boundary condition is applied at the interior solid/void interface as 

well as the four exterior sides of the domain (i.e., those not specified as inlet or outlet). P2P1 

elements are used and the direct solver PARDISO from the Intel MKL library is employed to 

solve linear systems of equations. Simulations are performed on a high performance computing 

system with a 37 compute node cluster. Each node has two 2.93 GHz Quad Core Nehalem Xeon 

64-bit Processors with maximum memory of 96 GB.  

3.2.2.3 The Navier-Stokes Equation  

The same Galerkin method used for the Stokes equation discretization is employed to 

discretize the Navier-Stokes equation and the discrete equation of x component for one given 

element domain Ωe bounded by Γe is given as follows:  
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The global matrix equations after assembling equations of all elements in the computational 

domain are: 
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where the mass matrix M is associated with the transient term and the matrix N is associated 

with the inertial term.  
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The projection method is a popular numerical method to solve the Navier-Stokes 

equations. The challenging part of solving the N-S equation is that the pressure and velocity are 

coupled by the continuity constraints. The attractive feature of projection methods is that, at each 

time step, one only needs to solve decoupled equations for the velocity and pressure, making it 

very efficient for large scale numerical simulations. Projection methods reduce the Navier-Stokes 

equations (a nonlinear partial differential equation) into a set of linear ordinary differential 

equation (Langtangen, Mardal, & Winther, 2002).  

The projection method starts by solving a predicted velocity u* at a new time step t+1 

using the momentum equation.  

 
t t t t t t

t
*Mu = Mu +Δ (-N(u )u -Lp -Ku +R )  (3-18)  

This predicted velocity does not satisfy the continuity equation, therefore a correction of velocity 

ut+1 is needed to compute by adding the continuity constraint.   

 
t+1 * cu = u +u   (3-19) 

The correct velocity ut+1 should satisfy the continuity equation at t+1:  

 
T t+1L u = 0   (3-20) 

The difference between ut+1 and u* uc satisfy: 

 
c -1

tu = - M Lφ , 
t+1 tφ = p -p   (3-21) 

Since ut+1 is needed to satisfy the continuity equation, a Poisson equation needs to be solved for 

the pressure difference: 

 
T -1 T *1

t
L M Lφ = L u   (3-22) 

The last step is to update the pressure and velocity for the time step t+1: 

 
t+1 tp = p +φ  , 

t+1 * -1
tu = u - M Lφ   (3-23) 
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In this work, the commercial software COMSOL is used to solve flow behavior in the 

porous media. The single-phase-flow model with laminar flow in fluid-flow module of 

COMSOL Multiphysics 4.2a is used. The Navier-Stokes equations are solved using the 

projection method with the finite element method in this module. The first step is to import mesh 

structures into COMSOL. The hypermesh generated from AVIZO is converted to the in-house 

mesh format, which contains node locations, element nodes, element connections, and nodes 

labels for inlet, outlet, no-slip and interior boundaries. The in-house mesh is then converted to 

the COMSOL native mesh format.  In the COMSOL mesh format, element surfaces which 

belong to the inlet/outlet boundary are grouped together as several faces and this eliminates the 

process of manually defining each element surface (which are often up to 105 faces) as the 

inlet/outlet boundary. A constant normal stress force is applied in the inlet and outlet boundary 

faces. The no-slip boundary condition is applied at the interior solid/void interface as well as the 

four exterior sides of the domain (i.e., those not specified as inlet or outlet). COMSOL provides 

the options of element type with both P2P1 and P1P1 elements. The direct solver PARDISO with 

a nested dissection preordering algorithm and the pivoting perturbation parameter set at 10-8 is 

employed to solve the linear systems of equations. The nodal velocity and pressure values are the 

output of the simulation, and results will be used for post-processing and visualization. 

Simulations were performed on a computer with 96 GB memory and two quad-core Xeon 64-bit 

processors with maximum operating cycles of 2.93 GHz. 

3.3 Network Modeling 

In this work, networks are generated using the voxel-based extraction algorithm describe 

elsewhere (Pradeep Bhattad, Willson, & Thompson, 2011). The input of this algorithm is a 

binary image of the porous material with voxel labels for solid or void space. The pore center 
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seeds are identified from performing a voxel burn to find local maxima in the distance function 

from the surface. A nonlinear optimization process is used to refine the initial pore seeds so that 

each pore is identified as a maximal inscribed sphere. The maximal inscribe sphere is a 

hypothetical sphere constrained by the surrounding solid space such that it cannot move or grow. 

The voxels belonging to a given pore are collected by moving from the center using a watershed-

type algorithm (Thompson, Willson, & Zhang, 2006). Pores are merged if significant 

overlapping of adjacent pores occurred. Once these two steps are complete, determining the 

geometric parameters and constructing the pore network connectivity is a straightforward 

process. The pore volume is obtained by summing the volume of all voxels assigned to this 

particular pore. The inscribed pore radius is equivalent to the radius of the maximum inscribed 

sphere in the second step. In network structures, pore throats have no volume and are defined by 

the faces where two pores have a contact face. The total cross-sectional area of the throat is 

defined by summing the projected area (along the unit normal of that face) of voxel faces at the 

interface. The inscribed radius of the throat is calculated by determining the maximum inscribed 

sphere on the interface between pores.  

The governing equation for each pore i in network modeling is given as: 

 
,

1
( ) 0

N i j

j ij

g
p p


   (3-24) 

This equation is equivalent to the continuity equation at the pore scale. Mass conservation is 

imposed on each pore in the network modeling approach. Throat conductance gi,j  characterize 

flow properties of the pore-throat and usually are estimated based on the geometry of pore-

throat. Disconnected pores (no connectivity with other pores) and dead-end pores (no 

connectivity with other pores and connected to an open boundary) need be removed before 

assembling the governing equation. Assembling the governing equation of every pore with pore 
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connectivity information forms the sparse linear systems of equations to solve pressure value of 

each pore. A constant pressure value is assigned in the inlet and outlet pore. This linear system is 

stored as a sparse matrix and the direct solver PARDISO from the Intel MKL library is 

employed. Simulations are performed on the same high performance computer system as the in-

house stokes flow code with 37 compute node cluster. Each node has two 2.93 GHz Quad Core 

Nehalem Xeon 64-bit Processors with maximum memory is 96 GB. 

3.4 Porous Media Parameters Calculation  

3.4.1 Porosity and Surface Area 

Porosity calculation from XCT images is direct and easy. For a given volume of interest 

in 3D digital images, porosity is the ratio of the volume of void voxels to the total volume.  

However, computing surface area from digital images is difficult. Specific surface area is 

the ratio of solid-void surface area and the total volume. The solid-void surface area is calculated 

using the algorithm described by Thompson (2007).   

3.4.2 Intrinsic Permeability 

Intrinsic permeability is a continuum-scale property that quantifies how easily a fluid can 

flow through the pore space. It is generally related to the pore structure, including parameters 

such as porosity, tortuosity and hydraulic radius. It is defined by Darcy’s law: 

 
v

k
P





 (3-25) 

To determine the intrinsic permeability from pore-scale flow simulations, we first 

calculate the inlet/outlet flow rate by integrating the surface velocity (obtained from the pore 

scale simulation of the Stokes flow) and the surface area over elements on the inlet or outlet 

boundary using:  

 Q d  v A  (3-26) 
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The superficial velocity v is then computed from flow rate Q divided by the inlet/outlet area of 

the computational domain.  

3.4.3 Reynolds Number 

The characteristic length used for the Reynolds number for porous media is generally 

defined as the particle diameter, and then the Reynolds number is defined as: 

 P
d Q

Re
A




   (3-27) 

where dp is particle diameter and ρ is the fluid density.  

3.4.4 Non-Darcy Coefficient 

The non-Darcy flow coefficient is calculated by rearranging the Forchheimer equation: 

 
1 1

app

P v

k k


 

 
    

 
  (3-28) 

where kapp is the apparent permeability calculated from Darcy’s law. The intrinsic permeability is 

only related to pore structure and it is calculated under the condition of the Stokes flow. The 

apparent permeability decreases as the velocity increase since the pressure drop is not linearly 

related with velocity at higher Reynolds numbers. The terms 1/kapp and ρv/µ are obtained for a 

range of flow rates by assigning different normal stress force at the inlet/outlet boundary in each 

simulation. A straight line with slope β and intercept 1/k is fit from the plot of 1/kapp versus ρv/µ.  
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4. FEM and LBM Comparison 

Pore-scale LBM and FEM modeling are two powerful approaches for direct simulation of 

flow in porous media. However, few studies exist in the literature that compare LBM and other 

computational fluid dynamics numerical methods such as FDM, FVM and FEM. Breuer, 

Bernsdorf, Zeiser, and Durst (2000) studied confined laminar flow past a square cylinder using 

FVM and LBM. They found good agreement between the two methods for both steady and 

unsteady flows. Geller, Krafczyk, Tölke, Turek, and Hron (2006) compared the efficiency of 

LBM and CFD solvers. Based on their results, they found LBM comparable to CFD methods 

(FVM and FEM) but asymptotically slower for the steady-state Stokes flow because the 

asymptotic algorithmic complexity of LBM is not optimal compared to multi-grid solvers 

incorporated in the FEM and FVM codes that were used. They observed that for the weakly 

compressible case, the LBM approach has a substantial wall clock time advantage compared to 

the FVM. Kandhai et al. (1999) performed a detailed comparison between FEM and LBM for 

three-dimensional fluid flow simulations in a SMRX static mixer. They found excellent 

agreement between results of two simulation methods. Manwart, Aaltosalmi, Koponen, Hilfer, 

and Timonen (2002) performed a quantitative comparison of the LBM and FDM for flow 

simulations of four three-dimensional samples of porous media. They mentioned that time 

requirements of two methods are quite similar, while the memory requirements of LBM are 

higher. 

Details of FEM modeling are described in Chapter 3. LBM simulations in this work were 

conducted by Ali Takbiri Borujeni. Please refer to (Borujeni, 2013) for more details of LBM 

modeling.   
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In the work, the term image resolution for 3D digital images is used to define the size of 

each voxel. Higher image resolution means smaller voxel size and generally implies a more 

detailed description of pore geometries. For a fixed sample size, higher image resolution results 

in larger number of voxels in the digital image. Usually, LBM modeling operates directly on the 

voxels in a digital image, so higher image resolution dictates a larger computational cost. As 

expected, poor image resolution affects the accuracy of LBM simulations. This effect can be 

minimized by increasing lattice resolution (decreasing voxel size) (Chukwudozie, 2011). There 

is always a trade-off between the image resolution and computational power.  

FEM modeling in this work uses unstructured tetrahedral meshes to represent the pore 

structure. A major advantage of this approach is that it allows the numerical (mesh) resolution to 

be selected independently of the image resolution (provided the mesh-generation algorithm 

enables this choice). Coarse meshes usually fail to preserve pore geometry, which in turn can 

have a large effect on the accuracy of simulations. A convergence study of different element 

resolutions on pore structure and/or transport properties is important to quantify numerical errors 

in FEM modeling.  

In this chapter, artificial (computer generated) 3D consolidated random sphere packing 

with image resolutions between 2-10 microns are generated. Different image resolutions result in 

different pore structures because of the inability of the voxel structure to capture the spherical 

surfaces exactly. Both LBM and FEM simulations of Stokes flow are performed on samples with 

all image resolutions. Macroscopic permeability is calculated and microscopic velocity fields in 

the pore space are analyzed for these two approaches.  This work studies how simulated 

permeability is affected by image resolution in both LBM and FEM simulations. Permeability 
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values of all image resolutions are compared between LBM and FEM. The microscopic velocity 

fields from LBM and FEM in highest image resolution sample are compared quantitatively.  

4.1 Materials 

A computer-generated three-dimensional sphere packing is used for flow simulations in 

this study. Computer-generated images provide flexibility in image resolution. They can be 

discretized to any desired image resolution without any segmentation errors, which are inherent 

in digitizing real porous media images. In order to mimic consolidated porous media, spherical 

particles are allowed to overlap by increasing the sphere radius (starting from dense but non-

overlapping packing). A cubic domain consisting of 1000 spheres and dimension one millimeter 

on each size is used. The size distribution of the spheres is 25% of the mean, which is 100 

microns. In the process of increase the sphere radii, the porosity decreases from approximately 

36.5 % to 14.5 %. 

The sphere packing is discretized to digital (voxel) images having five different 

resolutions. The range is from 2 microns (a 5003-voxel image) to 10 microns (a 1003-voxel 

image). Figure 4-1 shows 2D slices from the lowest and highest resolution images. As Figure 4-1 

shows, the high resolution image has significantly smoother solid and void interfaces compared 

to the low-resolution image. Some pore connectivity is lost in the low-resolution image. Porosity 

and specific surface area values for the five different images are listed in the Table 4-1. 

Variations in porosity are very small for different image resolutions, but surface area increases as 

the image resolution improves.  

4.2 Results and Discussions 

4.2.1 Macroscopic Permeability Comparison  

A feature of using unstructured meshes for the FEM simulations is that the number of  
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    (a) 

        

 
   (b) 

 

Figure 4-1: Images of the random sphere pack with two different resolutions: (a) 10 microns, (b) 
2 microns. 
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Table 4-1: Image porosity (φ) and image specific surface areas (Sv) for different image 
resolutions 

Image Size (voxel) Image Resolution(µm) φ (%) Sv (1/m) 
100 10 14.33 18374.80 
200 5 14.34 19808.62 
300 3.3333 14.34 20298.41 
400 2.5 14.34 20554.09 
500 2 14.34 20705.89 

 
              

elements can be decoupled from the image resolution (voxel size); therefore, meshes with similar 

numbers of elements can be obtained from different image resolutions. This allows us to study 

the impact of image resolution more independently of numerical resolution than when the two 

are directly related.  

In order to find an optimal number of elements for FEM simulations, a study on 

numerical convergence is carried out. Comparisons of mesh porosity versus image porosity, 

mesh surface area versus image surface area, and permeability values are calculated for various 

numbers of elements. Mesh porosity and mesh surface area values reported here are based on the 

pore structure that is mapped out the complete set of tetrahedrons (Mesh porosity is calculated as 

the ratio of total elements volume to total sample volume). Mesh surface area is calculated as 

total area of element faces that are part of the void-solid interface.  Figure 4-2 shows the effect of 

the number of elements on structural and transport properties for 1003 and 5003-voxel images. It 

can be seen in Figure 4-2(a) that permeability increases as the number of elements increases. The 

permeability value starts to converge to a constant value at a certain element number. However, 

the permeability values for the two image resolutions are different. Figure 4-2(b) depicts the 

change of the mesh porosity relative to the image porosity as the number of elements increases. 

For the 5003-voxel image, relative porosity estimates are almost constant with changes in number 

of elements, which suggests that the smaller number of elements is sufficient to preserve the pore  
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(a) 

 
(b) 

 
(c) 

 

Figure 4-2: Structural and transport properties of the meshed packing for the 1003 and 5003 voxel 
images: (a) the permeability versus number of elements, (b) the porosities of the meshed 

structures to the image porosities versus number of elements, (c) the surface areas of the meshed 
structures relative to the image surface areas versus number of elements. 
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structure of this image. For the 1003-voxel image, this is not the case and values are more 

sensitive to the number of elements. It can be also seen that even with a very large number of 

elements, we do not reach to the porosity of the original image. This is more severe for the 1003-

voxel image than for the 5003-voxel image. Figure 4-2(c) depicts the calculated surface area of 

the mesh relative to the surface of the 1003 and 5003-voxel images. Relative surface area shows 

similar behavior as the relative porosity of the images. Therefore, unstructured meshes with 

around 1300K elements are used for all image resolutions to perform FEM simulations. 

Permeability from LBM simulations using four different relaxation times and FEM 

simulations at all image resolutions are plotted in Figure 4-3. As can be seen from this figure, for 

the lower image resolutions, there are significant discrepancies among the permeability values 

between two approaches. The change in permeability with image resolution has opposite trends 

for these two approaches. FEM simulations show an increasing trend in permeability with 

increasing image resolution while LBM simulations are showing a decreasing trend. In LBM 

simulations, relaxation time affects the permeability results. Lower relaxation time results in 

higher permeability. Moreover, the rate of change of permeability is higher for the lower 

relaxation times. Both FEM and LBM simulations predict similar permeability values for the 

highest image resolution (two micron voxel size).  

In order to quantify the effect of voxel size on LBM results, each voxel in the image with 

ten-micron resolution is divided by 2, 3, 4 and 5 times, so voxel sizes are 5, 3.333, 2.5 and 2 

microns, and images are 2003, 3003, 4003 and 5003 voxels. It is important to point out this 

revoxlization process keeps pore structure fixed exactly as it is in the low-resolution image, 

which the grid resolution varies as it does when the image resolution is changed. The 

permeability value predicted from LBM simulations of all revoxelization images are plotted in  
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Figure 4-3: Permeability results of FEM and LBM for different image resolutions. 

 

Figure 4-3. Reducing the voxel size decreases the predicted permeability. The rate of change of 

permeability is the highest when the voxel size is reduced from 10 to 5 microns. The variation of 

permeability is very small when the voxel size changed to 3.333, 2.5 and 2 microns, and these 

permeability values are very close to the one predicted from FEM simulations. Revoxlization 

helps to reduce the numerical errors associated with the voxel size in LBM simulations.  

Figure 4-4 shows the pore structures of a sub-region in the 1003 and 5003-voxel images of 

packing. Due to the poor resolution in the 1003-voxel image, there are lost pore connections that 

can reduce the estimated value of permeability. One can observe the differences in the numerical 

domain (characterized by the mesh) for these two images. The mesh conforms better to pores in  
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(a) 
 

 

 
 

(b) 
 

Figure 4-4: Two-dimensional cross-sections of the mesh with (a) 110K elements for1003-voxel 
image and (b) 110K elements for 5003-voxel image (white regions are the void space and black 

regions are the solid phase). 
 

the high-resolution image (which also has smoother pore-grain interfaces compared to the lower-

resolution image). It can also be seen that numerical domain in FEM underestimates the volume 

of the pores and the meshing is more likely to fail to preserve pore connectivity in poor 

resolution image.  It can be seen that in the poor-resolution image, the number of the pores that 
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are connected to their neighboring pores with merely a single node is larger. LBM allows the 

flow of fluids through these shared nodes. In contrast, for FEM there cannot be flow between 

neighboring elements if the connect only at a node (no shared face). This may partly explain why 

permeability values predicted from these two methods have a large discrepancy for the low-

resolution image.  

4.2.2 Microscopic Velocity Field Comparison  

Even though similar permeability values are predicted from FEM and LBM simulations 

in the 5003-voxel image, the microscopic velocity field predicted from these two numerical 

approaches is compared. A point-by-point comparison of the pore-scale velocity fields from 

FEM and LBM is performed to quantify whether differences exist at the pore scale that may be  

averaged out in a continuum parameter such as permeability. FEM simulations produce velocity 

value at nodes in the tetrahedral elements; therefore velocity values from FEM simulations are 

interpolated using the shape functions to evaluate velocities at each lattice point in the LBM grid 

(or voxel in the image). Velocities at each point are then normalized by the average velocity in 

the domain. The normalized difference in the z-direction velocity at each lattice point (between 

LBM and FEM simulations) for the 5003-voxel is calculated using:  

 
, ,

,

LBM FEM

z i z i

z i LBM FEM

z z

v v
v

v v
    (4-1) 

where ∆vz,i is the difference between the normalized calculated z-direction velocity of LBM and 

FEM for the grid i, vz,i
LBM and vz,i

FEM are the calculated z-direction velocities of LBM and FEM 

for the grid i, respectively, and <vz
LBM > and <vz

FEM >  are the calculated average z-direction 

velocities for LBM and FEM, respectively. Figure 4-5 shows a plot of the z-direction velocity 

from FEM simulations, visualized on a xy cross-section of the 5003-voxel image. Also shown is  
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(a) 

 

(b) 

Figure 4-5: (a) z-direction velocity plot of the FEM simulations in a xy cross-section of the 5003-
voxel image and (b) its corresponding normalized difference values plot between the two 

numerical approaches LBM and FEM. 
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the normalized difference calculated from equation (4-1) plot. By inspecting these two plots, one 

can see that FEM calculates higher velocity values than LBM in regions with higher velocities. 

Two pore areas in the 2D xy cross-section shown in Figure 4-6 are chosen to in order to 

compare the calculated velocity fields of FEM and LBM quantitatively. In the first area, 

normalized z-direction velocities of FEM and LBM along a horizontal line are plotted in Figure 

4-6b. It shows that the differences between the velocities are higher at the regions away from the 

void-grain interfaces. At the center of the line where velocity reaches to its maximum value, 

predicted velocities of FEM are almost 11% higher than LBM. In the Figure 4-6d, normalized z-

direction velocities of the two approaches are plotted along the vertical line shown in the Figure 

4-6c. Contrary to Figure 4-6b, Figure 4-6d shows that LBM velocities are slightly higher than 

FEM. At the mid points on the line, predicted velocities of LBM are around 16% higher than 

FEM. It should be noted that the normalized velocity range in Figure 4-6b is higher than in 

Figure 4-6d. Figure 4-6b is in the high-velocity region where the velocity difference plot (Figure 

4-5b) shows higher FEM values than LBM values. In studies with a focus on high velocity 

studies in porous media (such as non-Darcy flow) these regions may play a more significant role. 

A more quantitative investigation of the velocity and difference fields is done in Figure 

4-7 and Figure 4-8. Figure 4-7 is the histogram of difference values. The mean value of 

difference is zero and the standard deviation is 74%. The frequency of difference values between 

-0.75 and 0.75 is more than 96% of the total number of the nodes (it should be pointed out that 

more than 85% of the nodes are located in the solid phase). Histograms of the normalized z-

direction velocities predicted from two methods for the 5003-voxel image are shown in the 

Figure 4-8. FEM seems to predict higher velocity magnitudes (both in positive and negative 

directions) and shows a wider range of velocity values compared to LBM results. Permeability 
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values predicted from both approaches for this image are close to one another. Although the 

leading direction velocity ranges and magnitudes are different, they sum up to give similar 

values (since their summations are used for permeability calculations). 

 

 
(a)        (b) 
 

 
 

(c)        (d) 
 

Figure 4-6: The predicted velocity profiles from LBM and FEM along the blue lines in two 
regions: (a) shows a region along with a horizontal blue line, (b) The velocity profile predicted 

from FEM and LBM along with blue line in (a), (c) shows a region along with a vertical line, (d) 
The velocity profile predicted from FEM and LBM along with blue line in (c). 
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Figure 4-7: Histogram of difference of the normalized z-direction velocities between LBM and 
FEM in the 5003-voxel image. 

 

 

Figure 4-8: Predicted z-direction velocity histograms predicted from LBM and FEM in the 5003-
voxel image
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5. FEM Modeling of Non-Darcy Flow 

Hydraulic fracturing with proppants has been used for many years to enhance extraction 

of oil and gas (C. Cooke, 1973; Graham & Kiel, 1968). In the past decade, advances in hydraulic 

fracturing and horizontal well techniques have enabled dramatic expansion of commercial shale 

gas production in North America (Hart, Sayers, & Jackson, 2011; Sondergeld, Newsham, 

Comisky, Rice, & Rai, 2010). Hydraulic fracturing is the process of injecting fluids at high 

pressure to fracture the producing rock and create high-conductivity flow paths from the source 

rock or reservoir to the well (Cipolla, 2009). Proppants are added to the fracturing fluid to prop 

the fracture open after the fracturing pressure is reduced. For the proppants to be effective it is 

essential that they maintain paths of high conductivity (Brannon, Wood, & Wheeler, 2006; 

Kaufman, Penny, & Paktinat, 2008; Warpinski, Mayerhofer, Vincent, Cipolla, & Lolon, 2008).  

Despite its widespread use, many aspects of the hydraulic fracturing process remain poorly 

understood. Research work has reported the adverse effects of neglecting non-Darcy flow on 

production prediction, fracture design, proppant selection, and well testing of hydraulic fractures. 

Quantifying the additional pressure drop caused by non-Darcy effects and understanding the 

inertial effects on flow behavior in hydraulic fracture is important.  

Traditionally, flow experiments are conducted in a cell that contained proppants and rock 

to measure the permeability and non-Darcy flow coefficient. As loading stress increases in 

reservoirs, propped fractures are expected to have decreased permeability and increased non-

Darcy coefficients. Different proppant materials have showed different behavior (rearrangement, 

embedment and particle crushing). The sieve analysis of proppants under stress by Stephen and 

David (2004) indicated that ceramic proppants tend to crush into larger pieces while sand 

crushed into smaller pieces. β was measured using proppants with various sizes and loading 
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stresses; results were correlated with standard deviation of sieve size distribution. C. E. Cooke 

(1973) developed a conductivity cell to measure the permeability of sand proppants. Loads were 

applied to the piston of a stainless steel cell that contained proppants. In the pressure range 

investigated (1k to 10k psi), permeability was reduced two orders of magnitude for 8-12 sand 

proppants and by around 80% for 20-40 sand proppants. Different sizes of sand with equal 

permeability had different non-Darcy coefficients and this was attributed to the larger proppants 

being more heterogeneous after crushing. Much and Penny (1987) used a similar setup to 

measure the conductivity of sand proppants and intermediate strength ceramic proppants (ISP). 

The same pressure range (1k to 10k psi) was studied and results showed a significant decrease in 

conductivity (>50%) for Jordan sand proppants, whereas the conductivity of ISP decreased by 

approximately 30%. Fredd et al. (2001) observed that Jordan sand proppants started to crush 

after 2k psi whereas sintered bauxite proppants kept intact until 5k psi. The bauxite conductivity 

decreased from 2000 mD∙ft to 10 mD∙ft and Jordan sand had a reduction from 400 mD∙ft to 0.35 

mD∙ft in the stress range of 1k to 7k psi.   

In addition to proppant characteristics, the type of column wall used in conductivity cells 

is also important. Much and Penny (1987) showed different conductivity using steel pistons and 

sandstone cores. At lower loading stress, no crushing and embedding happened and proppant 

conductivity for the steel pistons was higher. This was attributed to the steel which caused an 

overestimate of proppant conductivity. Embedding becomes important for loading stress of 8k 

psi and higher for sandstone cores.  Research done by Wen, Zhang, Wang, Liu, and Li (2007) 

showed that conductivity stayed the same for steel and sandstone boundaries at loading less than 

5k psi, while the conductivity using sandstone cores declined more rapidly than with steel 
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pistons at larger pressures. The use of rocks as column walls better represents the actual fracture-

proppant system and allows one to observe any potential wall effects. 

In this work, image-based pore-scale models is used to evaluate the permeability, non-

Darcy flow coefficient, and microscopic flow behavior in bulk proppants between berea walls 

and single-layer proppants between shale walls. Multilayer proppants packing sandwiched by 

berea sandstone is composed of the berea system and monolayer proppant sandwiched by shale 

is composed of the shale system.3D microCT images of berea-proppant-berea and shale-

proppant-shale system are acquired and segmented by Paula Sanematsu and Clinton S. Willson. 

Different loading stresses are applied on two systems while imaged. Pore-Scale FEM simulations 

at the both Darcy flow and non-Darcy flow regime are conducted using the segmented images of 

proppant systems. Two elements type P1P1 and P2P1 are compared in FEM simulations. The 

loading stress effects on pore structures as well as transport properties tortuosity, permeability 

and non-Darcy coefficient are studied. The pore-scale flow fields from images at different 

loading stresses are visualized. Inertial effects on pore-scale velocity fields are also investigated 

to improve fundamental understanding of non-Darcy flow behavior. 

5.1 Materials 

5.1.1 Image Acquisition  

Two different rocks are used for this study: Berea sandstone and Pierre shale. Small 

cores, 6 mm in diameter, and various heights, are extracted from 1-in Berea sandstone and Pierre 

shale cores. Proppants used in the imaging were CarboHPS® high-strength sintered bauxite 

proppants from Carbo Ceramics. 20-40 sieve proppants with a median particle diameter of 697 

m are used with the Berea samples and 30-60 sieve proppants with a mean particle diameter of 

430 m are used with the shale. The material used to contain the system is a plastic that is 
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transparent to x-ray and not susceptible to deformations for the loadings applied in this study. In 

the following we will refer to the two different setups: either the Berea system, which is bulk 

proppant (multiple particle diameters) sandwiched between the Berea cores, or the shale system, 

which is a monolayer of proppant particles sandwiched between shale cores.  

The sample holder consists of an outer cylindrical plastic sleeve that is transparent to x-

rays and strong enough to support the stresses with little or no deformation (Figure 5-1). For the 

Berea system (Figure 5-1a), only one sleeve (inner diameter: 6 mm, outer diameter: 10 mm) is 

used.  Steel anvils, used to apply the load to the rock-proppant-rock sample, are 6 mm in 

diameter, 2 mm in height. For the shale system (Figure 5-1b), two sleeves are used (inner 

diameters: 6, 10 mm; outer diameter: 10, 20 mm, respectively) to allow more stability for the 

stepped anvils. The rocks and proppant are packed by first placing a layer of rock on the lower 

anvil, then the proppants are placed while using a microscope to ensure a monolayer (i.e. 

proppants are not sitting on top of proppants)  and finally another layer of rock is inserted on top. 

 

 

Figure 5-1: Schematic drawing of X-ray CT imaging experiment setup for (a) Berea and (b) 
Shale. 
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The samples are placed at the Advanced Photon Source GSECARS Large Volume Press 

(Wang et al., 2005)  in the 13-BMD beamline. Table 5-1 reports imaging details for all loading 

stresses. For each system, the first image is obtained at zero applied stress on the proppants. 

Then, a load is applied and, once stabilized, the entire system is imaged again. Both systems are 

imaged at 0, 4k, 8k, and 12k psi. The Berea system is also imaged at 20k psi.  

Table 5-1: X-ray Micro-CT imaging details 

 

5.1.2 Image Segmentation  

Image reconstruction, the process of converting 2D projection images into a 3D 

volumetric file, is performed using filtered back-projection algorithms developed by GSECARS 

(Rivers, http://cars9.uchicago.edu/gsecars/index.html). Each voxel in the 3D volumetric data file 

(695x695x520 voxels) contains a linear attenuation value that depends upon the composition of 

the phases within the voxel and the x-ray energy. The voxel sizes of the reconstructed images 

were 11.8 m for the Berea system and 12.0 m for the shale system. 

The resulting 3D datasets are first converted to 8 bit data and then smoothed by 

anisotropic diffusion (AD) filter (P. Bhattad, 2010) then segmented using an indicator kriging 

(IK) based technique first developed by Oh and Lindquist (1999) and then modified as described 

in (P. Bhattad, 2010). Each segmentation trial is evaluated both quantitatively (e.g., porosity) and 

qualitatively (i.e., comparison of segmented image to the original grayscale) to select the final 

segmented image to be used for further analysis. Finally, an algorithm (remove islands and 

Imaging Details Berea Shale 

Voxel Resolution (m) 11.08 12.00 

Energy (keV) 37.00 35 

Exposure (s) 0.3 0.2 

Rotations 720 720 

Subvolumes scanned per load 2 3 
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holes) was applied to remove isolated specks of noise. This process is illustrated for the Berea 

system at 0 psi loading in Figure 5-2. 

 

Figure 5-2: Image processing steps of the berea system at 0-psi loading stress 

 

5.2 Results and Discussions 

5.2.1 Stress Effects on Pore Structures 

2D slices of segmented images of the berea and shale system are shown in Figure 5-3 and 

Figure 5-4 respectively at all loading stresses. Segmented images of the berea system (Figure 

5-3) show that as loading stress increases, proppants rearrange, embed into the rock and 

eventually crush at the highest stresses. The rearrangement of proppants particles causes changes 

in the pore space, which in turn modifies flow pathways and increases the number of grain-grain 

contacts and tortuosity. Crushing occurs at 12k and 20k psi, thus increasing the number of 

particles, creating more surface area and reducing porosity. Embedment is first observed at 8k 

psi and embedment of proppants into the rock reduces the impact of near-wall packing structures 

that occur in rigid-wall systems.  
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Segmented images of the shale system (Figure 5-4) shows rock walls change little from 0 

to 4k psi, however, these is considerable embedment of proppants happens from 4k to 12k psi. 

The pathways between proppants and the wall are narrowed or closed after embedment. Another 

important consequence of embedding is the reduction of fracture width, which decreases the 

fracture conductivity.  

 
Figure 5-3: yz slice of the berea system segmented XCT image at loading stresses: (a) 0 psi, (b) 
4k psi, (c) 8k psi, (d) 12k psi, (e) 20k psi.  

 

 
Figure 5-4: yz slices of the shale system segmented XCT image at loading stresses: (a) 0 psi, (b) 
4k psi, (c) 8k psi, (d) 12k psi.  

 

5.2.2 Elements Type Effects 

Two different types of tetrahedral elements P2P1 and P1P1 are compared in FEM 

simulations using commercial software COMSOL. FEM simulations using P2P1 and P1P1 

element are performed in the bulk proppants packing domain from the berea system with z-

 

 

 
 

 

   (a)      (b)   (c)     (d)    (e)  

  
 

 

(a)     (b)  (c)  (d)  
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direction flow. A 3003-voxel subsection of the bulk proppant is extracted and the cutout can be 

seen for each loading in Figure 5-3, where the blue squares indicate the cubic cutouts of berea 

system.  

In the FEM algorithm, the most time-consuming and memory-demanding step is solution 

of the linear system of equations for velocity and pressure. Therefore, the performance scales 

strongly with the number of equations in the linear system, which in turn is affected by element 

type. Compared to P1P1 elements, the P2P1 elements contain middle nodes that are additional 

velocity nodes. This significantly increases the degrees of freedom in the linear system of 

equations, thus affecting memory requirements and computational time. Table 5-2 lists number 

of equations and associated memory for P1P1 and P2P1 formulations for two different meshes. 

For the same number of elements, the degrees of freedom for the P2P1 elements is roughly five 

times larger and the memory requirements are approximately 8 times larger than with P1P1.  

Table 5-2: Computational cost of P2P1 and P1P1 elements 

 

To make efficient use of computational resources, it is important to minimize the number 

of elements while still capturing the void structure and maintaining accuracy, especially for P2P1 

elements. Around 0.02 elements per voxel were used in P2P1 simulations of samples for all 

loadings based on numerical convergence with additional mesh refinement. For P1P1 

simulations around 0.06 elements per voxel were used. As expected, results showed that fewer 

elements (for the same void structure) are required for convergence with P2P1 elements 

compared with P1P1 elements.   

Elements 
Number 

Elements per 
Voxel 

Elements 
Type 

Degrees of 
Freedom 

Memory Usage 
(GB) 

351762 0.013 P1P1 368300 1.7 
351762 0.013 P2P1 1905719 13.5 
519849 0.019 P1P1 525668 2.5 
519849 0.019 P2P1 2752757 22.1 
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The comparison of element type is shown using the zero stress loading as an example. 

Figure 5-5 is a plot of apparent permeability as a function of Reynolds number obtained from 

P2P1 and P1P1 simulations. The characteristic length used to calculate Reynolds number is dp = 

697 m in the proppant packing from Berea system and dp = 430 m in the shale system. Both 

values are reported by the manufacturer. It indicates that both the P2P1 and P1P1 results predict 

the onset of the non-Darcy flow regime at Re ≈ 1, which is in agreement with the work reported 

by Huang and Ayoub (2008). The apparent permeability predicted from P2P1 results is 

approximately 30% higher compared to P1P1. Furthermore, the P2P1 results failed to converge 

at Re ≈ 20, which is significant lower than the limit for P1P1 simulations (Re ≈ 100).  

 
Figure 5-5: Apparent permeability at different Reynolds number obtained from FEM P2P1 and 

P1P1 of 3003-voxel bulk proppants from Berea system at zero loading stress. 

 

Figure 5-6 contains the Forchheimer results from both P2P1 and P1P1simulations. The 

value of   predicted from P2P1 results is approximately half of what is predicted from P1P1 
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results, suggesting that the numerical differences associated with element type are more 

pronounced in the inertial flow regime than for Darcy permeability.   

 
 

Figure 5-6: Forchheimer plot of 3003-voxel bulk proppants at zero loading stress from FEM 
P2P1 and P1P1 simulations. The value β = 1.2943e-05 m-1 is predicted from the slope of the 

linear fit of the data from P1P1 and β = 6.4543e-04 m-1 is predicted from the slope of the linear 
fit of the data from P2P1. 

 

The apparent permeability predicted from P2P1 results at all loading stresses (plotted in 

Figure 5-7) shows that the convergence limit for the 20k psi loading occurs at only at Re ≈ 5.  

We believe this is caused by crushing of the proppant, which results in significantly smaller pore 

spaces, which have reduced numerical resolution (number of elements for a given gap size).  

The velocity fields in the pore space predicted by P2P1 and P1P1 are also compared. 

Figure 5-8 indicates that both P2P1 and P1P1 predict qualitatively similar velocity fields for the 

same Reynolds number. The small differences that are observable include slightly higher 

velocity magnitudes for the P2P1 results. Quantitatively, (Lane, 2011) demonstrated that P2P1  
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Figure 5-7: Apparent permeability at different Reynolds number obtained from FEM P2P1 of 
3003-voxel bulk proppants at 0, 4k, 12k and 20k psi loading stresses. 

 

 
Figure 5-8: yz slice of velocity field at Re ≈ 0.3 obtained from (a) FEM P2P1 (b) FEM P1P1 of 

3003-voxel bulk proppants at zero loading stress. 
 

 
                             (a) 

 
                                 (b) 
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elements provide more accurate solutions for confined viscous flow by comparing computational 

versus analytical velocity fields in a square duct. We expect similar behavior to occur in the 

more complex interconnected pore spaces shown here.  Hence, the FEM results for intrinsic 

permeability and non-Darcy flow coefficients reported in the following sections are obtained 

using P2P1 elements.  

A close inspection of Figure 5-7 demonstrates that no linear relationship is found for 

Re > 1 at 12k psi and 20k psi loading in the bulk proppants. In order to correctly predict β from 

linear regression, it is necessary to obtain data at higher Reynolds numbers, which requires mesh 

refinement. Due to computational limitations and reasonable insensitivity of simulation results to 

domain size in this range, a 2003-voxel domain is used for the refined simulations. The apparent 

permeability versus Reynolds number plot predicted from two mesh resolutions, shown in Figure 

5-9, indicates that the convergence limit increased from Re ≈ 10 to 40 as mesh resolution 

increased from 0.02 elements per voxel to 0.06 elements per voxel.  

In order to check accuracy of the non-Darcy coefficients predicted from linear regression, 

a convergence analysis for β prediction is conducted. Table 5-3 shows an example for proppants 

at 12k psi loading stress: 13 simulation cases with various Re are performed and 1/kapp and ρv/µ 

data are obtained from each simulation. Table 5-4 lists β predicted from regression of different 

data points. Three data points are used in each regression prediction. The difference of β 

predicted from regression of points (9, 10, 11), (10, 11, 12) and (11, 12, 13) are less than 1%, 

suggesting that the non-Darcy coefficient changes only slightly provided that higher Reynolds 

number data are included, and that the results reported here have converged with respect to 

Reynolds number.  
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Figure 5-9: Bulk proppant apparent permeability at 12k psi for different Reynolds numbers 
obtained from FEM P2P1 for two cutouts: 3003-voxel and 2003-voxel. 

 

Table 5-3: 1/kapp and ρv/µ obtained from FEM P2P1 simulations with 13 cases of various Re of 
2003-voxel bulk proppants at 12k psi loading 

 

Case ρν/μ (m) 1/kapp (m-2) Re 

1 7.1406E+01 5.6934E+09 0.050555 

2 7.1248E+02 5.7060E+09 0.504437 

3 2.1231E+03 5.7446E+09 1.503147 

4 3.5049E+03 5.7997E+09 2.481443 

5 4.8496E+03 5.8681E+09 3.43349 

6 6.7921E+03 5.9855E+09 4.808814 

7 1.2677E+04 6.4141E+09 8.97503 

8 2.2626E+04 7.1873E+09 16.01897 

9 2.6991E+04 7.5312E+09 19.10936 

10 3.1060E+04 7.8533E+09 21.99051 

11 3.8502E+04 8.4471E+09 27.25961 

12 4.5229E+04 8.9885E+09 32.02227 

13 5.4329E+04 9.7279E+09 38.46472 
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Table 5-4:   predicted from different linear regression cases from data points in Table 5-3. 

 

5.2.3 Proppant Packing: Stress Effects  

The intrinsic permeability calculated from the bulk proppant images is referred to as the 

bulk permeability. From Figure 5-10, the bulk permeability value predicted from FEM P2P1 at  

 

 
Figure 5-10: Intrinsic permeability of 3003-voxel bulk proppants at different loading stresses 

predicted from FEM P1P1, FEM P2P1, empirical C-K1 equation (5-2) and C-K2 equation (5-3) 
and published by proppants manufactures CARBO Ceramics (Palisch, Duenckel, Bazan, Heidt, 

& Turk, 2007). 
 

Case Points Used Re Range β (m-1) R2 β Relative Difference (%) 

1 6,7,8 4.80-16.01 7.61E+04 0.99971 N/A 

2 7,8,9 8.97-19.10 7.80E+04 1 2.431174 

3 8,9,10 16.01-21.99 7.90E+04 1 1.243526 

4 9,10,11 19.10-27.25 7.96E+04 1 0.786482 

5 10,11,12 21.99-32.02 8.01E+04 1 0.640385 

6 11,12,13 27.25-38.46 8.09E+04 1 1.034035 
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each loading stress indicates that from 0 to 8k psi loading, the permeability remains constant at 

approximately 225 Darcy. Minor rearrangements and embedding of proppants can be observed 

from the images between 0 and 8k psi, but these changes have only a minor effect on 

permeability. A 12% decline of permeability occurs from 8k to 12k psi, when crushing first 

begins to occur. A decline of 60% then occurs between 12k and 20k psi, when significant 

crushing occurred. The bulk permeability values obtained by simulations were compared with 

Modified API RP-61 (ISO 13503-3) experimental results published by CARBO Ceramics 

(Figure 5-10), the manufacturer of the proppants (Palisch et al., 2007). Their results are 

significantly different, showing a smooth, monotonic decrease in permeability as loading stress 

increases from 0 to 14k psi.  

Permeability is closely related to pore structure, and image analysis can be used to 

characterize pore structure changes as loading increases, giving additional insight into the 

fundamental cause of permeability reduction. Porosity is computed as the ratio of void voxels to 

total voxels in the segmented image. Tortuosity is defined as the ratio of the length of the actual 

path of fluid motion to the linear distance traversed in the direction of the mean flow. A. 

Koponen, Kataja, and Timonen (1996) proposed the tortuosity can be calculated based on 

velocity values on grid points:   

 
, ,

, ,
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


  (5-1) 

where umag(i, j, k) is the magnitude of velocity at location i ,j, k, uz(i, j, k) is the z-direction (flow 

direction) velocity at location i, j, k and i, j, k is the location of a lattice point in the domain.   

Table 5-5 lists the intrinsic permeability, porosity and tortuosity values for all loadings. 

From 0 to 8k psi, structural parameters porosity and tortuosity as well as permeability remain  



73 
 

Table 5-5: Porosity, tortuosity and intrinsic permeability value of 3003-voxel bulk proppants 
packing at all loading stresses 

 

relatively constant. At 12k psi, small crushing does not cause much change in porosity and 

tortuosity. At 20k psi, significant particle crushing causes tortuosity to increase approximately 

5% and porosity to decrease around 25%. 

Additional insight is gained by computing expected permeabilities using the Carman-

Kozeny (C-K) equation, which is an empirical equation widely used to predict the permeability 

of sphere packing and other granular materials. Here it is expressed in two different forms as 

follows (Bear, 2013):  

 

2 3
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where dp = 697 m is the median particle diameter reported by the manufacturer and   is the 

porosity (from Table 5-5).  

The second form incorporates tortuosity (Wyllie & Spangler, 1952): 
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  (5-3) 

where RH  is the hydraulic radius, the ratio of void volume and surface area, k0 is the shape factor 

of 2.5 and τ is the tortuosity (from Table 5-5).  

Figure 5-10 shows that as loading stress increased from 0 to 12k psi, the discrepancy of 

permeability predicted from pore-scale simulations (FEM P2P1) and the C-K equation (5-2) was 

only ±8%. A larger discrepancy of 37% was observed at 20k psi, likely because the significant 

crushing causes the proppants packing to no longer resemble a uniform sphere packing. The 

Loading Stress (psi) Porosity Tortuosity Permeability (Darcy) 
0 0.33 1.26 230.43 
4k 0.31 1.27 205.37 
8k 0.32 1.26 235.65 
12k 0.32 1.27 197.07 
20k 0.28 1.36 79.73 



74 

permeability predicted from C-K equation (5-3) is approximately 25% larger than values from 

pore-scale simulations. 

Image-based pore-scale simulations also provide visual insights about how flow paths are 

modified as pore structures changes. Figure 5-11 shows, for each loading stress, the magnitude 

of velocity normalized by its maximum value in the middle yz cross sections of the domain. At 

lower loadings, there are wide-open pore spaces where particles are not packed tightly, and 

velocities are generally high in these spaces. As loading increases, the pore space becomes more 

compact and the velocity magnitude becomes more uniform throughout. 

(a) (b) 

Figure 5-11: yz slices of velocity field normalized by its peak value obtained from FEM P2P1 of 
3003-voxel bulk proppants at loading stress: (a) 0 psi, (b) 4k psi. (continued) 
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(c) (d) 

(e) 

Figure 5-11: (continued) yz slices of velocity field normalized by its peak value obtained from 
FEM P2P1 of 3003-voxel bulk proppants at loading stress: (c) 8k psi, (d) 12k psi and (e) 20k psi. 

Not surprisingly, the non-Darcy flow coefficient showed the opposite trend as bulk 

permeability, increasing with the increased loading stresses over the range where the pore 

structure was impacted. As shown in Figure 5-12, an average value 7.0×10-4 is observed from 0 
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to 8k psi. A small increase (10%) occurred from 8k psi to 12k psi and a significant increase 

(40%) occurred from 12k psi to 20k psi. In contrast, vendor results showed an almost linear trend 

versus the loading stress and the actual values of β were significantly lower than what is 

predicted from simulations. 

Figure 5-12: Non-Darcy flow coefficient of 2003-voxel bulk proppants at different loading 
stresses predicted from FEM P1P1, FEM P2P1 and published by proppants manufactures 

CARBO Ceramics (Palisch et al., 2007). 

In the non-Darcy flow regime, inertial effects cause a decrease in apparent permeability 

as Reynolds number increases. The pore-level changes caused by the onset of inertial flow are 

investigated by comparing velocity fields for different Reynolds numbers in Darcy and non-

Darcy regimes. In Figure 5-13, velocity is scaled relative to its peak value, so a comparative 

study can be performed. The velocity fields at four different Reynolds numbers are compared. At 

low Reynolds number (Re = 0.041), viscous forces dominate momentum transport and the 

velocity increases symmetrically (in versus out) when flowing through narrower throats. As the 
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Reynolds number increases to 4.02, inertial effects start to become significant and fluid flow 

exhibits slightly more jet-like behavior, penetrating throats without changing velocity 

significantly and remaining high even after exiting pore throats into larger pore bodies. This 

behavior is even more evident at Reynolds numbers equal to 10.76 and 16.30. 

Figure 5-13: The yz slice of velocity field normalized by its peak value obtained from FEM P2P1 
of 3003-voxel bulk proppants at zero loading at Reynolds numbers: (a) Re = 0.041, (b) Re = 4.02, 

(c) Re = 10.76, (d) Re = 16.30. 

(a) (b) 

(c) (d) 
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5.2.4 Propped Fractures: Stress Effects 

For the shale system, a 400×300-voxel rectangle inscribed by the cylinder is selected in 

the xy cross section. This cutout is 70 voxels thick in the vertical direction and includes the top 

and bottom shale. This cutout is represented by blue rectangles in the yz slice in Figure 5-4. The 

intrinsic permeability and conductivity are calculated and defined as the fracture permeability 

and conductivity, respectively. The cross sectional area of the fracture is the xz plane 

perpendicular to the flow direction (y). The opening width is not uniform along the cross-

sectional area. Therefore it was approximated as the average opening width and was estimated 

by visual inspection of the segmented image at each loading stress. The width was measured 3 

times at each cross section for 40 different xz-cross sections. The average of these 120 

measurements was used as the fracture width for a given loading stress in both cross-sectional-

area and conductivity calculations. 

For transport in propped fractures, conductivity is often used instead of permeability so as 

to account for both the intrinsic permeability of the proppant as well as the fracture width, both 

of which contribute equally to the ability to transport fluid in a pressure or gravity driven flow. 

The fracture conductivity is calculated as: 

c kw  (5-4) 

where k is the fracture permeability and w is the opening width of the fracture. 

The fracture permeability, opening width, conductivity and non-Darcy coefficient at all 

loading stresses are listed in Table 5-6. Permeability decreased around 25% from 4k to 8k psi 

and 15% from 8k to 12k psi. Similarly to bulk permeability, no significant reduction of fracture 

permeability occurs from 0 to 12k psi. Conductivity is reduced around 40% from 4k to 8k psi 
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and 25% from 8k to 12k psi. The decrease in conductivity is more pronounced than permeability 

because of the reduction in fracture width as the loading increases. 

Table 5-6: Fracture permeability, opening length, conductivity and non-Darcy coefficient of 
shale fracture at different loading stresses 

The velocity fields at different Reynolds number (Figure 5-14) indicate that at low 

Reynolds number, high velocities occur only in narrow throats. As Reynolds number increases, 

high velocity flow also occurs in wide-open channels connected to narrow throats because flow 

penetrates through the pore and throat space without changing velocity.  

(a) (b) 

Figure 5-14:  xy slice of velocity field normalized by its peak value obtained from FEM P2P1 of 
the propped fracture at 0 psi loading at Reynolds numbers: (a) Re = 0.016, (b) Re = 1.65. 

(continued) 

Loading 
Stress (psi) 

Fracture 
Permeability 

(Darcy) 

Fracture Opening 
Width(ft) 

Fracture 
Conductivity 

(Darcy∙ft) 

Non-Darcy 
coefficient 
(atm∙s2∙g-1) 

0 142.31 0.0015 0.21 0.00046 
4k 143.49 0.0015 0.21 0.00059 
8k 107.10 0.0012 0.12 0.00077 
12k 93.24 0.0010 0.09 N/A 
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(c) (d) 

Figure 5-14:  (continued) xy slice of velocity field normalized by its peak value obtained from 
FEM P2P1 of the propped fracture at 0 psi loading at Reynolds numbers: (c) Re = 14.35, (d) Re = 

25.03. 
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6. Developing Network Modeling of Non-Darcy Flow

Direct simulation using methods such as the lattice Boltzmann method and finite element 

method are rigorous methods to predict non-Darcy flow and capture pore-scale fluid dynamics 

effects. However, the high computational cost limits the domain size used in these direct 

simulation methods. Hence, an appealing way to simulate non-Darcy flow behavior is to use 

network modeling. Network modeling can be used to represent the same digital image structure 

discussed above, but with much smaller data sets (103-105 pores), enabled through storing 

discrete pore and pore-throat approximations. This approximation significantly increases the 

computational efficiency and allows larger computational domain sizes by orders of magnitude. 

The hydraulic conductance in the governing equation is the key parameter to describe the flow 

dynamics in network models. 

Significant past research has been devoted to estimating hydraulic conductance for Darcy 

flow. These include direct numerical simulations in realistic throat shapes and analytical 

solutions of the Stokes flow dynamics in idealized throat shapes, including circular, rectangular 

and triangular ducts. Due to the linear relationship between pressure drop and flowrate in the 

Darcy flow regime, the hydraulic conductance is a function of throat geometry, including factors 

such as throat radius, throat length, and pore radius. 

To estimate the hydraulic conductance of non-Darcy flow is more challenging. The 

macroscopic nonlinear relationship between pressure drop and flowrate in non-Darcy flow is 

described by the Forchheimer equation, which uses a quadratic velocity term to represent the 

additional pressure drop caused by inertial effects. At the pore scale, the hydraulic conductance 

for non-Darcy flow must be a function of both throat geometry and fluid dynamics. Similar to 

earlier approaches for finding the hydraulic conductance in Darcy flow by solving the Stokes 
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equation, Balhoff and Wheeler (2009) solved the Naiver-Stokes equations using finite element 

simulations in a single duct with converging/diverging geometry. However, the nonlinear 

relationship between pressure drop and flow rate derived from this work does not fully represent 

the non-Darcy flow behavior in porous media for a couple of reasons. First, pore throat 

geometries are approximated as circular ducts with throat radius, throat length, aspect ratio 

variables that can be adjusted. Second, only effects of divergence/convergence geometry are 

considered for inertial flow effects; however, non-Darcy coefficient correlations with porous 

media properties and microscopic inertial flow behavior indicate that tortuosity of the flow paths 

is also a significant factor for inertial effects. It is important to consider multi-pore geometric 

effects when modeling inertial effects, because of the issue of tortuosity and the alignment of 

flow patterns. However, this has not been possible using traditional network modeling.   

In this work, a new network modeling of non-Darcy flow is proposed. Rigorous results 

from pore-scale finite element simulation of non-Darcy flow are used to evaluate the throat 

flowrate distribution and pore pressure field in network models, and then hydraulic conductance 

is estimated from the mass conservation governing equation. The validity of hydraulic 

conductance values derived from FEM simulations is investigated. Throat flowrates and 

hydraulic conductance values in pore structures with a range of geometries are compared to 

assess whether network modeling can capture the shifts in flow pattern due to inertial effects.  

6.1 Materials 

In this work, several different types of porous media are used: 1. a standard cubic packing 

with eight additional spheres (60% radius of original spheres) added in the nearest origin of the 

domain to create heterogeneous flow path and there is no overlapping with spheres (computer 

generated, with the 3D pore structure image is shown in Figure 6-1); 2. a consolidated random 
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sphere packing (computer generated and described in more detail in section 4); 3. a proppant 

packing under 0 psi loading stress (described in more detail in section 5); 4. a monolalyer 

proppant pack with shale fractures under 0 psi loading stress (described in more detail in section 

5). 

Networks are generated using the voxel-based network extraction algorithm from XCT or 

computer generated digital images (Pradeep Bhattad et al., 2011). The image sizes and details of 

network structures of each porous material are listed in Table 6-1. The ball and stick schematics 

of network structures of each porous material are shown in the Figure 6-1, Figure 6-2 and Figure 

6-3. 

Unstructured meshes generated from digital images are used for finite element 

simulations. In the cubic packing sample, three different resolution meshes were created, the 

total number of elements being 1,341,274, 303,401 and 36,412 respectively. 2D slices of meshes 

are shown in Figure 6-4.  Meshes with around 1.6 million elements, 1.4 million, and 1.2 million 

are used in random packing, proppant packing, and propped fractures respectively. See Sections 

4 and 5 for more mesh details. 

6.2 Results and Discussion 

6.2.1 Throat Flowrate Calculation of Non-Darcy Flow 

In network modeling, mass conservation is imposed in each pore of the network model. 

Hydraulic conductance of pore throats is the key parameter in the governing equation to estimate 

pore pressure fields, which are then used to compute throat flowrates along with pressure drop 

between pores. Typically, throat conductances are computed from geometric parameters. 

However, for this research we can also compute throat conductances from the known flowrates 

from FEM modeling. Details are explained in the following paragraphs. 
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Table 6-1: Details of images and network structures of each porous material 

Variables Cubic Packing 
Consolidated Random 

Packing 
Proppant Packing Propped Fracture 

Image Size (vox3) 3123 5003 3003 400×300×70 
Pore Number of Pores 141 3656 3018 842 

Porosity (%) 47.1 14.3 33.1 
Pore Volume (vox3) 

(min/ave/max) 
14411.0/101355/132760 1.0/4899.9/203302.5 1/2958.5/177611.9 1.0,2429.4/96775.0 

Inscribed Radius (vox) 
(min/ave/max) 

12.5/21.1/23.0 1/4.7/19.8 1.0/2.6/21.0 1.0/3.3/14.6 

Throat Number of Throats 988 13462 4955 3812 
Surface Area (vox2) 

(min/ave/max) 
41.1/3459.1/7638.9 3.9/810.5/6604.1 1.7/756.6/6748.1 2.8/345.3/3475.2 

Inscribed Radius (vox) 
(min/ave/max) 

1.0/9.5/13.2 1.0/2.9/12.6 1.0/3.8/13.2 1.0/2.4/10.6 

Cross-Sectional Area (vox2) 
(min/ave/max) 

1.0/577.4/849.0 1.0/70.7/886.5 1.0/121.9/1424.6 1.0/49.0/597.6 
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(a) (b) 

Figure 6-1: (a) 3D image of the 3123-voxel cubic packing, and (b) the ball and stick schematic of 
network structure generated from (a). 

(a) (b) 

Figure 6-2: (a) 3D image of the 5003-voxel conslidated random sphere packing, and (b) the ball 
and stick schematic of network structure generated from (a). 
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(a) (b) 

Figure 6-3: The ball and stick shematic of (a) proppant packing and (b) monolyer proppants with 
fractures. 

(a) (b)         (c) 

Figure 6-4: The 2D xy slice views of unstructured meshes of the cubic packing with different 
mesh refinement: (a) total elements = 1,341,274, (b) total elements = 303,401, and (c) total 

elements = 36,412. 

The first step is to map elements and nodes to pores and pore-throats. The network 

generation process from voxelized digital images collects cluster of voxels for each pore. 

Network structures include a file which labels each voxel in the void space with a pore number.  

This is important information for mapping elements to pores because voxels provides a spatial 

link between elements and pores. There is no volume assigned to pore-throats in network 
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structures; pore-throats are considered as an interface surface between each pore. The integration 

of velocity over the interface surface area gives the pore-throat flowrate. Each element is labeled 

with a voxel number based on the location of the element center. Based on the elements-to-

voxels and voxels-to-pores mapping information, as well as pore and pore-throat connectivity, 

we extract a cluster of element surfaces that comprise each throat. For any one element, this 

process is used to identify its pore number as well as the pore numbers of its four neighboring 

elements (connected with each face). If the pore number of a neighboring element is different 

from the element being examined, and pore numbers of these two elements are not zero, the 

shared face between these two elements is identified as part of the pore-throat surface between 

the two pores. 

Secondly, after collecting surfaces of elements for each pore-throat, surface velocity, 

surface area and surface normal needs to be calculated. The surface velocity is calculated by 

interpolation of velocities from element nodes using shape functions. The flowrate through a 

pore-throat is calculated using: 

,i j
q dA  v n (6-1)       

It is important to point out several approximations used in mapping from elements to 

pores. First of all, the unstructured elements do not conform perfectly with the solid/void 

interface of the original image; thus, the central locations of a few elements are located in voxels 

assigned as the solid phase and these elements fail to map to any pores. Some adjustment is 

needed to correct this mapping. For an element initially tagged as the solid phase, one loop 

through its neighboring elements and the pore number of its neighboring elements is assigned as 

the pore number of the miss-assigned element. If pore numbers of neighboring elements are all 

zero (miss-assigned), the process is repeated several times moving outward in element layers. 
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Secondly, a pore and pore-throat connectivity map can be created from elements. If the 

pore number of one element is different than the pore number of its neighboring element, 

connectivity between these two pores is established (based on the element mapping). This pore 

and pore-throat connectivity map can be slightly different from the connectivity map defined by 

the network structure generated from the same digital image. Take the 5003-voxel random 

packing sample used in this work as an example, along with the unstructured mesh having1.6 

million elements for finite element simulations.  This translates to an average of 78 voxels per 

element. Figure 6-5(a) is a plot of number of elements per pore versus pore volume of each pore 

(from network file data), which shows that there are some pores consist of no elements. Another 

reason for inconsistent connectivity (between network and mesh maps) is shown in Figure 

6-5(b): in this void structure with a narrow throat, two pores are connected in the network model; 

however no elements exist in the throat area. These situations cause differences in pore-throat 

connectivity maps between elements and networks. Usually networks have more pore and pore-

throat connection than elements.  

   
 

(a)                                                                     (b) 
 

Figure 6-5: (a) Plot of volume per pore versus number of elements per pore in the consolidated 
random sphere packing with 1.6 million elements. (b) 2D cross-sectional pore structure image 

embedded with a mesh view. 
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6.2.2 Hydraulic Conductance Calculation 

Besides throat flowrate, pore pressure also needs to be derived from finite element 

simulations in order to calculate the FEM-based throat hydraulic conductance using the 

following equation:  

 
,

,

i j

i j

i i

q
g

p p





 (6-2) 

The FEM-computed pressure at the network-based pore center is defined as the FEM 

pore pressure. The numeric value can be interpolated from nodal pressure fields from the finite 

element results. The first step of interpolation is to obtain the element number where the center 

of the pore is located. The pore pressure can then be interpolated from nodal pressure values and 

shape functions for this element. It is important to point out that there exist pore centers located 

outside of the mesh domain because the unstructured mesh does not conform to the 

computational domain perfectly. In this case, no pressure value can be obtained based on this 

interpolation. If these pores happen to be inlet/outlet pores, a constant pressure value is assigned 

(the same as the boundary condition in network modeling). If these pores are located in the 

interior, the pore pressure is calculated by averaging nodal pressure values inside this pore.  

Based on finite element simulation results at different Reynolds number, throat hydraulic 

conductances for networking modeling can be obtained. These conductances will change as a 

function of Reynolds number. In the rest of the discussion, they are denoted as FEM_HCM 

(where HCM the array named used in network modeling for the Hydraulic Conductance Matrix).  

6.2.3 Mass Conservation in Every Pore 

Once the FEM-based network is created, one can verify the mass conservation in each 

pore based on the FEM results. In principle, this should be imposed by the continuity equation 

using tine FEM modeling. However, it is well known that the FEM does not ensure element-
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level mass conservation. In this section, we quantify this behavior for the mesh-based networks 

described above. 

Based on elements mapped to pores (described in the previous section), cluster of 

elements are collected for each pore. The inlet and outlet flowrate for each pore is calculated by 

integrating velocity over the element surfaces located on the pore boundaries using equation 

(6-1). Element surfaces on the pore boundary are identified by looping through all elements in a 

pore and checking whether the pore number of the element is different from the pore number of 

its neighboring element. If so, this element surface is identified as the pore boundary. 

Subsequently, the error in pore flowrate (or mass flow for a constant density fluid) is calculated 

as: 

Pore Inlet Flowrate+Pore Outlet Flowrate
Error of Pore Flowrate=

Pore Inlet Flowrate
(6-3) 

The mesh resolution impacts the error in pore flowrate, and this effect is quantified for 

the meshes tested. The unstructured meshes with total elements number 1,341,274, 303,401, and 

36,412 are generated for the 3123-voxel cubic packing (mesh view shown in Figure 6-4).  Figure 

6-6 are plots of pore flowrate error versus the inlet pore flowrate and the pore flowrate error 

versus number of elements per pore, calculated from FEM simulations for different mesh 

refinements. Most of the pores have similar numbers of elements, and as the mesh becomes 

coarser, the number of elements per pore is reduced accordingly.  It is apparent from the 

comparison of Figure 6-1 (a) and (c) that the range of error increases from [-0.03, 0.03] to [-0.2, 

0.15] as element numbers decrease from 1.3 million to 3.6k. As elements decrease from 1.3 

million to 30.3k, the error range is relatively constant; however, the error for most pores is < 0.01 

in the fine mesh, and errors become more scattered for the coarser mesh. The errors in pore 

flowrate versus inlet pore flowrate and number of elements calculated from the consolidated 
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(a)                                                                       (b) 

  
(c)                                                                         (d)         

               
  (e)                                                                        (f) 

 
Figure 6-6: Plots of flowrate error per pore versus number of elements per pore and flowrate 

error per pore versus inlet flowrate per pore in the cubic packing with different mesh refinement: 
(a) (b) total elements = 1,341,274, (c) (d) total elements = 303,401, and (e) (f) total elements = 

36,412. 
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random packing with 1.6 million elements number are plotted in Figure 6-7. Compared with the 

cubic packing, the pore-size distribution for the random packing is more spread. The plot shows 

that the error range reach up to [-1, 1], and large errors occur in small pores with low inlet/outlet 

flowrates. The error associated with pores with element numbers larger than 1×103 significantly 

reduces, to < 0.1. 

6.2.4 The Validation of Network Models Using FEM_HCM 

A rigorous method to validate network models is to use hydraulic conductance values 

calculated from finite element simulations (and/or to compare the throat flowrate distribution 

from network modeling versus finite element simulation). The approach used for this comparison 

is to obtain throat hydraulic conductances from the known FEM flow profile (i.e., the 

FEM_HCM values), and to update the network data accordingly and obtain a new pressure field 

and throat flowrate distribution.  As mentioned in the previous section, the pore and pore-throat 

connectivity derived from the mesh is slightly different than from the original network structure. 

In order to eliminate mass conservation errors introduced from mismatched connectivity, a new 

network structure is created based on the connectivity derived from elements. In this new 

network model, pore number, pore location and pore volume are kept the same as in the original 

network structure generated from the digital image. Since the pressures of inlet/outlet pores are 

assigned constant values in the boundary condition for network modeling, no flowrate exists in 

throats connecting inlet/outlet pores. In order to be consistent with network models, nodes 

located on these throats surfaces are assigned as no-slip boundary condition for finite element 

simulations. The flowrate calculated from FEM of these throats are also zero. 

A new pore pressure field is obtained by running this new network modeling with 

FEM_HCM values. Each throat flowrate is calculated by multiplying throat FEM_HCM values 
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(a)                                                                           (b) 

 
Figure 6-7: (a) Plot of error of flowrate per pore versus elements number per pore, (b) Plot of 

error of flowrate per pore versus inlet flowrate per pore in the consolidated random sphere 
packing. 

 

with the pressure drop between the two adjoining pores obtained from the new pressure field. 

The throat flowrate distribution from network modeling is compared with throat flowrate 

distribution calculated from finite element simulations to check whether the new network model 

is able to predict the non-Darcy flow dynamics that are observed in the rigorous finite element 

simulations.  

In the cubic packing sample, meshes with three different resolutions (the same meshes 

used in Section 6.2.2) are used to investigate mesh resolution effects on the throat flowrate 

prediction from network modeling. Figure 6-8 are plots of the flowrate distribution comparison 

between the network model (calculated with FEM_HCM conductances) and FEM model, at 

different mesh resolutions. A similar flowrate distribution as FEM can be predicted from 

network modeling for the finest mesh. As the number of elements is decreased, the deviation of 

flowrate data becomes more pronounced. At the coarser mesh, network using FEM_HCM 

predicts higher throat flowrate than FEM. The slope of trend line generated from the linear 
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regression of two flowrate data sets increases from 1.23 to 2.11 as the elements number reduce 

from 1.3 million to 30.3k. The inability for the network and FEM results to agree, even when the 

throat conductances are derived directly from FEM, is unfortunate, and can be traced back to the 

errors in pore-scale mass balances (for the FEM results) that were shown in the previous section. 

 

  

(a)                (b) 

 

 

           (c)  

 

Figure 6-8: Plots of throat flowrate distribution calculated from network models using 
FEM_HCM versus throat flowrate distribution calculated from finite element simulation in the 

cubic packing with different mesh refinements: (a) total elements = 1,341,274, (b) total elements 
= 303,401, and (c) total elements = 36,412. 
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The mass conservation of each pore is an essential prerequisite to obtain a FEM_HCM 

value that can predict the same flowrate as from finite element simulations. As meshes become 

coarse, larger errors exist in the mass balance for each pore (shown in Figure 6-6). Therefore, 

network flowrates predicted using FEM_HCM values showed significant error relative to the 

flowrates from FEM. 

The flowrates from network and FEM of the random sphere pack and proppant pack are 

compared at different Reynolds numbers in Figure 6-9 and Figure 6-10. Four Reynolds numbers 

(4×10-5, 4×10-3, 7.0 and 11.3) are chosen and from the permeability versus Reynolds number plot 

(Figure 6-11), one can determine that flow is in the Darcy flow regime when Re = 4×10-5 and 

4×10-3 and non-Darcy flow regime when Re = 7.0 and 11.3. The flowrate distribution calculated 

from network modeling is compared to the FEM calculation. This is done using both FEM_HCM 

and the original HCM conductances, at each Reynolds number.  Flowrates from FEM_HCM 

network computations fail to agree well with the same FEM flowrates due to the large mass 

balance error in the meshed pores (Figure 6-7). The original HCM values remain constant for 

different Reynolds numbers; therefore, throat flowrate increase linearly with pressure drop. 

Whereas, due to inertial effects, throat flowrates in the FEM simulations do not linearly increase 

with pressure drops. Therefore as the Reynolds number increases, the deviation of flowrate data 

becomes more pronounced. This shows that (as expected) flowrates predicted from original 

HCM values fails to predict the non-Darcy flow behavior. Although network models using 

FEM_HCM in this random packing do not predict the same flowrate as the FEM simulations, the 

flowrate differences between the network and FEM results do not have a significant change as 

the Reynolds number increases. This indicates that non-Darcy flow behavior is incorporated, at 

least to some extent, into the network flowrates predicted from FEM_HCM.
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(a) (c) (e)       (g) 

(b)            (d) (f) (h) 

Figure 6-9: Plots of throat flowrate distribution calculated from network models using FEM_HCM versus throat flowrate distribution 
calculated from FEM (left column) and throat flowrate distribution calculated from network models using original HCM versus throat 

flowrate distribution calculated from FEM (right column): (a)(b) Re = 4×10-5, (c)(d) Re = 4×10-3, (e)(f) Re = 7.0, (g)(h) Re = 11.3. 
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(a)       (c) (e)       (g) 

(b)            (d) (f) (h) 

Figure 6-10: Plots of throat flowrate distribution calculated from network models using FEM_HCM versus throat flowrate distribution 
calculated from FEM (left column) and throat flowrate distribution calculated from network models using original HCM versus throat 

flowrate distribution calculated from FEM (right column): (a)(b) Re = 5×10-3, (c)(d) Re = 5×10-1, (e)(f) Re = 18.1, (g)(h) Re = 28.6.
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The flowrate distribution calculated from the FEM_HCM values versus original HCM 

values are also compared to the FEM results for the proppant packing sample. Four Reynolds 

numbers (5×10-3, 5×10-1, 18.1 and 28.6) are simulated. As Figure 6-9 shows, compared to the 

random packing, the network that uses FEM_HCM provides a good prediction of flowrate. As 

Reynolds number is increased, the distribution becomes slightly more scattered, while the slope 

of the trend line derived from linear regression does not change significantly. 

(a)                                                                             (b) 

Figure 6-11: Apparent permeability obtained from network modeling using FEM_HCM and 
FEM at different Reynolds number in the (a) random packing and (b) proppant packing. 

6.2.5 Pore-scale Investigation of Flowrate and Hydraulic Conductance 

The original goal of this work was to model a priori non-Darcy flow using a network 

approach. A factor that has not been taken into account well is tortuosity of the flow paths, which 

is considered a significant factor in inertial effects. Hence, it is important to understand how the 

fluid dynamics changes in different flow path geometries in the non-Darcy flow regime. Two 

geometries are used to show this effect, as described below. 
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An artificial channel (10×10×300-voxel) is created in the random sphere packing. This 

straight channel is an idealized structure meant to mimic the geometry that occurs when a series 

of pores are aligned. Two different flow paths, one in the straight channel and another in a 

tortuous channel, are investigated to compare inertial effects on pore-scale flow fields (Figure 

6-12). 

Figure 6-12: Illustration of location of throats A1, A2, B1, and B2 locations in 2D zx slice image 
embedded with network structures. 

A set of 2D zx slices of the velocity fields normalized by peak value are shown in Figure 

6-13 for pressure drops equal to 1, 1×102, 5×105 and 1×106, with Re equals to 4×10-6, 4×10-4 , 1.7 

and 3.0 accordingly. At the low Reynolds number (pressure drop), the highest velocity appears in 

a small throat area which is connected with a large pore. This throat area is defined as region B 

in the schematic of the network structure. It shows that there are three pores with throats B1 and 

B2 connecting these pores. However, as the Reynolds number increases, the high velocity also 

starts to appear in the straight channel, shown as region A in Figure 6-12. Region A also has 
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three pores with throats connecting them labeled A1 and A2. At the small Reynolds number, 

viscous forces dominates the momentum transport, and highest flow velocities occur where there 

is a large reduction of flow area connection fairly large pores. As the inertial forces become 

significant, the fluid flow starts to exhibit slightly more jet-like behavior. 

(a) (b) 

(c) (d) 

Figure 6-13: 2D zx slices of velocity field normalized by peak value of random sphere packing at 
different pressure drops: (a) Δp = 1 (Re = 4×10-6), (b) Δp = 1×104 (Re = 4×10-4), (c) Δp = 5×105

(Re = 1.7), (d) Δp = 1×106 (Re = 3.0). 
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In order to quantify the inertial effects in a way that can be used in network modeling, 

FEM_HCM values and flowrates calculated from the network model (using FEM_HCM 

conductances) are listed in Table 6-2 and Table 6-3. We define a flowrate ratio variable FR, 

which quantifies the flowrate change scaled by the inverse of the pressure drop change, defined 

as: 

01
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For low-Reynolds number flows, FR should always equal one since flowrate scales linearly with 

pressure gradient. For inertial flows, this parameter can help define how the inertial effects shift 

the flow distribution. For the throats discussed above, FR1, FR2, and FR3 are defined as follows: 
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FR1, FR2 and FR3 values for throats A1, A2, B1, and B2 are listed in Table 6-4. When 

pressure drop increases from 1 (Re = 4×10-6) to 1×102 (Re = 4×10-4) the flowrate ratio remains 

unity in all throats, as suggested above. When pressure drop increases to 5×105 (Re = 1.7) and 

1×106 (Re = 3.0), the flowrate ratio in all throats are less than one. Inertial effects in the non-

Darcy flow cause a reduction of flowrate. The higher FR2 and FR3 values in throats A1and A2 

indicate that inertial effects lead to lower flowrate reduction in these highly aligned pores. In 

contrast, the more tortuous flow path in throats B1 and B2, correspond to inertial effects 

requiring more of the pressure drop to overcome the tortuous flow path, and thus a larger 

reduction of flowrate along the more tortuous flow path. 
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Table 6-2: Flowrate of throats A1, A2, B1 and B2 at different pressure drops 

Throat 
Flowrate 
(Δp = 1) 

Flowrate 
(Δp = 1×102) 

Flowrate  
(Δp = 5×105) 

Flowrate 
(Δp = 1×106) 

A1 1.44×102 1.44×104 6.70×107 1.06×108 
A2 0.27×102 2.75×103 1.25×107 2.28×107 
B1 4.87×102 4.87×104 1.36×108 2.51×108 
B2 4.87×102 4.87×104 1.36×108 2.51×108 

Table 6-3: FEM_HCM of throats A1, A2, B1, and B2 at different pressure drops 

Throat 
FEM_HCM 

 (Δp = 1) 
FEM_HCM  
(Δp = 1×102) 

FEM_HCM 
 (Δp = 5×105) 

FEM_HCM 
(Δp = 1×106) 

A1 4.288 4.288 3.179 2.413 
A2 1.449 1.449 1.113 0.854 
B1 62.25 62.24 34.04 25.47 
B2 33.10 33.10 26.16 18.99 

Table 6-4: Flowrate ratio FR and angle of throats A1, A2, B1 and B2 
Throat FR1 FR2 FR3 Angle(degree) 

A1 1.00 0.93 0.73  134 
A2 1.00 0.91 0.83 112 
B1 1.00 0.56 0.51 142 
B2 1.00 0.56 0.51 112 

The inertial effects on the pore-scale velocity field in propped fractures are also studied. 

From 2D xy slices of velocity fields shown in Figure 6-14, the highest velocity in the low-Re 

regime occurs at a narrow throat connected with a large pore, defined as region B. At higher 

Reynolds number, high velocities are observed in a straight and narrow channel created from 

several pores aligned together, defined as region A. Pores in the network structure are illustrated 

in Figure 6-15, as well as throats A1, A2, A3 and B1. The flowrate in four throats at four 

different pressure drops (1, 1×104, 2×105, and 5×105) with Re (5×10-5, 5×10-1, 8.3 and 16) 

accordingly are listed in Table 6-5. The flowrate ratio FR is also calculated. When pressure drop 

increases from 1 (Re = 5×10-5) to 2×105 (Re = 8.3) and then 5×105 (Re = 16), the FR value of 

throat A1 is smallest and this indicates that inertial effects cause a large reduction of flowrate. A 

closer look at the throat A1 location shows that it connects pores via a more tortuous flow path. 
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Flowrate has less reduction in A3 and even exceeds unity in A2 because throat A2, A3 are in a 

straight flow path. As discussed earlier with the random packing, the jet-like flow behavior in the 

straight flow channel carries more fluid in the non-Darcy flow regime. 

(a)     (b)          

(c)       (d) 

Figure 6-14: 2D xy slice of velocity field normalized by its peak value in propped fractures at 
different pressure drops: (a) Δp = 1 (Re = 5×10-5) (b) Δp = 1×104 (Re = 5×10-1), (c) Δp = 2×105 

(Re = 8.3), (d) Δp = 5×105 (Re = 16). 
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Figure 6-15: Illustration of location of throats A1, A2, A3 and B1 locations in 2D xy slice image 

Table 6-5: Flowrate of throats A1, A2, A3 and B1 at different pressure drops 

Throat 
Flowrate 
(Δp = 1) 

Flowrate 
 (Δp = 1×104) 

Flowrate  
(Δp = 2×105) 

Flowrate  
(Δp = 5×105) 

A1 4.58×102 4.58×106 3.25×107 7.80×107 
A2 0.78×102 8.34×105 1.97×107 3.67×107 
A3 2.07×103 2.11×107 3.12×108 6.97×108 
B1 0.34×102 3.57×105 5.87×106 1.16×107 

Table 6-6: Flowrate ratio FR and angle of throats A1, A2, B1 and B2 
Throat FR1 FR2 FR3 Angle (degree) 

A1 0.99 0.36 0.03 101 
A2 1.06 1.25 0.94 108 
A3 1.00 0.75 0.67 116 
B1 1.00 0.84 0.67 96 

The quantitative analysis of inertial effects on pore-scale flowrate shows that tortuosity of 

flow path has a significant effect on hydraulic conductance for non-Darcy flow. In order to 

quantify the tortuosity of flow in a network modeling framework, we have proposed a new 

variable throat angle α. The angle α of one throat connected by two pores is calculated based on 

the pore location, pore connectivity, and throat flowrate. Consider a throat with single 
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connectivity shown as Figure 6-16 as an example, the angle of throat connecting ipore and jpore 

is defined as: 

1 2
1 2

( )

2
f f

  
 (6-5) 

where α1 is the angle between npore and jpore, α2 is the angle between ipore and mpore, f1 is the 

ratio of flowrate of the throat connecting npore and ipore to total flowrate entering ipore, f2 is the 

ratio of flowrate of the throat connecting jpore and mpore to total flowrate leaving jpore. If there 

are multiple throats connecting with ipore and jpore respectively, the throat angle α equals to the 

weighted average of the angle from all connectivity. 

Figure 6-16: Schematic drawing of pore and pore-throat for the angle calculation 

The angle of throats in random packing and propped fracture discussed in the above are 

reported in Table 6-4 and Table 6-6. The relationship between FEM_HCM at different Reynolds 

numbers and network parameters including throat radius to the fourth power, inverse of throat 

length, aspect ratio and angle are showing in the scatter plot of Figure 6-17. FEM_HCM from 
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(a) 

(b) 

Figure 6-17: The scatter plot of throat radius to the fourth power, inverse of throat length, aspect ratio, and angle with FEM_HCM 
(from left to right) in the random sphere packing at: (a) Re = 4×10-5, (b) Re = 4×10-3. (continued) 
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©  

(c) 

(d) 

Figure 6-17: (continued) The scatter plot of throat radius to the fourth power, inverse of throat length, aspect ratio, and angle with 
FEM_HCM (from left to right) in the random sphere packing at: (c) Re = 7.0, (d) Re = 11.3. 
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different Reynolds number shows the similar relationship with network geometric parameters. A 

linear trend between FEM_HCM and throat radius to the fourth power, and polynomial trend 

between FEM_HCM and inverse of throat length, exponential trend between FEM_HCM and 

aspect ratio are shown. We have not yet yielded correlations for a-priori prediction of HCM 

based on geometric parameters (for inertial flows), but that we remain hopeful that this is 

something that could be done with additional work. 
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7. Conclusions and Future Work 

This work is focused on developing pore-scale finite element and network modeling of 

non-Darcy flow in porous media. The ultimate goal of this research is to predict and 

fundamentally understand non-Darcy flow behavior in the pore scale.  

Chapter 4 compares the macroscopic permeability and microscopic velocity field from 

pore-scale LBM and FEM simulations (both are rigorous modeling). Chapter 5 implements 

image-based pore-scale FEM simulations of non-Darcy flow in the segmented image of proppant 

packing and propped fractures. The stress effects on pore structures, macroscopic properties and 

microscopic velocity fields are investigated. Chapter 6 develops a network modeling of non-

Darcy flow using FEM simulation results.  

In this final Chapter, the goal is to summarize the results from each part of the research 

and provide recommendations for the future research regarding pore-scale finite element 

modeling and network modeling of non-Darcy flow.  

7.1 Conclusions 

7.1.1 FEM and LBM Comparison 

3D consolidated random sphere packing with image resolutions between 2-10 microns 

are generated by computer simulation. Different image resolutions results in different pore 

structures because of the inability of the voxel structure to capture the spherical surfaces exactly. 

Both LBM and FEM simulations of Stokes flow are performed on the samples. Macroscopic 

permeability and microscopic velocity fields in the pore space are analyzed and compared.  

The change in permeability with image resolution has opposite trends for these two 

approaches. FEM simulations show an increasing trend in permeability with increasing image 

resolution while LBM simulations are showing a decreasing trend. LBM simulations using 
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different relaxation time result in different permeability results. Lower relaxation time results in 

higher permeability. Both FEM and LBM simulations predict similar permeability value in the 

highest-image resolution (2 micron) sample. The voxel size effects in LBM simulations are also 

investigated by dividing the voxel in 10 micron resolution image to 2, 3, 4, and 5 times. 

Reducing the voxel size decreases the permeability value and helps to reduce the numerical 

errors associated with voxel size in LBM simulations. When voxel size is divided by 3, 4 or 5 

times, LBM simulations predict similar permeability with FEM simulations.  

 Even though similar permeability are predicted from FEM and LBM simulations, a point-

by-point comparison of the microscopic velocity fields is performed to quantify whether 

differences exist at the pore scale that may be averaged out in the permeability value. Local pore 

spaces are chosen to plot velocity values from FEM and LBM. Velocity difference is higher at 

the regions away from the void-solid interfaces. Also FEM calculates higher local velocity than 

LBM in regions with higher velocity, and shows a wider range of velocity values. 

7.1.2 FEM Modeling of Non-Darcy Flow 

Image-based pore-scale FEM modeling of non-Darcy flow is applied in segmented 

microCT image of Berea-proppant-berea and shale-proppant-shale system. Different loading 

stresses are applied on two systems while imaged.  

FEM simulations using two different types of tetrahedral elements P2P1 and P1P1 are 

compared. The additional velocity nodes in P2P1 elements significantly increase the degree of 

freedom in the linear system. For the same number of elements, the degree of freedom for P2P1 

elements is five times larger and the memory requirement is 8 times larger than P1P1 elements. 

The permeability predicted from P2P1 elements is around 30% higher compared to P1P1, 

however the non-Darcy coefficient predicted from P2P1 elements is approximately half of the 
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value predicted from P1P1 elements. This suggests that the numerical differences associated with 

element type are more pronounced in the inertial flow regime than for Darcy permeability. As 

Reynolds number increases, both P2P1 and P1P1 predict a similar value for the onset of non-

Darcy flow; however, the convergence limit of P2P1 is significantly lower than P1P1 and 

increasing mesh refinement will help to increase the convergence limit of P2P1 results.  

The stress effects on permeability and non-Darcy coefficient are studied and transport 

flow behavior is correlated with pore structures. In the Berea system, pore structure exhibits little 

change from 0 to 4k psi. Embedment of proppants into the rock wall starts to happen at 8k psi. 

Minor particle crushing occurs at 12k psi and then significant crushing occurs at 20k psi. The 

permeability remains constant at approximately 225 Darcy from 0 to 8k psi loading. A 12% 

decline of permeability occurs from 8k to 12k psi and a decline of 60% then occurs from 12k to 

20k psi. Not surprisingly, the non-Darcy coefficient shows an opposite trend as permeability. An 

average value 7.0×10-4 is observed from 0 to 8k psi. A small increase (10%) occurred from 8 k to 

12k psi and a significant increase (40%) occurred from 12k to 20k psi. The investigation of pore-

scale velocity fields indicates that at low Reynolds number, velocity increases through narrower 

throats because of the dominant viscous forces. As Reynolds number increases, the inertial 

effects cause fluid flow to exhibit more jet-like behavior, penetrating throats without changing 

velocity significantly.  

In the shale system, loading stress causes the embedment of proppants, thus narrowing or 

closing the pathways between proppants and the walls and reducing the fracture width. 

Permeability was reduced by approximately 25% from 4k to 8k psi and 15% from 8k to 12k psi. 

The reduction of conductivity is more pronounced than permeability.  
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7.1.3 Network Modeling of Non-Darcy Flow 

Rigorous results from pore-scale finite element results of non-Darcy flow are used to 

evaluate the throat flowrate distribution and pore pressure fields in network models. Hydraulic 

conductance values for non-Darcy flow are then estimated from the mass conservation governing 

equation. The non-Darcy network models are validated by using hydraulic conductance values 

calculated from finite element simulations and comparing the throat flowrate distribution from 

network modeling versus finite element simulation. The inability for the network and FEM 

flowrate results to agree can be traced back to the errors in pore-scale mass balances (FEM 

results). Mesh resolutions effects on mass balances of network pores are discussed. The mass 

conservation of each pore is an essential prerequisite to obtain a FEM_HCM value that can 

predict the same flowrate as from finite element simulations. As meshes become coarser, larger 

errors exist in the mass balance for each pore. The tortuosity of flow path is considered as a way 

to predict inertial effects in the network models. Two different geometries (straight and tortuous 

channels) are used to compare inertial flow behavior quantitatively. A new variable (throat 

angle) is proposed to quantify the tortuous of flow path for each throat in network structure. The 

network geometric parameters including throat radius, throat length, aspect ratio and throat angle 

are plotted with hydraulic conductance of non-Darcy flow and a statistical correlation between 

hydraulic conductance and network geometric parameters is expected to be derived in the future.  

7.2 Future Work 

7.2.1 Pore-Scale FEM Modeling 

The significant computational cost for FEM simulations limits the computational domain 

size of the problem to solve, especially for P2P1 elements. There are several options to reduce 

the memory cost of FEM simulations. Solving sparse linear system equations is the most 
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computational expensive step in FEM simulations. In this work, a direct solver is used to solve 

the linear system, which requires much more memory than iterative solver. Changing to an 

iterative solver is an appealing way to reduce the memory cost. Another option is to implement a 

parallel solver.  

7.2.2 Mesh Generation with Local Refinement 

Adaptive meshing with local refinement strategies is important for pore-scale simulations 

of non-Darcy flow in porous media. The void space of porous media usually varies over a large 

range of pore size distribution. The local mesh refinement option enables the coarse mesh to 

represent large pore structures and the fine mesh to represent small pore structures. This provides 

an efficient mesh with different mesh refinement levels in one sample, to accurately represent the 

complex pore geometry. It also helps to reduce numerical errors in simulations without 

significantly increasing the computational cost. As the increase of Reynolds number in non-

Darcy flow regime, the pore-scale velocity fields show strong inertial effects in some critical 

regions. Refining the mesh in these regions will present more accurate inertial flow behavior. 

7.2.3 Network Modeling of Non-Darcy Flow 

Different mesh resolution effects on the mass balance of pores and validity of throat 

hydraulic conductance from FEM simulations have been compared in cubic packings. The 

unconsolidated cubic packing has very different pore geometry with the consolidated random 

sphere packing. In the future, mesh resolutions effects on random packing should be conducted. 

Network models using FEM_HCM values fails to predict the same flowrate distribution as the 

original FEM in random packings with 1.6 million elements. Using meshes with higher 

resolution will help to improve the validity of FEM_HCM values based on our study of mesh 

resolution effects in cubic packings. It is interesting to investigate whether consolidated pore 
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structure requires higher mesh resolution to predict the correct hydraulic conductance of non-

Darcy flow. Using FEM simulations from P2P1 and P1P1 elements to predict FEM_HCM 

should be compared. Several different network extraction algorithms from digital images have 

been developed. In the future, different network structures from different extraction algorithms 

should be used to compare the validity of hydraulic conductance values.  

After obtaining the correct hydraulic conductances for non-Darcy flow, the ultimate goal 

of this work is to predict the hydraulic conductance using network structure properties. We 

expect that, in addition to pore and pore-throat geometry, the extent of tortuosity of flow path 

also brings significant effects on inertial flow behavior. The pore and pore-throat geometry can 

be quantified by pore inscribed radius, throat inscribed radius, throat length, aspect ratio and etc. 

Angle has already been used to quantify the tortuosity of flow path for each throat. Statistical 

analysis needs to be conducted to derive a correlation with non-Darcy hydraulic conductance 

with these structures parameters.  
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