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Abstract

Humans inevitably develop a sense of the relationships between

objects, some of which are based on their appearance. Some

pairs of objects might be seen as being alternatives to each other

(such as two pairs of jeans), while others may be seen as being

complementary (such as a pair of jeans and a matching shirt).

This information guides many of the choices that people make,

from buying clothes to their interactions with each other. We

seek here to model this human sense of the relationships be-

tween objects based on their appearance. Our approach is not

based on fine-grained modeling of user annotations but rather

on capturing the largest dataset possible and developing a scal-

able method for uncovering human notions of the visual rela-

tionships within. We cast this as a network inference problem

defined on graphs of related images, and provide a large-scale

dataset for the training and evaluation of the same. The system

we develop is capable of recommending which clothes and ac-

cessories will go well together (and which will not), amongst a

host of other applications.

1 Introduction

We are interested here in uncovering relationships between the

appearances of pairs of objects, and particularly in modeling

the human notion of which objects complement each other and

which might be seen as acceptable alternatives. We thus seek to

model what is a fundamentally human notion of the visual rela-

tionship between a pair of objects, rather than merely modeling

the visual similarity between them. There has been some in-

terest of late in modeling the visual style of places [6, 27], and

objects [39]. We, in contrast, are not seeking to model the in-

dividual appearances of objects, but rather how the appearance

of one object might influence the desirable visual attributes of

another.

There are a range of situations in which the appearance of

an object might have an impact on the desired appearance of

another. Questions such as ‘Which frame goes with this pic-
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Figure 1: A query image and a matching accessory, pants, and

a shirt.

ture’, ‘Where is the lid to this’, and ‘Which shirt matches these

shoes’ (see Figure 1) inherently involve a calculation of more

than just visual similarity, but rather a model of the higher-level

relationships between objects. The primary commercial appli-

cation for such technology is in recommending items to a user

based on other items they have already showed interest in. Such

systems are of considerable economic value, and are typically

built by analysing meta-data, reviews, and previous purchas-

ing patterns. By introducing into these systems the ability to

examine the appearance of the objects in question we aim to

overcome some of their limitations, including the ‘cold start’

problem [28, 41].

The problem we pose inherently requires modeling human

visual preferences. In most cases there is no intrinsic connec-

tion between a pair of objects, only a human notion that they

are more suited to each other than are other potential partners.

The most common approach to modeling such human notions

exploits a set of hand-labeled images created for the task. The

labeling effort required means that most such datasets are typ-

ically relatively small, although there are a few notable excep-

tions. A small dataset means that complex procedures are re-

quired to extract as much information as possible without over-

fitting (see [2, 5, 22] for example). It also means that the re-

sults are unlikely to be transferable to related problems. Cre-

ating a labeled dataset is particularly onerous when modeling

pairwise distances because the number of annotations required

scales with the square of the number of elements.

We propose here instead that one might operate over a much

larger dataset, even if it is only tangentially related to the ulti-

mate goal. Thus, rather than devising a process (or budget) for

manually annotating images, we instead seek a freely available

source of a large amount of data which may be more loosely

related to the information we seek. Large-scale databases have

been collected from the web (without other annotation) pre-
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viously [7, 34]. What distinguishes the approach we propose

here, however, is the fact that it succeeds despite the indirect-

ness of the connection between the dataset and the quantity we

hope to model.

1.1 A visual dataset of styles and substitutes

We have developed a dataset suitable for the purposes described

above based on the Amazon web store. The dataset contains

over 180 million relationships between a pool of almost 6 mil-

lion objects. These relationships are a result of visiting Amazon

and recording the product recommendations that it provides

given our (apparent) interest in the subject of a particular web

page. The statistics of the dataset are shown in Table 1. An im-

age and a category label are available for each object, as is the

set of users who reviewed it. We have made this dataset avail-

able for academic use, along with all code used in this paper

to ensure that our results are reproducible and extensible.1 We

label this the Styles and Substitutes dataset.

The recorded relationships describe two specific notions of

‘compatibility’ that are of interest, namely those of substitute

and complement goods. Substitute goods are those that can be

interchanged (such as one pair of pants for another), while com-

plements are those that might be purchased together (such as a

pair of pants and a matching shirt) [23]. Specifically, there are

4 categories of relationship represented in the dataset: 1) ‘users

who viewed X also viewed Y’ (65M edges); 2) ‘users who

viewed X eventually bought Y’ (7.3M edges); 3) ‘users who

bought X also bought Y’ (104M edges); and 4) ‘users bought

X and Y simultaneously’ (3.4M edges). Critically, categories

1 and 2 indicate (up to some noise) that two products may be

substitutable, while 3 and 4 indicate that two products may be

complementary. According to Amazon’s own tech report [19]

the above relationships are collected simply by ranking prod-

ucts according to the cosine similarity of the sets of users who

purchased/viewed them.

Note that the dataset does not document users’ preferences

for pairs of images, but rather Amazon’s estimate of the set of

relationships between pairs objects. The human notion of the

visual compatibility of these images is only one factor amongst

many which give rise to these estimated relationships, and it

is not a factor used by Amazon in creating them. We thus do

not wish to summarize the Amazon data, but rather to use what

it tells us about the images of related products to develop a

sense of which objects a human might feel are visually com-

patible. This is significant because many of the relationships

between objects present in the data are not based on their ap-

pearance. People co-purchase hammers and nails due to their

functions, for example, not their appearances. Our hope is that

the non-visual decision factors will appear as uniformly dis-

tributed noise to a method which considers only appearance,

and that the visual decision factors might reinforce each other

to overcome the effect of this noise.

1http://cseweb.ucsd.edu/˜jmcauley/

1.2 Related work

The closest systems to what we propose above are content-

based recommender systems [18] which attempt to model each

user’s preference toward particular types of goods. This is typ-

ically achieved by analyzing metadata from the user’s previ-

ous activities. This is as compared to collaborative recommen-

dation approaches which match the user to profiles generated

based on the purchases/behavior of other users (see [1, 16] for

surveys). Combinations of the two [3, 24] have been shown

to help address the sparsity of the review data available, and

the cold-start problem (where new products don’t have reviews

and are thus invisible to the recommender system) [28, 41].

The approach we propose here could also help address these

problems.

There are a range of services such as Jinni2 which promise

content-based recommendations for TV shows and similar me-

dia, but the features they expoit are based on reviews and meta-

data (such as cast, director etc.), and their ontology is hand-

crafted. The Netflix prize was a well publicized competition

to build a better personalized video recommender system, but

there again no actual image analysis is taking place [17]. Hu et

al. [9] describe a system for identifying a user’s style, and then

making clothing recommendations, but this is achieved through

analysis of ‘likes’ rather than visual features.

Content-based image retrieval gives rise to the problem of

bridging the ‘semantic-gap’ [32], which requires returning re-

sults which have similar semantic content to a search image,

even when the pixels bear no relationship to each other. It

thus bears some similarity to the visual recommendation prob-

lem, as both require modeling a human preference which is not

satisfied by mere visual similarity. There are a variety of ap-

proaches to this problem, many of which seek a set of results

which are visually similar to the query and then separately find

images depicting objects of the same class as those in the query

image; see [2, 15, 22, 38], for example. Within the Informa-

tion Retrieval community there has been considerable interest

of late in incorporating user data into image retrieval systems

[37], for example through browsing [36] and click-through be-

havior [26], or by making use of social tags [29]. Also worth

mentioning with respect to image retrieval is [12], which also

considered using images crawled from Amazon, albeit for a

different task (similar-image search) than the one considered

here.

There have been a variety of approaches to modeling human

notions of similarity between different types of images [30],

forms of music [31], or even tweets [33], amongst other data

types. Beyond measuring similarity, there has also been work

on measuring more general notions of compatibility. Murillo

et al. [25], for instance, analyze photos of groups of people

collected from social media to identify which groups might be

more likely to socialize with each other, thus implying a dis-

tance measure between images. This is achieved by estimating

which of a manually-specified set of ‘urban tribes’ each group

belongs to, possibly because only 340 images were available.

Yamaguchi et al. [40] capture a notion of visual style when

2http://jinni.com

2

http://cseweb.ucsd.edu/~jmcauley/
http://jinni.com


Category Users Items Ratings Edges

Books 8,201,127 1,606,219 25,875,237 51,276,522

Cell Phones & Accessories 2,296,534 223,680 5,929,668 4,485,570

Clothing, Shoes & Jewelry 3,260,278 773,465 25,361,968 16,508,162

Digital Music 490,058 91,236 950,621 1,615,473

Electronics 4,248,431 305,029 11,355,142 7,500,100

Grocery & Gourmet Food 774,095 120,774 1,997,599 4,452,989

Home & Kitchen 2,541,693 282,779 6,543,736 9,240,125

Movies & TV 2,114,748 150,334 6,174,098 5,474,976

Musical Instruments 353,983 65,588 596,095 1,719,204

Office Products 919,512 94,820 1,514,235 3,257,651

Toys & Games 1,352,110 259,290 2,386,102 13,921,925

Total 20,980,320 5,933,184 143,663,229 180,827,502

Table 1: The types of objects from a few categories in our dataset and the number of relationships between them.

parsing clothing, but do so by retrieving visually similar items

from a database. This idea was extended by Kiapour et

al. [14] to identify discriminating characteristics between dif-

ferent styles (hipster vs. goth for example). Di et al. [5] also

identify aspects of style using a bag-of-words approach and

manual annotations.

A few other works that consider visual features specifically

for the task of clothing recommendation include [10, 13, 20]. In

[10] and [13] the authors build methods to parse complete out-

fits from single images, in [10] by building a carefully labeled

dataset of street images annotated by ‘fashionistas’, and in [13]

by building algorithms to automatically detect and segment

items from clothing images. In [13] the authors propose an ap-

proach to learn relationships between clothing items and events

(e.g. birthday parties, funerals) in order to recommend event-

appropriate items. Although related to our approach, these

methods are designed for the specific task of clothing recom-

mendation, requiring hand-crafted methods and carefully an-

notated data; in contrast our goal is to build a general-purpose

method to understand relationships between objects from large

volumes of unlabeled data. Although our setting is perhaps

most natural for categories like clothing images, we obtain sur-

prisingly accurate performance when predicting relationships

in a variety of categories, from recommending outfits to pre-

dicting which books will be co-purchased based on their cover

art.

In summary, our approach is distinct from the above in that

we aim to generalize the idea of a visual distance measure be-

yond measuring only similarity. Doing so demands a very large

amount of training data, and our reluctance for manual annota-

tion necessitates a more opportunistic data collection strategy.

The scale of the data, and the fact that we don’t have control

over its acquisition, demands a suitably scalable and robust

modeling approach. The novelty in what we propose is thus

in the quantity we choose to model, the data we gather to do so,

and the method for extracting one from the other.

notation explanation

xi feature vector calculated from object image i

F feature dimension (i.e., xi ∈ R
F )

rij a relationship between objects i and j

R the set of relationships between all objects

dθ(xi,xj) parameterized distance between xi and xj

M F × F Mahalanobis transform matrix

Y an F ×K matrix, such that YY
T = M

D
(u) diagonal user-personalization matrix for user u

σc(·) shifted sigmoid function with parameter c

R
∗

R plus a random sample of non-relationships

U ,V, T training, validation, and test subsets of R∗

si K-dimension embedding of xi into ‘style-space’

Table 2: Notation.

1.3 A visual and relational recommender sys-

tem

We label the process we develop for exploiting this data a vi-

sual and relational recommender system as we aim to model

human visual preferences, and the system might be used to rec-

ommend one object on the basis of a user’s apparent interest

in another. The system shares these characteristics with more

common forms of recommender system, but does so on the ba-

sis of the appearance of the object, rather than metadata, re-

views, or similar.

2 The Model

Our notation is defined in Table 2.

We seek a method for representing the preferences of users

for the visual appearance of one object given that of another. A

number of suitable models might be devised for this purpose,

but very few of them will scale to the volume of data available.

For every object in the dataset we calculate an F -dimensio-

nal feature vector x ∈ R
F using a convolutional neural net-

work as described in Section 2.3. The dataset contains a set R
of relationships where rij ∈ R relates objects i and j. Each re-

3



0 c 10
d(i, j)

0

0.5

σ(c)

σc(−d(i, j))

Figure 2: Shifted (and inverted) sigmoid with parameter c = 2.

lationship is of one of the four classes listed above. Our goal is

to learn a parameterized distance transform d(xi,xj) such that

feature vectors {xi,xj} for objects that are related (rij ∈ R)

are assigned a lower distance than those that are not (rij /∈ R).

Specifically, we seek d(·,·) such that P (rij ∈ R) grows mono-

tonically with −d(xi,xj).
Distances and probabilities: We use a shifted sigmoid func-

tion to relate distance to probability thus

P (rij ∈ R) = σc(−d(xi,xj)) =
1

1 + ed(xi,xj)−c
. (1)

This is depicted in Figure 2. This decision allows us to cast

the problem as logistic regression, which we do for reasons

of scalability. Intuitively, if two items i and j have distance

d(xi,xj) = c, then they have probability 0.5 of being related;

the probability increases above 0.5 for d(xi,xj) < c, and de-

creases as d(xi,xj) > c. Note that we do not specify c in ad-

vance, but rather c is chosen to maximize prediction accuracy.

We now describe a set of potential distance functions.

Weighted nearest neighbor: Given that different feature di-

mensions are likely to be more important to different relation-

ships, the simplest method we consider is to learn which feature

dimensions are relevant for a particular relationship. We thus

fit a distance function of the form

dw(xi,xj) = ‖w ◦ (xi − xj)‖
2
2, (2)

where ◦ is the Hadamard product.

Mahalanobis transform: (eq. 2) is limited to modeling the

visual similarity between objects, albeit with varying emphasis

per feature dimension. It is not expressive enough to model

subtler notions, such as which pairs of pants and shoes belong

to the same ‘style’, despite having different appearances. For

this we need to learn how different feature dimensions relate

to each other, i.e., how the features of a pair of pants might be

transformed to help identify a compatible pair of shoes.

To identify such a transformation, we relate image fea-

tures via a Mahalanobis distance, which essentially general-

izes (eq. 2) so that weights are defined at the level of pairs of

features. Specifically we fit

dM(xi,xj) = (xi − xj)M(xi − xj)
T . (3)

A full rank p.s.d. matrix M has too many parameters to fit

tractably given the size of the dataset. For example, using

features with dimension F = 212, learning a transform as in

(eq. 3) requires us to fit approximately 8 million parameters;

not only would this be prone to overfitting, it is simply not prac-

tical for existing solvers.

To address these issues, and given the fact that M parame-

terises a Mahanalobis distance, we approximate M such that

M ≃ YY
T where Y is a matrix of dimension F × K. We

therefore define

dY(xi,xj) = (xi − xj)YY
T (xi − xj)

T

= ‖(xi − xj)Y‖22.
(4)

Note that all distances (as well as their derivatives) can be com-

puted in O(FK), which is significant for the scalability of the

method. Similar ideas appear in [4, 35], which also consider

the problem of metric learning via low-rank embeddings, al-

beit using a different objective than the one we consider here.

2.1 Style space

In addition to being computationally useful, the low-rank trans-

form in (eq. 4) has a convenient interpretation. Specifically, if

we consider the K-dimensional vector si = xiY, then (eq. 4)

can be rewritten as

dY(xi,xj) = ‖si − sj‖
2
2. (5)

In other words, (eq. 4) yields a low-dimensional embedding

of the features xi and xj . We refer to this low-dimensional

representation as the product’s embedding into ‘style-space’,

in the hope that we might identify Y such that related objects

fall close to each other despite being visually dissimilar. The

notion of ‘style’ is learned automatically by training the model

on pairs of objects which Amazon considers to be related.

2.2 Personalizing styles to individual users

So far we have developed a model to learn a global notion of

which products go together, by learning a notion of ‘style’ such

that related products should have similar styles. As an addition

to this model we can personalize this notion by learning for

each individual user which dimensions of style they consider

to be important.

To do so, we shall learn personalized distance functions

dY,u(xi,xj) that measure the distance between the items i and

j according to the user u. We choose the distance function

dY,u(xi,xj) = (xi − xj)YD
(u)

Y
T (xi − xj)

T (6)

where D(u) is a K×K diagonal (positive semidefinite) matrix.

In this way the entry D
(u)
kk indicates the extent to which the user

u ‘cares about’ the kth style dimension.

In practice we fit a U × K matrix X such that D
(u)
kk =

Xuk. Much like the simplification in (eq. 5), the distance

dY,u(xi,xj) can be conveniently written as

dY,u(xi,xj) = ‖(si − sj) ◦Xu‖
2
2. (7)

In other words, Xu is a personalized weighting of the projected

style-space dimensions.

The construction in (eq. 6 and 7) only makes sense if there

are users associated with each edge in our dataset, which is not

true of the four graph types we have presented so far. Thus

4



to study the issue of user personalization we make use of our

rating and review data (see Table 1). From this we sample a

dataset of triples (i,j,u) of products i and j that were both pur-

chased by user u (i.e., u reviewed them both). We describe this

further when we outline our experimental protocol in Section

4.1.

2.3 Features

Features are calculated from the original images using the Caffe

deep learning framework [11]. In particular, we used a Caffe

reference model3 with 5 convolutional layers followed by 3

fully-connected layers, which has been pre-trained on 1.2 mil-

lion ImageNet (ILSVRC2010) images. We use the output of

FC7, the second fully-connected layer, which results in a fea-

ture vector of length F = 4096.

3 Training

Since we have defined a probability associated with the pres-

ence (or absence) of each relationship, we can proceed by max-

imizing the likelihood of an observed relationship set R. In or-

der to do so we randomly select a negative set Q = {rij |rij /∈
R} such that |Q| = |R| and optimize the log likelihood

l(Y,c|R,Q) =
∑

rij∈R

log(σc(−dY(xi,xj)))+

∑

rij∈Q

log(1− σc(−dY(xi,xj))). (8)

Learning then proceeds by optimizing l(Y,c|R,Q) over both

Y and c which we achieve by gradient ascent. We use (hybrid)

L-BFGS, a quasi-Newton method for non-linear optimization

of problems with many variables [21]. Likelihood (eq. 8) and

derivative computations can be naı̈vely parallelized over all

pairs rij ∈ R ∪ Q. Training on our largest dataset (Amazon

books) with a rank K = 100 transform required around one

day on a 12 core machine.

4 Experiments

We compare our model against the following baselines:

We compare against Weighted Nearest Neighbor (WNN)

classification, as is described in Section 1.3. We also compare

against a method we label Category Tree (CT); CT is based

on using Amazon’s detailed category tree directly (which we

have collected for Clothing data, and use for later experiments),

which allows us to assess how effective an image-based classi-

fication approach could be, if it were perfect. We then compute

a matrix of coocurrences between categories from the training

data, and label two products (a,b) as ‘related’ if the category

of b belongs to one of the top 50% of most commonly linked

categories for products of category a.4 Nearest neighbor results

3bvlc reference caffenet from caffe.berkeleyvision.org
4We experimented with several variations on this theme, and this approach

yielded the best performance.

(calculated by optimizing a threshold on the ℓ2 distance using

the training data) were not significantly better than random, and

have been suppressed for brevity.

Comparison against non-visual baselines As a non-visual

comparison, we trained topic models on the reviews of each

product (i.e., each document di is the set of reviews of the prod-

uct i) and fit weighted nearest neighbor classifiers of the form

dw(θi, θj) = ‖w ◦ (θi − θj)‖
2
2, (9)

where θi and θj are topic vectors derived from the reviews of

the products i and j. In other words, we simply adapted our

WNN baseline to make use of topic vectors rather than image

features.5 We used a 100-dimensional topic model trained us-

ing Vowpal Wabbit [8].

However, this baseline proved not to be competitive against

the alternatives described above (e.g. only 60% accuracy on our

largest dataset, ‘Books’). One explanation may simply be that

is is difficult to effectively train topic models at the 1M+ docu-

ment scale; another explanation is simply that the vast majority

of products have few reviews. Not surprisingly, the number of

reviews per product follows a power-law, e.g. for Men’s Cloth-

ing:

0 20

number of reviews

0

120000

c
o
u
n
t

Men’s clothing

This issue is in fact exacerbated in our setting, as to predict a

relationship between products we require both to have reliable

feature representations, which will be true only if both products

have several reviews.

Although we believe that predicting such relationships using

text is a promising direction of future research (and one we are

exploring), we simply wish to highlight the fact that there ap-

pears to be no ‘silver bullet’ to predict such relationships using

text, primarily due to the ‘cold start’ issue that arises due to

the long tail of obscure products with little text associated with

them. Indeed, this is a strong argument in favor of building

predictors based on visual features, since images are available

even for brand new products which are yet to receive even a

single review.

4.1 Experimental protocol

We split the dataset into its top-level categories (Books,

Movies, Music, etc.) and further split the Clothing category

into second-level categories (Men’s, Women’s, Boys, Girls,

etc.). We focus on results from a few representative subcate-

gories. Complete code for all experiments and all baselines is

available online.6

5We tried the same approach at the word (rather than the topic) level, though

this led to slightly worse results.
6http://cseweb.ucsd.edu/˜jmcauley/

5
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Category method accuracy

Men’s

clothing

CT 84.8%

WNN 84.3%

K = 10, no personalization 90.9%

K = 10, personalized 93.2%

Women’s

clothing

CT 80.5%

WNN 80.8%

K = 10, no personalization 87.6%

K = 10, personalized 89.1%

Table 3: Performance of our model at predicting copurchases

with a user personalization term (eqs. 6 and 7).

For each category, we consider the subset of relationships

from R that connect products within that category. After gen-

erating random samples of non-relationships, we separate R
and Q into training, validation, and test sets (80/10/10%, up to

a maximum of two million training relationships). Although

we do not fit hyperparameters (and therefore do not make use

of the validation set), we maintain this split in case it proves

useful to those wishing to benchmark their algorithms on this

data. While we did experiment with simple ℓ2 regularizers, we

found ourselves blessed with a sufficient overabundance of data

that overfitting never presented an issue (i.e., the validation er-

ror was rarely significantly higher than the training error).

To be completely clear, our protocol consists of the follow-

ing:

1. Each category and graph type forms a single experiment

(e.g. predict ‘bought together’ relationships for Women’s

clothing).

2. Our goal is to distinguish relationships from non-relati-

onships (i.e., link prediction). Relationships are identified

when our predictor (eq. 1) outputs P (rij ∈ R) > 0.5.

3. We consider all positive relationships and a random sam-

ple of non-relationships (i.e., ‘distractors’) of equal size.

Thus the performance of a random classifier is 50% for all

experiments.

4. All results are reported on the test set.

Results on a selection of top-level categories are shown in

Table 4, with further results for clothing data shown in Table

5. Recall when interpreting these results that the learned model

has reference to the object images only. It is thus estimating the

existence of a specified form of relationship purely on the basis

of appearance.

In every case the proposed method outperforms both the

category-based method and weighted nearest neighbor, and the

increase from K = 10 to K = 100 uniformly improves per-

formance. Interestingly, the performance on compliments vs.

substitutes is approximately the same. The extent to which the

K = 100 results improve upon the WNN results may be seen as

an indication of the degree to which visual similarity between

images fails to capture a more complex human visual notion

Figure 3: Examples of closely-clustered items in style space

(Men’s and Women’s clothing ‘also viewed’ data).

of which objects might be seen as being substitutes or compli-

ments for each other. This distinction is smallest for ‘Books’

and greatest for ‘Clothing Shoes and Jewelery’ as might be ex-

pected.

We have no ground truth relating the true human visual pref-

erence for pairs of objects, of course, and thus evaluate above

against our dataset. This has the disadvantage that the dataset

contains all of the Amazon recommendations, rather than just

those based on decisions made by humans on the basis of ob-

ject appearance. This means that in addition to documenting

the performance of the proposed method, the results may also

be taken to indicate the extent to which visual factors impact

upon the decisions of Amazon customers. The comparison

across categories is particularly interesting. It is to be expected

that appearance would be a significant factor in Clothing deci-

sions, but it was not expected that they would be a factor in the

6



Figure 4: A selection of widely separated members of a sin-

gle K-means cluster, demonstrating an apparent stylistic coher-

ence.

Figure 5: Examples of K-means clusters in style space (Books

‘also viewed’ and ‘also bought’ data). Although ‘styles’ for

categories like books are not so readily interpretable as they

are for clothes, visual features are nevertheless able to uncover

meaningful distinctions between different product categories,

e.g. the first four rows above above appear to be children’s

books, self-help books, romance novels, and graphic novels.

purchase of Books. One possible interpretation of this effect

might be that customers have preferences for particular genres

of books and that individual genres have characteristic styles of

covers.

4.2 Personalized recommendations

Finally we evaluate the ability of our model to personalize co-

purchasing recommendations to individual users, that is we ex-

amine the effect of the user personalization term in (eqs. 6

and 7). Here we do not use the graphs from Tables 4 and 5,

since those are ‘population level’ graphs which are not anno-

tated in terms of the individual users who co-purchased and co-

browsed each pair of products. Instead for this task we build a

dataset of co-purchases from products that users have reviewed.

That is, we build a dataset of tuples of the form (i,j,u) for

pairs of products i and j that were purchased by user u. We

train on users with at least 20 purchases, and randomly sam-

ple 50 co-purchases and 50 non-co-purchases from each user

in order to build a balanced dataset. Results are shown in Ta-

ble 3; here we see that the addition of a user personalization

term yields a small but significant improvement when predict-

ing co-purchases (similar results on other categories withheld

for brevity).

Figure 6: Navigating to distant products: each column shows a

low-cost path between two objects such that adjacent products

in the path are visually consistent, even when the end points are

not.

Figure 7: A 2-dimensional embedding of a small sample of

Boys clothing images (‘also viewed’ data).

5 Visualizing Style Space

Recall that each image is projected into ‘style-space’ by the

transformation si = xiY, and note that the fact that it is based

on pairwise distances alone means that the embedding is in-

variant under isomorphism. That is, applying rotations, trans-

lations, or reflections to si and sj will preserve their distance

in (eq. 5). In light of these factors we perform k-means cluster-

ing on the K dimensional embedded coordinates of the data in

order to visualize the effect of the embedding.

Figure 3 shows images whose projections are close to the

centers of a set of selected representative clusters for Men’s and

Women’s clothing (using a model trained on the ‘also viewed’

graph with K = 100). Naturally items cluster around colors

and shapes (e.g. shoes, t-shirts, tank tops, watches, jewelery),

but more subtle characterizations exist as well. For instance,

leather boots are separated from ugg (that is sheep skin) boots,

despite the fact that the visual differences are subtle. This is

presumably because these items are preferred by different sets

of Amazon users. Watches cluster into different color profiles,

face shapes, and digital versus analogue. Other clusters cross

multiple categories, for instance we find clusters of highly-

colorful items, items containing love hearts, and items contain-

ing animals. Figure 4 shows a set of images which project to

locations that span a cluster.

Although performance is admittedly not outstanding for a
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Figure 8: Outfits generated by our algorithm (Women’s outfits

at left; Men’s outfits at right). The first column shows a ‘query’

item that is randomly selected from the product catalogue. The

right three columns match the query item with a top, pants,

shoes, and an accessory, (minus whichever category contains

the query item).

category such as books, it is somewhat surprising that an ac-

curacy of even 70% can be achieved when predicting book

co-purchases. Figure 5 visualizes a few examples of style-

space clusters derived from Books data. Here it seems that

there is at least some meaningful information in the cover of a

book to predict which products might be purchased together—

children’s books, self-help books, romance novels, and comics

(for example) all seem to have characteristic visual features

which are identified by our model.

In Figure 6 we show how our model can be used to navigate

between related items—here we randomly select two items that

are unlikely to be co-browsed, and find a low cost path between

them as measured by our learned distance measure. Subjec-

tively, the model identifies visually smooth transitions between

the source and the target items.

Figure 7 provides a visualization of the embedding of Boys

clothing achieved by setting K = 2 (on co-browsing data).

Sporting shoes drift smoothly toward slippers and sandals, and

underwear drifts gradually toward shirts and coats.

6 Generating Recommendations

We here demonstrate that the proposed model can be used to

generate recommendations that might be useful to a user of a

web store. Given a query item (e.g. a product a user is currently

browsing, or has just purchased), our goal is to recommend a

selection of other items that might complement it. For example,

if a user is browsing pants, we might want to recommend a

shirt, shoes, or accessories that belong to the same style.

Here, Amazon’s rich and detailed category hierarchy can

help us. For categories such as women’s or men’s clothing,

we might define an ‘outfit’ as a combination of pants, a top,

shoes, and an accessory (we do this for the sake of demonstra-

tion, though far more complex combinations are possible—our

category tree for clothing alone has hundreds of nodes). Then,

given a query item our goal is simply to select items from each

of these categories that are most likely to be connected based

on their visual style.

Specifically, given a query item xq , for each category C (rep-

resented as a set of item indices), we generate recommenda-

tions according to

argmax
j∈C

PY(rqj ∈ R), (10)

i.e., the minimum distance according to our measure (eq. 4)

amongst objects belonging to the desired category. Examples

of such recommendations are shown in Figures 1 and 8, with

randomly chosen queries from women’s and men’s clothing.

Generally speaking the model produces apparently reasonable

recommendations, with clothes in each category usually being

of a consistent style.

7 Outfits in The Wild

An alternate application of the model is to make assessments

about outfits (or otherwise combinations of items) that we ob-

serve ‘in the wild’. That is, to the extent that the tastes and

preferences of Amazon customers reflect the zeitgeist of soci-

ety at large, this can be seen as a measurement of whether a

candidate outfit is well coordinated visually.

To assess this possibility, we have built two small datasets

of real outfits, one consisting of twenty-five outfits worn by

the hosts of Top Gear (Jeremy Clarkson, Richard Hammond,

and James May), and another consisting of seventeen ‘before’

and ‘after’ pairs of outfits from participants on the television

show What Not to Wear (US seasons 9 and 10). For each out-

fit, we cropped each clothing item from the image, and then

used Google’s reverse image search to identify images of simi-

lar items (examples are shown in Figure 9).

Next we rank outfits according to the average log-likelihood

of their pairs of components being related using a model trained

on Men’s/Women’s co-purchases (we take the average so that

there is no bias toward outfits with more or fewer components).

All outfits have at least two items.7 Figure 9 shows the most

and least coordinated outfits on Top Gear; here we find con-

siderable separation between the level of coordination for each

presenter; Richard Hammond is typically the least coordinated,

James May the most, while Jeremy Clarkson wears a combina-

tion of highly coordinated and highly uncoordinated outfits.

A slightly more quantitative evaluation comes from the tele-

vision show What Not to Wear: here participants receive an

‘outfit makeover’, hopefully meaning that their made-over out-

fit is more coordinated than the original. Examples of partic-

ipants before and after their makeover, along with the change

in log likelihood are shown in Figure 10. Indeed we find that

made-over outfits have a higher log likelihood in 12 of the 17

cases we observed (p ≃ 7%; log-likelihoods are normalized to

7Our measure of coordination is thus undefined for a subject wearing only

a single item, though in general such an outfit would be a poor fashion choice

in the opinion of the authors.
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Figure 9: Least (top) and most (bottom) coordinated outfits from our Top Gear dataset. Richard Hammond’s outfits typically

have low coordination, James May’s have high coordination, and Jeremy Clarkson straddles both ends of the coordination

spectrum. Pairwise distances are normalized by the number of components in the outfit so that there is no bias towards outfits

with fewer/more components.

correct any potential bias due to the number of components in

the outfit). This is an important result, as it provides external

(albeit small) validation of the learned model which is indepen-

dent of our dataset.

8 Conclusion

We have shown that it is possible to model the human notion

of what is visually related by investigation of a suitably large

dataset, even where that information is somewhat tangentially

contained therein. We have also demonstrated that the proposed

method is capable of modeling a variety of visual relationships

beyond simple visual similarity. Perhaps what distinguishes

our method most is thus its ability to model what makes items

complementary. To our knowledge this is the first attempt to

model human preference for the appearance of one object given

that of another in terms of more than just the visual similarity

between the two. It is almost certainly the first time that it has

been attempted directly and at this scale.

We also proposed visual and relational recommender sys-

tems as a potential problem of interest to the information re-

trieval community, and provided a large dataset for their train-

ing and evaluation. In the process we managed to figure out

what not to wear, how to judge a book by its cover, and to show

that James May is more fashionable than Richard Hammond.

Acknowledgements. This research was supported by the Data 2 De-

cisions Cooperative Research Centre, and the Australian Research

Council Discovery Projects funding scheme DP140102270.

References

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible

extensions. TKDD, 2005.

[2] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos. Supervised

learning of semantic classes for image annotation and retrieval. IEEE

Trans. on PAMI, 2007.

[3] W. Chu and S.-T. Park. Personalized recommendation on dynamic

content using predictive bilinear models. In WWW, 2009.

[4] M. Der and L. Saul. Latent coincidence analysis: A hidden variable

model for distance metric learning. In NIPS, 2012.

[5] W. Di, C. Wah, A. Bhardwaj, R. Piramuthu, and N. Sundaresan. Style

finder: Fine-grained clothing style detection and retrieval. In CVPR

Workshops, 2013.

[6] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes

paris look like paris? SIGGRAPH, 2012.

[7] J. Hays and A. A. Efros. Im2gps: estimating geographic information

from a single image. In CVPR, 2008.

[8] M. D. Hoffman, D. M. Blei, and F. Bach. Online learning for latent

dirichlet allocation. In In NIPS, 2010.

[9] D. J. Hu, R. Hall, and J. Attenberg. Style in the long tail: Discovering

unique interests with latent variable models in large scale social

e-commerce. In KDD, 2014.

[10] V. Jagadeesh, R. Piramuthu, A. Bhardwaj, W. Di, and N. Sundaresan.

Large scale visual recommendations from street fashion images.

arXiv:1401.1778, 2014.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for

fast feature embedding. arXiv:1408.5093, 2014.

[12] X. Jin, J. Luo, J. Yu, G. Wang, D. Joshi, and J. Han. Reinforced

similarity integration in image-rich information networks. IEEE

Trans. on KDE, 2013.

9



Figure 10: Contestants in What Not to Wear. Original outfits (top), ‘made-over’ outfits (bottom), and the change in log-likelihood

(δ) between the components of the old and the new outfits (positive δ denotes an increase in coordination).

[13] Y. Kalantidis, L. Kennedy, and L.-J. Li. Getting the look: Clothing

recognition and segmentation for automatic product suggestions in

everyday photos. In ICMR, 2013.

[14] M. H. Kiapour, K. Yamaguchi, A. C. Berg, and T. L. Berg. Hipster wars:

Discovering elements of fashion styles. In ECCV. 2014.

[15] W. Kong, W.-J. Li, and M. Guo. Manhattan hashing for large-scale

image retrieval. In SIGIR, 2012.

[16] Y. Koren and R. Bell. Advances in collaborative filtering. In

Recommender Systems Handbook. Springer, 2011.

[17] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, 2009.

[18] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia

information retrieval: State of the art and challenges. ACM TOMCCAP,

2006.

[19] G. Linden, B. Smith, and J. York. Amazon.com recommendations:

Item-to-item collaborative filtering. IEEE Internet Computing, 2003.

[20] S. Liu, J. Feng, Z. Song, T. Zhang, H. Lu, C. Xu, and S. Yan. Hi, magic

closet, tell me what to wear! In ACM Conference on Multimedia, 2012.
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substitutes complements

Category method
buy after

viewing

also

viewed

also

bought

bought

together

Books

WNN 66.5% 62.8% 63.3% 65.4%

K = 10 70.1% 68.6% 69.3% 68.1%

K = 100 71.2% 69.8% 71.2% 68.6%

Cell Phones and

Accessories

WNN 73.4% 66.4% 69.1% 79.3%

K = 10 84.3% 78.9% 78.7% 83.1%

K = 100 85.9% 83.1% 83.2% 87.7%

Clothing, Shoes,

and Jewelry

WNN · 77.2% 74.2% 78.3%

K = 10 · 87.5% 84.7% 89.7%

K = 100 · 88.8% 88.7% 92.5%

Digital Music

WNN 60.2% 56.7% 62.2% 53.3%

K = 10 68.7% 60.9% 74.7% 56.0%

K = 100 72.3% 63.8% 76.2% 59.0%

Electronics

WNN 76.5% 73.8% 67.6% 73.5%

K = 10 83.6% 80.3% 77.8% 79.6%

K = 100 86.4% 84.0% 82.6% 83.2%

Grocery and

Gourmet Food

WNN · 69.2% 70.7% 68.5%

K = 10 · 77.8% 81.2% 79.6%

K = 100 · 82.5% 85.2% 84.5%

Home and

Kitchen

WNN 75.1% 68.3% 70.4% 76.6%

K = 10 78.5% 80.5% 78.8% 79.3%

K = 100 81.6% 83.8% 83.4% 83.2%

Movies and TV

WNN 66.8% 65.6% 61.6% 59.6%

K = 10 71.9% 69.6% 72.8% 67.6%

K = 100 72.3% 70.0% 77.3% 70.7%

Musical

Instruments

WNN 79.0% 76.0% 75.0% 77.2%

K = 10 84.7% 87.0% 85.3% 82.3%

K = 100 89.5% 87.2% 84.4% 84.7%

Office Products

WNN 72.8% 75.0% 74.4% 73.7%

K = 10 81.2% 84.0% 84.1% 78.6%

K = 100 85.9% 87.2% 85.8% 80.9%

Toys and Games

WNN 67.0% 72.8% 71.7% 77.6%

K = 10 75.8% 78.3% 78.4% 80.3%

K = 100 77.1% 81.9% 82.4% 82.6%

Table 4: Accuracy of link prediction on top-level categories

for each edge type with increasing model rank K. Random

classification is 50% accurate across all experiments.

substitutes complements

Category method
also

viewed

also

bought

bought

together

Baby

CT 77.1% 70.5% 80.1%

WNN 83.0% 87.7% 81.7%

K = 10 92.2% 92.7% 91.5%

K = 100 94.6% 94.3% 93.3%

Boots

CT 75.0% 72.7% 74.2%

WNN 83.9% 85.6% 84.7%

K = 10 93.0% 94.9% 95.4%

K = 100 94.6% 96.8% 96.4%

Boys

CT 81.9% 77.3% 83.1%

WNN 85.0% 87.2% 87.9%

K = 10 94.4% 94.1% 93.8%

K = 100 96.5% 95.8% 95.1%

Girls

CT 83.0% 76.2% 78.7%

WNN 83.3% 86.0% 84.8%

K = 10 94.5% 93.6% 93.0%

K = 100 96.1% 95.3% 94.5%

Jewelry

CT 50.1% 49.5% 51.1%

WNN 81.2% 81.6% 75.8%

K = 10 89.6% 89.3% 82.8%

K = 100 89.1% 91.6% 86.4%

Men

CT 88.2% 78.4% 83.6%

WNN 86.9% 78.4% 82.3%

K = 10 91.6% 89.8% 92.1%

K = 100 92.6% 93.3% 95.1%

Novelty

Costumes

CT 79.1% 76.3% 81.5%

WNN 80.1% 74.1% 76.0%

K = 10 86.3% 86.6% 85.0%

K = 100 89.2% 90.0% 89.1%

Shoes and

Accessories

CT 81.3% 78.1% 90.4%

WNN 75.4% 80.2% 77.9%

K = 10 89.7% 90.4% 93.5%

K = 100 92.3% 94.7% 96.2%

Women

CT 86.8% 79.1% 84.3%

WNN 78.8% 76.1% 80.0%

K = 10 88.9% 87.8% 91.5%

K = 100 90.4% 91.2% 94.3%

Table 5: Accuracy of link prediction on subcategories of

‘Clothing, Shoes, and Jewelry’ with increasing rank K. Note

that ‘buy after viewing’ links are not surfaced for clothing data

on Amazon.
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