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ABSTRACT Image-based rendering (IBR) attempts to synthesize novel views using a set of observed

images. Some IBR approaches (such as light fields) have yielded impressive high-quality results on

small-scale scenes with dense photo capture. However, available wide-baseline IBR methods are still

restricted by the low geometric accuracy and completeness of multi-view stereo (MVS) reconstruction on

low-textured and non-Lambertian surfaces. The issues becomemore significant in large-scale outdoor scenes

due to challenging scene content, e.g., buildings, trees, and sky. To address these problems, we present a novel

IBR algorithm that consists of two key components. First, we propose a novel depth refinement method that

combines MVS depth maps with monocular depth maps predicted via deep learning. A lookup table remap

is proposed for converting the scale of the monocular depths to be consistent with the scale of the MVS

depths. Then, the rescaled monocular depth is used as the constraint in the minimum spanning tree (MST)-

based nonlocal filter to refine the per-view MVS depth. Second, we present an efficient shape-preserving

warping algorithm that uses superpixels to generate the warped images and blend expected novel views of

scenes. The proposed method has been evaluated on public MVS and view synthesis datasets, as well as

newly captured large-scale outdoor datasets. In comparison with state-of-the-art methods, the experimental

results demonstrated that the proposed method can obtain more complete and reliable depth maps for the

challenging large-scale outdoor scenes, thereby resulting in more promising novel view synthesis.

INDEX TERMS Image-based rendering, multi-view stereo, monocular depth estimation, view synthesis,

outdoor scenes.

I. INTRODUCTION

With the increasing demand for immersive 3D content, many

view synthesis methods [1]–[5] for providing realistic inter-

active virtual navigation have been proposed. Among these

methods, image-based rendering (IBR) algorithms enable

high-quality view navigation via the utilization of a set of

photos of a scene, which avoid the massive cost of elabo-

rate 3D reconstruction. Early IBR works [6], [7] synthesized

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tan .

images between nearby views by projecting and blending tex-

ture with a proxy geometry. These methods perform poorly if

synthetic views are moving far from the input photos. With

the development of underlying multi-view stereo (MVS)

reconstruction methods, state-of-the-art IBR methods [2],

[8]–[10] have yielded promising view synthesis results by

using estimated per-view depth information to inferring the

color texture of contents in novel views during rendering.

However, outdoor scenes often contain large amounts of

low-textured surfaces, vegetations, and sky, where 3D geo-

metric information is difficult to be reconstructed. As a result,
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warping of such regions via estimated scene depth informa-

tion is undesirable; thus, this is a challenging issue for current

IBR methods.

For alleviating the view synthesis problem on large-scale

outdoor scenes, the refinement of the original depth esti-

mation has been paid more attention to IBR methods.

Chaurasia et al. [2] proposed superpixel-based depth interpo-

lation and shape-preserving warping for the production of

plausible novel views. However, it will assign an incorrect

depth if spatially neighboring superpixels are located in dif-

ferent objects but are of similar color. Hedman et al. [5]

proposed a robustmulti-view depth estimationmethod, which

firstly discards erroneous depths in the initial depth maps

that are estimated via plane sweep stereo and propagates the

confident depth points using a first-order Poisson system;

then, the interpolation results are used as near-envelope terms

for Markov random field (MRF) model-based discrete label

optimization. DeepBlending [10] combines the depths that

are generated via two MVS methods for joint optimization in

order to obtain complete and accurate depth maps. However,

the missing and erroneous geometric structures in the MVS

depth estimation stage still have a substantial impact on the

final view synthesis.

Besides the depth refinement methods tailored for IBR

problem, there are a large number of works, which formu-

late the depth refinement task as depth inpainting [11], [12]

and depth completion [13], [14]. The achievements of deep

neural networks in recent years have encouraged researchers

to implicitly model problems using many training examples.

DepthComp [13] realized the efficient and plausible filling

of depth holes in stereo image pairs utilizing learning-bassed

semantic segmentation. Zhang and Funkhouser [14] recov-

ered the missing depth data via optimization with the surface

normals estimated by a neural network. However, these meth-

ods cannot be applied to the large holes in the depth maps.

Faced with geometric inaccuracies in classical MVSmeth-

ods, learning-based MVS methods [15]–[17] learned a map-

ping between multi-view images and 3D volumetric labeling

or depth maps. However, these methods require huge training

sets with ground-truth, which is infeasible for large-scale

scenes in which the performances of commodity-grade depth

sensors are often limited due to strong light or distance. Unsu-

pervised methods [18]–[22] can produce coarse monocular

depths without being limited to datasets with ground-truth

data. Although these depths cannot be input the IBR pipeline,

they can be used as a priori information for the refinement of

the original MVS depth.

To improve the quality of depth estimation and view syn-

thesis for large-scale outdoor scenes, in this work, we propose

an IBRmethod that is based on fusion ofmonocular andMVS

depth. The proposed method consists of a depth refinement

stage and a view synthesis stage. In the depth refinement

stage, we combine a learning-based monocular depth [19]

with the MVS depth [23] to realize more complete and reli-

able depth estimation. Since the MVS depth and the monoc-

ular depth are from distributions that differ substantially in

terms of scale, we present a novel layerwisemapping between

the monocular depth and the MVS depth via a lookup table.

Then, we propose a nonlocal algorithm that is based on

a minimum spanning tree (MST) for effectively fusing the

rescaledmonocular depth and theMVS depth.We use seman-

tic segmentation [24] to specify the depth of the sky. In the

view synthesis stage, we build our blending solution based on

a superpixel-based local shape-preserving warp. We improve

the warp efficiency by using a single circumscribed triangle

instead of multiple overlapping grids in the energy function

minimization. An overview of our approach is presented

in Fig. 1. Our main contributions are summarized as follows:

1) A lookup-table-based strategy that remaps the monoc-

ular depth to the scale of the MVS depth;

2) An MST-based algorithm for fusing the monocular

depth and the MVS depth, which can fill in irreg-

ularities and large holes of MVS depth maps while

preserving geometric details;

3) A complete pipeline for image-based outdoor scenes

navigation, which includes a refinement method

for depth estimation, and a superpixel-based shape-

preserving warp for view synthesis.

The remainder of this paper is organized as follows.

Section II briefly reviews the related work. Section III

describes the proposed method in detail. We present our

experimental results in Section IV. Finally, the conclusions

of this study are presented in Section V.

II. RELATED WORK

In this section, we first review the related IBR methods.

Then, we briefly review the necessary works related to depth

estimation, including multi-view 3D reconstruction, depth

inpainting, and monocular depth estimation.

A. IMAGE-BASED RENDERING

Early image-based rendering methods mainly include view

interpolation [25], light fields [26] and Lumagraphs [7], [27].

These methods have led to some interesting applications,

such as first-person hyper-lapse video [28], VR panorama

[4] and commercial Google Street View. But these methods

are usually not applicable to large-scale scenes under sparse

capture. View-dependent texture mapping [6] uses a uniform

geometry proxy to blend re-projected source images and

provides a strong sense of realism in the model. This idea

has been used to process wide-baseline input datasets in sub-

sequent image-based rendering systems. The Unstructured

Lumigraph [7] defines a per-pixel weighting function by

combining a number of ‘fidelity criteria’. However, geometry

is not always complete and accurate, especially in textureless

areas. Floating textures [29] uses soft visibility in rendering

to reduce the ghosting and blurring that were caused by an

imprecise geometry. Sinha et al. [30] generated piecewise

planar depth maps by solving a multilabel MRF optimization

problem to improve the view interpolation performance on

untextured surfaces. The non-photo realistic rendering (NPR)
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FIGURE 1. Overview of the proposed method. The input is a set of images captured from different viewpoints. The proposed depth refinement
fuses monocular depth and MVS depth to improve the completeness and accuracy of per-view depth maps. Moreover, we incorporate the
semantic segmentation results to detect the sky pixels. Finally, a superpixel-based shape-preserving warping is applied to synthesize the novel
view.

style [31] utilizes ambient point clouds with uncertain depth

to reduce artifacts. Silhouette warping [32] improves the

rendering of foreground objects by protecting depth discon-

tinuities with manual assistance. In addition, soft visibility

[29], [33], superpixels [2], [8] and boundary alpha matting

[34]–[36] have been used to improve the blending results at

occlusion edges.

Recent IBR methods provide a more complete solution

for interactive free-viewpoint navigation. Davis et al. [37]

proposed a 2D-domain-view roaming method in pre-adjusted

capture mode for fixed indoor scenes. However, complex and

long-term capture is not always feasible. Chaurasia et al. [2]

conducted depth repair and local shape-preserving warp-

ing in superpixels for wide-baseline urban datasets, thereby

enabling the viewer to move far from the input cameras.

To tradeoff between quality and speed, Selective IBR [8] uses

a Bayesian approach to select suitable superpixels for warp-

ing. Inside-Out IBR [38] uses per-view mesh simplification

and tiling to implement a real-time free-viewpoint rendering

system of indoor scenes, but high-quality 3D reconstruction

is derived from an RGB-D video and hundreds of images.

Soft3D [9] designs a soft visibility function by retaining

uncertainty in a volumetric depth-sweep and yields satisfac-

tory rendering results across a wide variety of inputs (e.g.,

plenoptic and unstructured cameras and light-field video).

However, it cannot be applied to large-scale scenes due to

excessive memory consumption.

In recent IBR studies, in addition to being used as com-

ponents, data-driven learning methods also have been used

as end-to-end frameworks for view synthesis. A deep con-

volutional network was used for the multi-view rendering of

a single object in [39], [40]. DeepStereo [41] trained two

tower networks separately by using the plane sweep volume

to predict the depth and color. Habtegebrial et al. [42] esti-

mated depth on stereographic pairs based on a convolutional

neural network (CNN) and generated texture with a forward

mapping network. Although these methods yield promising

results, they still suffer from blurring and low resolution, and

their computational costs are too high for real-time rendering.

The application of customized networks to facilitate classi-

cal algorithms is more effective. DeepBlending [10] used a

convolutional neural network to compute blending weights

via per-view meshes [38], thereby reducing the severity of

artifacts and realizing rendering in real-time. Stereo Magnifi-

cation [43] estimated multiplanar images (MPIs) at multiple

depth levels using a deep network and synthesizes new views

between two narrow-baseline stereo images. More recently,

DeepView [44] used learned gradient descent to produceMPI

and yielded high-quality view synthesis results on a light field

and camera array dataset. Local light field fusion (LLFF)

[45] implemented a practical image synthesis system using

predicted MPI and analyzed the required light field sampling

rate. However, LLFF required a parallax-limited photo col-

lection under the guidance of an application. Based on the

available proxy geometry, neural networks have also been

used to support view-dependent rendering [46] and scene

re-rendering under multiple appearances [47].

B. DEPTH ESTIMATION

Multi-View 3D Reconstruction: The multi-view stereo algo-

rithms [48], [49] can reconstruct the 3D geometry from a set

of photos of a scene that were captured from diverse locations
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or angles. For a comprehensive review of MVS, we refer the

reader to Furukawa and Hernández [50]. Here, we focus on

themulti-view stereo algorithms that are associated with view

synthesis. A perfect 3D texture model is the best, but it can be

challenging to implement using a collection of casually cap-

tured images. The related methods [48], [49] automatically

reconstructed semi-dense depth maps that can be merged as a

proxy in the IBR methods [7], [29]. COLMAP [23], [51] has

been used in IBR methods for cameras poses estimation [5],

[10], [47] and dense depth reconstruction [10]. COLMAPwas

also demonstrated to produce the most accurate geometry in

MVS benchmark tests [52], [53]. However, depth maps that

are reconstructed via COLMAP are less complete in large tex-

tureless regions due to insufficient matching features, which

will cause large holes when they are applied to view synthesis,

especially in outdoor scenes.

Depth Inpainting and Completion: Many heuristic meth-

ods that are based on image filtering or optimization have

been proposed for filling the holes in depth maps. Most of

thesemethods [11], [12] focus on the depthmaps that are gen-

erated by depth sensors such as the Microsoft Kinect. These

depth maps are typically more accurate and complete than

depth maps that are obtained via MVS. Modified closing by

reconstruction (McBR) [12] improved the depth maps from

time-of-flight sensors by using a modified morphological

closing filter. Several reconstruction iterations are required

for the removal of small holes from the depth maps; how-

ever, this approach is ineffective for large holes in outdoor

scenes with structures that are completely missing. Zhang

and Funkhouser [14] recovered the missing sensor depth

via optimization with the normals of RGB-D images that

are estimated by a neural network. DepthComp [13] applied

various filling strategies to classified holes in the depth maps

that were classified based on a semantic segmentation prior

by SegNet [54]. The results strongly depend on the accuracy

of segmentation. However, DepthComp focused only on the

depth map and did not consider the subsequent use of depth.

Its incorrect depth filling in large holes can produce unpre-

dictable artifacts in the view synthesis for IBR.

Monocular Depth Estimation: The increasing availability

of deep learning techniques and large training datasets has

led to a new generation of depth reconstruction methods that

can recover the lost dimension, even from a single image.

Supervised monocular depth estimation methods [55]–[57]

have realized high accuracy on fixed datasets, such as NYU

(indoor-only images) and KITTI (road scenes). However,

these methods are limited by the available training data

and have difficulty generalizing well on large-scale out-

door datasets. Among the unsupervised methods [18]–[22],

MegaDepth [19] generated training data via the structure-

from-motion (SFM) and multi-view stereo (MVS) methods,

and constructed a large dataset from Internet photo collec-

tions. The model that was trained on this dataset exhib-

ited strong performance in generalization to novel scenes.

However, the depth maps that are produced MegaDepth [19]

represent relative depths and are not view-consistent; hence,

we cannot derive accurate depth values in a physical dimen-

sion from them. Thus, they cannot be directly applied in

current IBR methods.

The proposed depth refinement algorithm can restore

missing depth information by combining the learning-based

monocular depth estimation and MVS methods. Similarly,

Fácil et al. [58] fused CNN-based single-view andmulti-view

depth to improve the depth of low-parallax image sequences.

Martins et al. [59] have demonstrated that the stereo depth

leads to higher performance with the monocular estimated

depth fusion.

III. OUR APPROACH

As illustrated in Fig. 1, our approach consists of two main

stages: per-view depth refinement and a superpixel-based

warping for view synthesis. In the following, we give

the detailed introduction of depth refinement and warping

method in Section III-A and Section III-B, respectively.

A. PER-VIEW DEPTH REFINEMENT

Our input is a set of photos that were captured from various

viewpoints of a scene. The view synthesis quality of IBR

methods is directly affected by the geometric accuracy and

completeness of the MVS reconstruction. However, in an

outdoor scene, there are many regions that are difficult to be

reconstructed, such as non-Lambertian surfaces of buildings,

trees, and sky, which poses a challenge for the available IBR

algorithms. To improve the 3D reconstruction performance

in the outdoor scenes, we propose the combined use of the

monocular depth to repair themissing areas of theMVS depth

maps. In addition, we incorporate the semantic segmentation

results to specify the sky regions.

MVS Depth Preprocessing: First, We register the cam-

eras and obtain a dense MVS depth map for each view

using COLMAP, which is a general-purpose SFM and MVS

pipeline. Although the geometric depth maps fromCOLMAP

are highly accurate in most areas, there remain some scattered

false depth samples on special objects (see Fig. 2b). For

example, some wrong depth points appear in the sky and lush

vegetation that should not exist. To filter out these outliers,

we apply a combination of pruningmedian filters, whichwere

proven to be effective in [5]. A pixel should be pruned if its

depth in the median filtered depth map differs sufficiently

from that in the original depthmap (not within a factor of [0.9,

1.11]). First, we use a small (5×5) median filter to prune the

sparse noise. Then, we use a larger (31×31)median filter [60]

weighted by a color term (σc = 0.033). These pruned MVS

depth maps will be used for subsequent processing steps.

Monocular Depth Remapping:We utilize a learning-based

method [19] to generate monocular depth maps that ensures

the geometric completeness. The monocular depth maps that

are estimated by MegaDepth [19] perform well in difficult

reconstruction regions by exploring context semantic infor-

mation. However, the monocular depths are on a different

scale with the MVS depths. The MVS depth Dmvs(x) is a real

value that measures the distance of the 3D point to the focal
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FIGURE 2. Comparison of depth map without and with pruning median
filters. (a) Input color image. (b) Original geometric depth map by
COLMAP. The close-ups show the wrong depth samples in sky and lush
vegetation. (c) Pruned geometric depth map.

plane, and the monocular depth G(x) is an unsigned integer

value (0, 1, . . . , 65535) that decreases as the distance from

the camera increases.

We design a per-view lookup table strategy for remapping

the monocular depth to the scale of the MVS depth for each

pixel. Since the monocular depth predicted by the neural net-

work is not cross-view-consistent, each pair of a monocular

depth map and an MVS depth map corresponds to a unique

lookup table. First, we traverse all the pixels of a monocular

depth map to determine the corresponding valid MVS depth

values at the same coordinates. Then, all MVS depth samples

are divided into 256 different levels Li=0,1...255 according to

the corresponding monocular depth values. The set of each

level is

Li = {x|Dmvs(x) > 0}, i = Z (
G(x)

256
), (1)

where function Z (·) means taking the integer part of a float

number. For each level, we choose the median as a represen-

tative MVS depth

d ′
i = median

x∈Li
(Dmvs(x)). (2)

Equation (2) defines a mapping between a level i and an

representative MVS depth d ′
i . To maintain sufficient preci-

sion, we expand this map into a lookup table that is applied

to determine the discrete monocular depth by conducting a

256-level linear interpolation between neighbor-level repre-

sentative depths:

dG(x) = (d ′
i+1 − d ′

i )(
G(x)

256
− i) + d ′

i . (3)

With the per-view lookup table, the monocular depth of pixel

x can be remapped to:

Dmono(x) = dG(x), G(x) ∈ {0, 1, . . . , 65535}. (4)

Fusion: For fusing the remapped monocular depth and

the pruned MVS depth, we propose an adaptive nonlocal

weighted fusion algorithm that is based on a minimum span-

ning tree (MST) which balances accuracy and completeness.

For small holes in the MVS depth map, our algorithm uses

the surrounding MVS depths to propagate a more accurate

depth. In contrast, for large holes in which an entire structure

is missing, we will more strongly consider the monocular

depth.

For clarity, we use � and 9 to denote the regions where

the MVS depth is missing and is available, respectively. The

overall depth fusion framework is:

Dfused (x) =

{

Dinp(x) , x ∈ �,

Dmvs(x), x ∈ 9,
(5)

where Dinp(x) is the inpainting depth, which is weighted by

the monocular depth and the propagating MVS depth. The

inpainting depthDinp(p) of pixel p ∈ � can be predicted from

the remapped monocular depth Dmono(p) of pixel p and the

MVS depth Dmvs(q) of all pixels q ∈ 9:

Dinp(p) = wpDmono(p) +
∑

q∈9

wqDmvs(q) (6)

where wp and wq are the normalized weights of the monocu-

lar depth and the MVS depth, respectively:

wp = 1 −
∑

q∈9

wq =
α

∑

q∈9 S(p,q) + α
, (7)

wq =
S(p,q)

∑

q∈9 S(p,q) + α
, (8)

in which α is a constant that is used to adjust the confidence

of the monocular depth, and S(p,q) denotes the similarity

between p and q. The similarity S(p,q) is expressed as

S(p,q) = S(q,p) = exp(−
Dis(p,q)

σ
), (9)

in an MST that is defined by [61], where σ is a constant

that is used to adjust the similarity between two nodes, and

Dis(p,q) = Dis(q,p) denotes the distance between p and q

in the MST.

In [61], all pixels of a color image constitute a connected

undirected graph. The edges of the graph are generated by

connecting a pixel with its four neighboring pixels. The

weight values of the edges are the color differences of the con-

nected pixels. Then, the MST can be established by removing

the edges with larger weights to minimize the sum of the

weights. Such an MST not only provides a natural pixel

similarity measure but also creates an unspecified nonlocal

window for cost aggregation. Let Cd (p) denote the matching

cost for pixel p at disparity level d , and let CA
d (p) denote

the aggregated cost. The aggregated cost can be computed

as follows:

CA
d (p) =

∑

q

S(p,q)Cd (q), (10)

where q denotes all other pixels in the MST/image except p.

The calculation of the aggregation cost of each pixel from

other pixels one by one is slow. However, the similarity

distance between two nodes in MST can be calculated cumu-

latively as MST is traced from the leaf nodes to the root node.
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FIGURE 3. (a) Input image. (b) Monocular depth map predicted by neural networks. (c) Semi-dense depth map estimated by MVS,
(d) Monocular depth map remapped to the scale of MVS depth. (e) Fused depth map by using MVS and monocular depth maps. (f) Final
refined depth map after filling up the sky depth.

Hence, the calculation of the aggregation cost CA
d (p) for each

node requires two addition/subtraction operations and three

multiplication operations in [61].

We will not repeat the details of the fast calculation of the

cost aggregation with the MST, but we will describe how to

quickly fuse the depth based on Equation (10). LetCd (q) = 1

and Cd (q) = 0 denote whether or not, respectively, there

is available MVS depth at pixel q. We can transform Equa-

tion (10) into the following:

J
A(p) =

∑

q∈9

S(p,q). (11)

Similarly, we can calculate the aggregated MVS depth at

pixel p:

DAmvs(p) =
∑

q∈9

S(p,q)Dmvs(q). (12)

By combining Equation (11) (12) and (6) (7) (8), we can

calculate the inpainting depth by:

Dinp(p) = wpDmono(p) +
∑

q∈9

wqDmvs(q)

=
α

J A(p) + α
Dmono(p) +

DAmvs(p)

J A(p) + α
. (13)

As demonstrated in [61], we can obtain the DAmvs(p) and

J A(p) of all pixels p ∈ � efficiently by two cumulative

calculations from the root node to the leaf node and then from

the leaf node to the root node. There are two constants in our

algorithm: σ = 0.06, α = 0.00001 in all our experiments,

and α can be increased if the monocular depth has higher

confidence.

Depth synthesis for sky. Photos that were captured outdoors

contain sky regions in most cases. The proposed lookup

table strategy cannot correctly convert the monocular depth

in the sky regions because no reasonable MVS depth sample

is available. We use the DeepLabv3+ [24] to identify the

sky regions 8, and we specify the depth of the sky to be

200 percent of the max MVS depth Dmax to obtain the final

fused depth map:

Dfinal(x) =

{

2Dmax , x ∈ 8,

Dfused (x), otherwise.
(14)

With the development of semantic segmentation models

based on deep learning, it is not difficult to identify the

rough sky area in the scene. However, the detailed con-

tours that are obtained via semantic segmentation are not

sufficiently good enough (see Fig. 4a); hence, foreground

objects may be incorrectly classified as sky regions. These

fake sky depth samples will produce artifacts at the edges

of the sky in the subsequent image warping (see Fig. 4d).

In superpixel segmentation, the superpixels around the edges

may contain both sky and foreground (see Fig. 5a). These

superpixels will be warped via the foreground’s depth when

sky depth is not synthesized, as shown in Fig. 4b. Once these

superpixels are filled with sky depth, they will be warped

as the sky. The foreground pixels they contained will be

assigned to unreasonable depth and cause visible foreground

artifacts.

Therefore, we can ‘‘protect’’ the foreground content by

reducing the area of the sky depth, and thus tolerate semantic

segmentation with less precise contour. Here we reduce the

area of the sky mask by applying a morphological erosion

operation with a diameter of approximately 3% of the image

diagonal (see Fig. 4e). The result in Fig. 4f demonstrates that

the erosion operation is beneficial for improving the image

quality at the occlusion edge. Fig. 3f shows a final refined

depth map.
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FIGURE 4. Semantic segmentation of the sky and comparison of results
using different sky masks. (a) Original semantic segmentation (sky,
vegetation, and others) by DeepLabv3+ [24]. (c) and (e) Depth synthesis
of sky on MVS depth map by original and eroded sky mask, respectively.
(b), (d), and (f) View synthesis results by MVS depth map, (c), and (e),
respectively.

B. WARPING AND RENDERING

Direct reprojection of texture pixels for a novel view will

result in disturbing artifacts. The state-of-the-art IBR algo-

rithms [8], [10] attempt to alleviate this problem by using

per-view geometric structures, which can realize satisfactory

visual quality. However, [10] requires full-resolutionmeshing

and computationally expensive rendering. Superpixel-based

warping [8] can yield plausible view synthesis results if the

superpixels contain sufficiently many reconstructed points.

Shape-preserving warp [2] is regarded as one of the high-

est quality superpixel-based methods and is applied to a

poorly reconstructed nonplanar structure in [8]. Therefore,

for complex outdoor scenes, we adopt a variational warping

technique that is similar to [2].

In contrast to the overlapping multiple mesh grids that

are used for each superpixel in [2], we calculate a circum-

scribed triangle T as the warping grid for each superpixel to

reduce the computational costs. For a superpixel Sk , the con-

straints are composed of two energy terms: the reprojection

energy at each pixel and the shape-preserving energy, namely,

the energy for preserving the shape of the superpixel dur-

ing the warp. In the warp of a source image I to a novel

view N , each superpixel satisfies these two energy terms

in a least-squares sense. For Sk , we denote the vertices of

its circumscribed triangle T by (v1, v2, v3) and each pixel

that belongs to superpixel Sk by x ∈ Sk . The barycentric

coefficients of pixel x in triangle T are (α, β, γ ):

x = αv1 + βv2 + γ v3. (15)

The circumscribed triangle will change after the warp of

each superpixel. We denote the new vertices of circumscribed

triangle T by (ṽ1, ṽ2, ṽ3). The reprojection energy at pixel x

is defined by:

Ep(x)=‖αṽ1+βṽ2+γ ṽ3−CN ◦(C−1
I ◦(x,D(x))T ‖

2
, (16)

where C−1
I is the back-projection operator of image I , CN is

the projection of novel view N , andD(x) is the depth value of

x. This energy termmeasures the distance between each pixel

position of the warped triangle T and the reprojected location

x̃. The shape-preserving energy of a superpixel is defined by:

a = (v3 − v1)
T (v2−v1)/‖(v2 − v1)‖,

b = (v3−v1)
T
R90(v2−v1)/‖(v2−v1)‖,

Es(T )= ‖ṽ3−(ṽ2+a(ṽ1−ṽ2))+bR90(ṽ1−ṽ2)‖
2, (17)

where R90 is a counterclockwise 90◦ rotation. For each

circumscribed triangle with vertices (v1, v2, v3), this energy

term measures its shape distortion after the warp. The overall

warp energy function for each superpixel Sk is as follows:

E(Sk ) = Es(T ) +
∑

x∈Sk

Ep(x). (18)

We minimize E(Sk ) for each superpixel to solve the warped

optimization problem. The unknown values at the energy

minimum are three new vertices (ṽ1, ṽ2, ṽ3) of the triangle.

We use a 6 × 1 vector instead of the x- and y-coordinates of

three unknown vertices to constructE(Sk ) into a sparsematrix

system, and we solve the vector value at the minimum of the

system. Then, we use the triangle interpolation to obtain the

texture of each warped superpixel in the novel view.

Our rendering consists of three steps: first, we select and

warp the four nearest input images close to the novel camera

position. Next, we reproject the median depth (see Fig. 5b) of

a superpixel into the novel view for the depth test to remove

superpixels behind the camera. The warped superpixels of

each image are separately rendered via the depth test. Finally,

we blend the warped superpixel images to synthesize the

novel view by selecting the color values of the pixels with

the highest weights (see Fig. 6). The blending weights are

computed from the angle penalty in [32] at each pixel.

FIGURE 5. (a) Superpixel oversegmentation. (b) The median depth of
each superpixel.

IV. RESULTS AND COMPARISONS

In this section, we evaluate our method on a wide vari-

ety of datasets, which include eight public datasets and
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FIGURE 6. Warped images and the final view synthesis result.
(a) (b) (c) (d) are four warped images from the neighboring cameras.
(e) Synthesized result.

three datasets captured by ourselves. Aquarium-20, Hugo-1,

Tree-18, Museum-1, Museum-2, Street-10, Poche and Bridge

are obtained from previous studies [2], [10], [32]. Each con-

tains 13-106 photos of an urban scene that were captured by

DSLR cameras. The GTAV is a synthetic dataset from [17],

which consists of 120 image sequences of urban streetscape

with rendered ground-truth depth information.Campus,Xumi

and Guya were captured by us in large-scale outdoor scenes.

We captured several high-resolution videos using a consumer

drone (DJI MAVIC Pro) for each scene. Then, 20-30 images

were subsampled from each video stream. Campus contains

lush foreground vegetation, reflective surfaces, and distant

buildings, and Guya and Xumi contain large nature scenes

with grottoes and hills.

A. EVALUATION OF THE DEPTH REFINEMENT RESULTS

First, we present qualitative results of our depth refinement

on various outdoor datasets. As shown in Fig. 7, the missing

regions of the original depth maps are well repaired by our

refinement algorithm. The depth maps from the MVS recon-

struction present various missing depths in these datasets.

In Guya and Tree-18, the original depth information is com-

paratively complete. In Xumi and Museum-1, the depth-

missing regions are located mainly at the occlusion edges.

The depth information of the lush vegetation near the camera

is almost completely absent in Museum-1 and Campus. The

monocular depth maps that were estimated by [19] have

complete and reasonable outlines. However, we can identify

errors in the monocular depth maps (color images) that were

converted by the lookup table. For example, the monocular

FIGURE 7. Depth maps from five datasets. From top to bottom: input images, the original depth maps by COLMAP, monocular depth maps
estimated by MegaDepth [19], monocular depth maps remapped with the lookup table and our final refined depth map with the sky
segmentation.
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TABLE 1. Errors of remapped monocular depth by different methods on
various datasets.

depth is sometimes incorrect (foreground objects inGuya and

Tree-18) or even absent (distant buildings in Campus ). The

final depth maps that were refined by our algorithm generate

promising results and perform well on various datasets.

The core component of our monocular depth remapping

algorithm is a hierarchical lookup table. A numerical com-

parison of three remapping methods is presented in Table 1.

Monocular depth estimation methods [18]–[21] computed

the median ratio between the predicted monocular depth and

the ground-truth depth as a scale factor in each view for

evaluation. Similarly, the monocular depth can be remapped

to the scale of the MVS depth by using a median factor.

We also present the remapped results that are obtained by

using a L2 fitted linear function in the second column.

In the first eight rows of Table 1, we use three methods

to remap the monocular depth map to the scale of MVS

depth and compute the error of remapped monocular depth

relative to the available MVS depth points. In the last two

rows of Table 1, we use the MVS depth (GTAV_MVS) and

the ground-truth depth (GTAV_GT) as the references for

remapping, respectively, and then compute the error between

the remapped monocular depth and the ground-truth depth.

Our method outperformed the other approaches. Linear func-

tions are sensitive to large outlier noise, especially in outdoor

datasets with large depth ranges. The median factor will

tend to be larger (smaller) if more foreground (background)

information is missing from the MVS depth map. Our lookup

table associates two types of depth samples by pixel location

and remaps the monocular depth via multiple layers to reduce

the impact of the missing MVS depth.

Finally, we qualitatively (Fig. 8 and Fig. 9) and quantita-

tively (Table 2) demonstrate that our depth fusion algorithm

outperforms the inpainting methods [12], [13], [62].

For fairness, we report the results of DepthComp that

were obtained using the more advanced DeepLabv3+ [24]

as a segmentation component instead of SegNet [54]. The

DeepLabv3+ network is pretrained on the Cityscapes [63]

dataset. FMM [62] is a gradient-propagation-based algorithm

that has been applied to color image inpainting successfully,

which repairs erroneous pixels by weighting the available

values in their neighborhoods. We use this method as a base-

line method for depth inpainting. Ablation experiments are

FIGURE 8. Depth map completion results on the Museum-1 dataset.
(a) Input image. (b) Original MVS depth map by COLMAP [23]. (c) and
(d) Our depth refinement result without monocular depth (α = 0.0) and
with monocular depth (α = 0.00001). (e), (f), (g), and (h) Depth inpainting
result by FMM [62], McBR [12], DepthComp [13] + SegNet [54], and
DepthComp [13] + DeepLabv3+ [24].

FIGURE 9. Depth map completion results on the GTAV dataset. (a) Input
image. (b) Original MVS depth map by COLMAP [23]. (c), (d), (e), and
(f) Depth inpainting result by FMM [62], McBR [12], DepthComp [13] +

SegNet [54], and DepthComp [13] + DeepLabv3+ [24]. (g) and (h) Our
depth refinement result without monocular depth (α = 0.0) and with
monocular depth (α = 0.00001). (i) Ground truth.

conducted by removing the monocular depth map (α = 0.0)

from our fusion algorithm.

As shown in Fig. 8, our depth refinement method with

monocular depth produced complete and reliable depth

information in the left shrub, where the MVS depth is almost

completely missing. The other methods and our method with-

out monocular depth propagated the incorrect depth informa-

tion in that region. Fig. 9 shows the depth completion results

of various methods on the GTAV dataset. We removed the

depth of the sky based on the ground truth to better visualize

the depth map. Most methods perform well on the small

holes in the original COLMAP depth map. However, only we

produce reasonable depth information in large missing areas.

Table 2 presents the numerical results. We use RMSE and

MAE to measure the accuracy of the depth map, and PBRE

to measure the completeness of the depth inpainting.

B. COMPARISONS OF THE VIEW SYNTHESIS RESULTS

First, we show how our depth refinement improves the

view synthesis results. In Fig. 10, we visually compared
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FIGURE 10. View synthesis results by using different depth maps in Campus, Guya, Aquarium-20, Museum-1, and Xumi. (a) Results by using
final refined depth maps. (b) From top to bottom: cropped images of synthesized views based on depth maps generated by ours, remapped
monocular depth, and original COLMAP depth, respectively.

FIGURE 11. Rephotography comparison, how well different depth maps can reconstruct held-out input images. (a) The cumulative distribution of
SAD errors by using original COLMAP depth, COLMAP depth with inpainting, remapped monocular depth, and ours on Campus dataset. The x-axis
is the percentage of pixels with an error smaller than a threshold (y-axis). (b) We compare the error curves of (a) at the high error parts
(99%-100%). (c) The area under the rephotography SAD error curves (0%-100%) on eight datasets (Aquarium-20, Hugo-1, Tree-18, Museum-1,
Museum-2, Campus, Guya, and Xumi).

the view synthesis results that were obtained using three

depth maps and our superpixel-based warping method. Due

to the difficulty of MVS reconstruction, there are visi-

ble holes in the vegetation and sky (red cropped regions)

of the synthesized view using original COLMAP depth.

The results that were obtained using the remapped monoc-

ular depth perform well in difficult reconstruction areas

but cause distortion artifacts (green cropped regions). Our

approach effectively combines the advantages of both depth

maps. The results that were obtained using our final

refined depth not only fill the holes but also reduce the

artifacts.

We further conduct a quantitative comparison using Virtual

Rephotography [64]. The rephotography SAD error has been

adopted in recent end-to-end IBR methods [5], [10] for quan-

titative evaluation.We calculate the rephotography SAD error

from the ‘‘shiftable L1 error’’ [10], which is the minimum L1
distance that is obtained comparing a 7×7 color patch around

each ground-truth image pixel with the same-sized output

patches of the synthetic view. The output patch is allowed to

shift up to ±2 pixels in the x- and/or y-direction around the

source pixel.

A rephotography evaluation is obtained by using our,

COLMAP and monocular depth maps in Fig. 11a.
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TABLE 2. Results of depth inpainting by different methods on GTAV
dataset.

TABLE 3. The sum of the area under rephotography error curves (AUC)
over eight datasets by different window sizes and shiftable lengths.

The performance of using COLMAP depth maps is the worst,

which resulted in large holes due to incomplete depth maps.

For fairness, we fill these holes on synthesized views by an

image inpainting [62], named COLMAP_Inpainting, which

performs well for areas with a homogeneous color like the

sky. In this way, the curves of COLMAP_Inpainting and

ours look almost coincident. However, the artifacts by human

perception mainly occur in the high error parts. We plot the

high error parts (the percentage of 99-100) of three curves

in Fig. 11b. The result using our depth maps is significantly

better than the other two methods. Fig. 11c presents the

area under rephotography error curves (AUC) (the percentage

of 0-100) of three methods on eight datasets: Aquarium-20,

Hugo-1, Tree-18, Museum-1, Museum-2, Campus, Guya and

Xumi.

In order to verify the performance by different patch sizes

or shiftable lengths, we calculated the sum of AUC values

over eight datasets in Table 3. We selected 5, 7, 15 patch sizes

and 2, 1, 0 shiftable lengths on images with a resolution of

960× 640 or 960× 540. It can be seen that results using our

depth maps get smaller error values than the other two.

Then, we present a quantitative comparison with other

depth refinement methods focusing on IBR. Depth Syn-

thesis (DS) [2] interpolated depth samples at the miss-

ing of PMVS [48] reconstruction based on superpixels’

similarity. DeepBlending [10] combined the depths of two

MVS reconstruction: COLMAP [23] and RealityCapture

[65], but its refined depth maps are still missing where

both MVS fail. Since DeepBlending [10] incorporates dif-

ferent MVS methods to improve the completeness of depth

maps while ensuring accuracy, we can regard the Deep-

Blending depth as a better MVS source. We applied the DS

algorithm and our depth refinement on three MVS sources

and then evaluated them via the Virtual Rephotography,

as shown in Table 4. For faithful comparison, we use the same

superpixel-based warping method for all results.

Since the quantitative comparison of view synthesis

requires unified camera parameters, we extract them from

the COLMAP sparse reconstruction of all datasets provided

by DeepBlending [10]. In addition, COLMAP depth maps

and DeepBlending depth maps also come from the datasets

provided by DeepBlending [10]. We import the sparse recon-

struction and input images into PMVS program to generate

a dense point cloud and project it into each input view to

generate the PMVS depth maps.

As shown in Table 4, compared to DS [2], using our depth

refinement algorithm can obtain better view synthesis results

on various MVS sources. The results of using our scheme

(COLMAP+Ours) are not much different from that of using

DeepBlending depth refinement method on most datasets,

even better on Museum-2. More importantly, our algorithm

can still improve the DeepBlending refined depth further

while DS can’t. It should be noted that the completeness and

accuracy of depth map both contribute to the quality of view

synthesis results. Both ours andDS improve the completeness

of depth maps by synthesizing plausible depth in missing

areas. However, incorrect synthesized depth will introduce

noise, which sometimes makes the results worse, such as

DeepBlending+DS.

In Fig 12, we show the view synthesis results of using four

depth maps on Museum-1. The result of DeepBlending pro-

duces a white blur at the window (top of the green cropping)

due to lack of depth. While the results of COLMAP+Ours

and PMVS+DS have a reasonable texture, there are some

breakages at the balusters (green croppings). In the area

around the pillar (red croppings), the ranking of view qual-

ity from good to bad is DeepBlending+Ours, DeepBlend-

ing, COLMAP+Ours, PMVS+DS. In the blue croppings,

the result of PMVS + DS is the worst, while the other

three are almost the same. The proposed refinement scheme

(COLMAP+Ours) achieves significantly better results than

Chaurasia et al. [2] (PMVS+DS), and our results are similar

to DeepBlending [10]. It worths noting that we can further

apply our refinement algorithm on depth maps outputted by

DeepBlending, giving rise to the best results.

In addition, one advantage of our algorithm is speed. Deep-

Blending optimizes per-pixel depth by minimizing the global

photoconsistency cost. It takes 45 minutes for DeepBlending

to perform depth refinement on Creepy Attic (249 images at

1228 × 816), while our algorithm only takes 2.8 minutes.

DS takes 1.8 minutes on the same inputs.
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TABLE 4. The AUC scores of rephotography by using different MVS depth sources and refinements.

FIGURE 12. View synthesis results by using different MVS sources and depth refinements on Museum-1. All results are obtained by
using our warping and rendering components. (a) and (b) Full novel view and cropped images from our solution (COLMAP+Ours).
(c),(d), and (e) The cropped images using depth maps from DeepBlending [10], DeepBlending [10] with Our refinement
(DeepBlending+Ours) and Chaurasia et al. [2] (PMVS+DS), respectively.

FIGURE 13. Comparison of view synthesis on three urban datasets. (a) and (b) Full novel views and cropped images from our solution. (c), (d), and
(e) The cropped images of Selective-IBR [8] based on superpixels warp, ULR [7] improved by soft visibility [29], and DeepBlending [10], respectively.
The cropped images of other methods come from the supplemental material of paper [10].

Finally, we show the view synthesis results from three

urban datasets by our complete IBR pipeline and three com-

peting approaches [7], [8], [10] in Fig. 13. These approaches

have already shown their superiority compared with the

unstructured lumigraph rendering [7], manually defined sil-

houettes warp [32] and global textured mesh [65]. Compared
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to Selective-IBR [8], which is also based on superpixels warp,

the results of our method avoid blurring in trees (Tree-18)

and reduce foreground warp artifacts (Aquarium-20). There

are some aliasing artifacts on our cropped image from the

Tree-18, which may be caused by using a large superpixel

size in our warping.

V. CONCLUSIONS

We present a complete IBR method that effectively uses

output of neural networks to refine the MVS depth. Better

scene geometry is obtained by combining the monocular and

multi-view stereo depth. Semantic segmentation is applied

to identify the sky region, avoiding manual corrections [32].

Compared to propagating depth from the boundary purely,

our synthesized depth is more reasonable for large holes

and avoids excessive smoothness. It is demonstrated that our

refined depthmap is capable of improving the reconstructions

of a variety of challenging outdoor datasets and achieves view

synthesis as good as the competing methods.

A primary limitation of our algorithm is that the pre-trained

monocular estimation and semantic segmentation network

models may not generalize well on unfamiliar scene content

and reduce the accuracy of fused depth. Currently we use

the depth estimation network of MegaDepth [19] and seman-

tic segmentation network of DeepLabv3+ [24]. The perfor-

mance of the proposed depth refinement and view synthesis

method may be improved as more advanced networks are

integrated. Another limitation is the temporal flicker when

rendering novel viewpoints continuously due to the per-view

shape-preserving warping. We show this defect in the supple-

mentary video. This could be addressed by exploring a tem-

poral weighted blending strategy such as DeepBlending [10].
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