
Vis Comput (2011) 27: 347–363

DOI 10.1007/s00371-010-0541-z

O R I G I NA L A RT I C L E

Image-based rendering of intersecting surfaces for dynamic

comparative visualization

Stef Busking · Charl P. Botha · Luca Ferrarini ·

Julien Milles · Frits H. Post

Published online: 9 December 2010

© Springer-Verlag 2010

Abstract Nested or intersecting surfaces are proven tech-

niques for visualizing shape differences between static 3D

objects (Weigle and Taylor II, IEEE Visualization, Proceed-

ings, pp. 503–510, 2005). In this paper we present an image-

based formulation for these techniques that extends their use

to dynamic scenarios, in which surfaces can be manipulated

or even deformed interactively. The formulation is based on

our new layered rendering pipeline, a generic image-based

approach for rendering nested surfaces based on depth peel-

ing and deferred shading.

We use layered rendering to enhance the intersecting sur-

faces visualization. In addition to enabling interactive per-

formance, our enhancements address several limitations of

the original technique. Contours remove ambiguity regard-

Electronic supplementary material The online version of this article

(doi:10.1007/s00371-010-0541-z) contains supplementary material,

which is available to authorized users.

S. Busking (�) · C.P. Botha · F.H. Post

Data Visualization Group, Delft University of Technology, Delft,

the Netherlands

e-mail: s.busking@tudelft.nl

C.P. Botha

e-mail: c.p.botha@tudelft.nl

F.H. Post

e-mail: f.h.post@tudelft.nl

C.P. Botha · L. Ferrarini · J. Milles

Division of Image Processing (LKEB), Department of Radiology,

Leiden University Medical Center, Leiden, the Netherlands

C.P. Botha

e-mail: c.p.botha@lumc.nl

L. Ferrarini

e-mail: l.ferrarini@lumc.nl

J. Milles

e-mail: j.r.milles@lumc.nl

ing the shape of intersections. Local distances between the

surfaces can be visualized at any point using either depth

fogging or distance fields: Depth fogging is used as a cue

for the distance between two surfaces in the viewing direc-

tion, whereas closest-point distance measures are visualized

interactively by evaluating one surface’s distance field on the

other surface. Furthermore, we use these measures to define

a three-way surface segmentation, which visualizes regions

of growth, shrinkage, and no change of a test surface com-

pared with a reference surface.

Finally, we demonstrate an application of our technique

in the visualization of statistical shape models. We evaluate

our technique based on feedback provided by medical image

analysis researchers, who are experts in working with such

models.

Keywords Comparative visualization · Image-based

rendering · Surface comparison · Nested surfaces

1 Introduction

In this paper, we examine one class of solutions to the prob-

lem of comparing the shapes of 3D surfaces. Comparison

of data plays an important role in many areas of scientific

research. Visualization can be useful to support compara-

tive data analysis. The most common approach to compar-

ative visualization of surfaces is a simple side-by-side dis-

play (with similar viewing conditions) of the two surfaces

under consideration. Such an approach relies on memory to

compare details of the surfaces, and local distances between

surfaces are hard to estimate. We identify the following re-

quirements for an effective comparative visualization:

– Differences should be made explicit, alerting the user to

the presence and nature of all differences present.

http://dx.doi.org/10.1007/s00371-010-0541-z
mailto:s.busking@tudelft.nl
mailto:c.p.botha@tudelft.nl
mailto:f.h.post@tudelft.nl
mailto:c.p.botha@lumc.nl
mailto:l.ferrarini@lumc.nl
mailto:j.r.milles@lumc.nl


348 S. Busking et al.

– Visualization of differences should be local, showing not

only the presence but also the precise location and ex-

tent of all differences. In medical applications, for in-

stance, local information is required for understanding

differences between patients or studying changes in spe-

cific biological structures over time.

– The visualization should be able to show relevant differ-

ences and hide irrelevant ones.

As an example of what is meant by relevance, consider

the alignment of surfaces prior to comparison. Inaccuracies

in the registration process can result in misalignment of the

resulting surfaces. This misalignment, however, is usually

not relevant to the researcher’s problem. An ideal visualiza-

tion could automatically distinguish between relevant and ir-

relevant differences, and show only the former. However, the

notion of relevance is a highly application-dependent prop-

erty, which can generally only be decided by the researcher.

The use of user-feedback and interactivity is therefore essen-

tial to deal with this issue. Various applications can benefit

from interactive visualization:

– User interaction or guidance in the registration process.

– Local registration for exploring differences between spe-

cific parts of the objects under consideration, ignoring

more global differences.

– Analysis and comparison of dynamic or deformable sur-

faces.

In this paper we present a visualization for the com-

parison of 3D surfaces. Our visualization is based on the

proven intersecting surfaces technique, first introduced and

evaluated by Weigle et al. [1]. Our contribution consists of

three aspects: We present an alternative, image-based im-

plementation of this technique, which enables interactive

performance even when manipulating alignment or dealing

with dynamic objects. Furthermore, we present enhance-

ments designed to address specific limitations of the ex-

isting technique. Finally, we present a case study, evalu-

ating the suitability of intersecting surfaces and our en-

hancements for the visualization of statistical shape mod-

els [2].

Figure 1 shows the comparison of two segmentations of

the same brain ventricle MRI scan using our technique. Such

a visualization may give important information on the char-

acteristics of a new segmentation algorithm. The yellow sur-

face represents the baseline segmentation, while the blue

surface shows a different segmentation. This means blue ar-

eas and yellow glyphs represent areas not covered by the

new segmentation, while yellow areas and blue glyphs rep-

resent areas covered by this segmentation which are not in

the baseline segmentation. Differences are remarkably sym-

metric in overall shape, but the lack of coloring due to fog

indicates distances are small and contain little local varia-

tion. This may indicate these could be due to variations in

Fig. 1 Comparative visualizations of two partial brain ventricle sur-

faces segmented from MRI data. The top figures show the separate

surfaces, illustrating the difficulty to locate differences without an in-

tersecting surfaces approach. The basic intersecting surfaces visualiza-

tion [1] (bottom left) clearly shows some symmetry in the differences.

Our visualization adds intersection contours and thresholding to sup-

press smaller differences. The resulting 3-way visualization (bottom

right) reveals an area of considerable change

the segmentation process. In Fig. 1(d) we applied a thresh-

old at a distance of 1 mm, which reveals an area of con-

siderable difference in the shape of the segmented ventri-

cles.

Our implementation of the techniques described in this

paper is available as part of the open-source NQVTK library

(http://nqvtk.googlecode.com/).

2 Related work

In this section we first define the position of our technique

in the comparative visualization process. We use this as a

framework to present and discuss work related to our tech-

nique, including the intersecting surfaces visualizations by

Weigle et al., on which our approach is based. As a mean-

ingful discussion of work related to our implementation of

these techniques depends on the details thereof, such work

is discussed in Sect. 4.1.

http://nqvtk.googlecode.com/


Image-based rendering of intersecting surfaces for dynamic comparative visualization 349

2.1 Domain matching and comparison

Comparison can occur at any stage of the standard visual-

ization pipeline [3]. However, the process always requires

data sets to be aligned before differences can be determined

and/or visualized. Many solutions exist for this domain

matching step, the details of which are mostly application-

dependent. In part this is because the processes of align-

ing data and extracting differences cannot always be cleanly

separated. For instance, a body of work exists which applies

non-rigid registration to volume data [4, 5] or to features

extracted from it [6]. The deformation field resulting from

this process is then analyzed to determine differences. This

deformation field will typically also contain irrelevant dif-

ferences due to imperfect alignment, such as tissue defor-

mations caused by patient movement rather than by patho-

logical processes.

Our technique can be applied after domain matching in

order to directly visualize the remaining differences between

two surfaces. This enables such differences to be studied in

detail, but also gives insight into the quality of the matching

itself. We aim to be independent of the choice of domain-

matching technique. We only assume that a good (possibly

application-specific) solution for this stage is available: i.e.,

one that does not remove any of the relevant differences and

preferably leaves a minimum of irrelevant differences. As

perfect matching (i.e., separation of relevant and irrelevant

differences) is often impossible, our technique should pro-

vide enough information to assess the relevance of the dif-

ferences.

As stated in Sect. 1, our visualization of such differences

should be explicit and local. This means a suitable technique

should determine and extract localized differences after the

matching step rather than simply visualizing the aligned data

sets. These differences should then be mapped to clear ele-

ments in the resulting visualization. Many existing compar-

ison techniques are implicit in that they skip this extraction

step, which means the act of comparison is left to the user.

2.2 Comparative visualization of 3D surfaces

Numerous measures have been proposed that can be used to

express the difference (or similarity) in shape between two

surfaces; most notably in the area of image retrieval [7–9]

and shape retrieval [10, 11]. However, most of these mea-

sures, such as the commonly used Hausdorff distance, only

express similarity at a global level.

The local visualization of differences can yield important

insights which might not be obvious from global measure-

ments. However, only a few techniques have been presented

for comparing shape locally [12, 13]. Local distance mea-

sures often require establishing some form of correspon-

dence between the surfaces (i.e., domain matching). A com-

monly used method for visualizing local distance measures

is to display these on one of the two surfaces using an appro-

priate color map [12, 14, 15]. This has the disadvantage that

only one of the surfaces is shown; the shape of the second

surface is not obvious.

A way to overcome this is to make one or both surfaces

transparent and overlay them in the visualization. Such a

nested surfaces approach (used by, e.g., Tory et al. [16])

shows all context information. Similar approaches have been

proposed in uncertainty visualization (see, e.g., Johnson and

Sanderson [17]). However, in these visualizations the iden-

tification of differences is left to the user. This is compli-

cated by the fact that overlaying multiple transparent and

potentially intersecting surfaces results in an image which is

not always clear to a user. In particular, understanding the

shapes of transparent surfaces and classifying surfaces as

being either in front or behind other surfaces can be diffi-

cult perceptual tasks.

Attempts have been made to resolve these issues. Tex-

tures are commonly applied to improve shape perception of

transparent surfaces [18]. Interrante et al. [19] proposed us-

ing stroke textures based on the directions of principal cur-

vatures. Bair and House [20] investigated the use of several

types of grid textures, and performed user studies on their

effects on perception of surface shape. Bruckner et al. [21,

22] approached similar problems in volume rendering us-

ing illustrative techniques. They proposed using interactive

control over a special opacity function that allows a user to

focus on specific objects within a volume while also keeping

contextual surfaces in view.

Weigle et al. [1, 23] proposed the use of constructive

solid geometry (CSG) operations to solve the perceptual

problem of inside/outside classification. Their intersecting

surfaces technique, described in detail in the next section,

forms the basis for the visualization presented in this paper.

User studies performed by Weigle et al. have shown these

visualizations to be effective for the comparison and under-

standing of surface shapes.

2.3 Base visualization

Because of its proven effectiveness, we use the intersecting

surfaces technique by Weigle et al. as the basis for our vi-

sualization. The technique uses CSG operations to extract

differences between two surfaces: The intersection of the

closed objects formed by the surfaces represents the vol-

ume in common between both objects, and is rendered as

an opaque object. The remaining parts of the two surfaces

represent differences, and are rendered transparently in or-

der to show the intersection behind them. This solves the

inside/outside classification problem, as parts of each sur-

face inside the other are always opaque and outside parts are

always transparent.

As suggested by Interrante [19], Weigle’s visualization

includes curvature-aligned glyphs on the transparent parts



350 S. Busking et al.

of the surfaces to better illustrate surface shape. In order to

visualize local distances between the two surfaces, Weigle’s

method relies on shadows cast by these glyphs. As an al-

ternative to shadows, point-correspondence glyphs can be

used [23]. These are line segments which connect corre-

sponding points on the two objects that are being compared.

In their extensive user studies, Weigle et al. compared

their visualization to a number of previously existing tech-

niques [1, 23]. The studies show that the intersecting sur-

face visualizations, both with shadows and with point-

correspondence glyphs, are more effective than the exist-

ing techniques. The contribution of this paper includes im-

provements which address specific limitations of Weigle’s

technique.

3 Enhanced intersecting surfaces

In this section we present our enhanced visualization for

the comparison of 3D surfaces. We first identify and dis-

cuss limitations of the existing technique, and use these to

introduce and motivate our enhancements: an image-based

implementation for increased flexibility and interactive per-

formance, dynamic intersection contours, integration of dis-

tance cues and suppression of irrelevant differences.

3.1 Limitations of the original visualization

In their work, Weigle et al. identified a number of shortcom-

ings of their intersecting surfaces implementation. We sum-

marize these issues below, and add two more issues (5 and 6)

found when applying our requirements, described in Sect. 1:

1. Folded surfaces and other forms of self-occlusion can

hide differences. Weigle proposed interactive control of

the camera as a possible solution, which is also possi-

ble in our technique. However, similar issues occur when

glyphs are placed near intersections, which may cause

confusion regarding the shape of those intersections (see

Fig. 2).

2. Due to their fixed spacing, surface glyphs can only illus-

trate shape at a fixed scale. Because of this, small-scale

details can be missed. Weigle proposed making glyph

spacing adaptive to local shape characteristics. How-

ever, we found that the sparse nature of the glyphs also

means that the distance between surfaces can only be

estimated around glyph/shadow pairs, or around point-

correspondence glyphs.

3. The visualizations are not useful when objects are too dif-

ferent, or are not aligned properly during domain match-

ing. In this case, Weigle recommends that explicit corre-

spondence information be included in the visualization.

4. The approach is not easily extended to more than two

surfaces.

Fig. 2 Without contours, intersections between the blue surface and

the yellow surface are not always obvious. Marking all intersections

differentiates them from occlusions and highlights smaller features,

which might otherwise be hidden. The small triangular artifacts are

side-effects of our shadow mapping implementation and not a result of

our technique

5. In the base visualization, differences are shown regard-

less of their relevance, with no way to distinguish be-

tween relevant and irrelevant differences.

6. Importantly, Weigle et al. did not apply their techniques

to the comparison of dynamic surfaces and the origi-

nal implementation therefore does not support scenarios

where the objects are not static in shape or in their rela-

tive positions and orientations.

3.2 Enhancements

While simultaneous comparison of more than two surfaces

is considered outside the scope of this paper, we present en-

hancements to the base visualization that address each of

the remaining issues in the list above. The following sec-

tions discuss the motivation for and design of these enhance-

ments. The details of their implementation can be found in

Sect. 4.

3.2.1 Image-based implementation

In this paper, we present an image-based implementation of

the intersecting surfaces visualization. Our implementation

provides interactive control of the viewpoint, suggested by

Weigle as a possible solution to the first issue. It also enables

the visualization to be applied to dynamically deforming



Image-based rendering of intersecting surfaces for dynamic comparative visualization 351

objects with interactive performance (issue 6), as the inter-

section is not computed geometrically. This in turn enables

new applications for the visualizations. For instance, occlu-

sion issues could also be solved by a dynamic peel-away

approach. Additionally, our technique could enable interac-

tive domain-matching tools, or interactive local alignment

of corresponding features. Such tools could help in deal-

ing with objects with significant global differences but local

similarities, such as described in issue 3. While we consider

such solutions in future work and do not discuss them further

in this paper, we do present an example of dynamic objects

in our case study (Sect. 5).

In Sect. 4.1 we present a generic rendering pipeline

on which we base our image-based implementation. This

pipeline enables combinations of CSG rendering and trans-

parent surfaces in a straightforward and extensible way,

which can also be useful in other visualization scenarios.

3.2.2 Intersection contours

As described in issue 1 and shown in Fig. 2, the complex ap-

pearance of the intersecting surfaces can sometimes cause

confusion. Specifically, occlusions might be interpreted as

intersections and vice versa (Fig. 2(a)). Glyph placement

can also cause confusion when this occurs on the intersec-

tion curve, potentially distorting the shape of intersections or

hiding them completely (Fig. 2(b)). If the intersections be-

tween the surfaces are complex, the visualization becomes

more cluttered. In this case, such issues are likely to become

problematic, as small but possibly relevant differences may

be missed.

Explicitly marking the intersection curves in the visual-

ization removes any ambiguity in these cases. Contouring is

a commonly used technique in illustrative rendering. Lines

can be drawn to emphasize important boundaries in a visu-

alization. While it may seem more natural to enhance oc-

clusions rather than intersections, such contours are view-

dependent and can therefore make the visualizations harder

to perceive. Furthermore, in our case the intersections be-

tween objects are actual features of interest, and contour-

ing them serves the dual purpose of highlighting these fea-

tures. Similarly, changing the color of the outer surface (and

glyphs) would solve problems as shown in Fig. 2(b). How-

ever, as color is used to identify surfaces, such a change

would complicate the visualization. Contours provide a so-

lution that works independently of the choice of surface col-

oring and texturing. The intersection curves of the surfaces

provide clear contours for the “difference” areas in the visu-

alization. They also enable clear distinction between inter-

section and occlusion.

3.2.3 Local distance cues

In addition to the well-known difficulties of illustrating the

shape of transparent surfaces, the second issue is caused by

Fig. 3 The choice of viewing direction and placement of glyphs may

hide important information about the size and shape of differences.

By including local distance feedback in the visualization (here using

red fog added between the surfaces), larger differences are made more

obvious. The bottom figure shows a simplified schematic cross section,

where adding fog would highlight the larger distance on the left

local distance information being visualized only sparsely in

the original intersecting surfaces technique. Such informa-

tion is important for understanding the shape and size of

differences, and can also help in understanding the shape

of the objects themselves.

In Weigle’s technique, the user has to rely on shadows

cast by glyphs in order to judge local distances between

the surfaces. However, on many complex surfaces it may

not be straightforward to match up glyphs with their shad-

ows. It may also be the case that there simply is no glyph

present in an area of interest. One example of problem-

atic shape is shown in Fig. 3. In this case, areas with in-

creased depth (a simplified example is shown in the cross

section, Fig. 3(c)) are not immediately obvious in the visu-

alization (Fig. 3(a)). When using glyphs, a smart placement

of these glyphs (and their shadows) might solve such prob-

lems. However, this could lead to an uneven distribution of

glyphs over the surface, which causes other perceptual is-

sues.

We integrate two forms of local distance cues to alert

the user to these areas in an intuitive way. Specifically, we

simulate fogging between the inner and outer surfaces as

a viewpoint-dependent distance cue and integrate closest-

point distance for viewpoint-independent feedback. These

enhancements also provide a way to visualize the shape of

the surfaces at any scale, albeit relative to each other.

In fogging, we add a third color between surfaces, the

amount of which is computed in terms of the distance be-



352 S. Busking et al.

Fig. 4 Distance fields can be used to color each surface by its distance

to the other, even when surfaces are moved relative to each other

tween these objects along the viewing direction and a user-

controllable density parameter. The effect is that the areas

of difference between the objects are highlighted more for

larger distances. As can be seen in Fig. 3(b), differences

in depth between surfaces can be seen clearly after fog is

added. Interactive manipulation of fog density can help a

user compare relative depths of these differences. This in-

teractivity also eliminates the problem that fog obscures the

shape of the inner surface, as the fog can simply be removed

or made less dense in order to examine surface shape after

differences have been identified.

As fogging is view-dependent, results may change when

the viewpoint is moved. We integrate closest-point distance

as a view-independent alternative (Fig. 4), and enable color-

ing of either surface based on this distance. Our implemen-

tation, described in Sect. 4.3.2, achieves interactive perfor-

mance even when objects are moved relative to each other,

meaning that this technique could also be used in an interac-

tive domain-matching solution such as described earlier.

3.2.4 Relevance filtering

Issue 5 originates directly from our requirements. If objects

differ in some areas and are identical in others, the intersect-

ing surfaces visualization clearly shows such differences. In

real-world data, however, noise and other inaccuracies are

often a concern, which can cause many small differences be-

tween objects. In intersecting surfaces, each of these will be

shown with similar visual impact as other differences, clut-

tering the resulting images and distracting users from those

other, possibly more interesting differences.

We use the distance measures introduced in the previous

section in order to allow users to suppress smaller differ-

ences in the visualization. We selected to filter based on size,

as this is a common criterion for considering the relevance

Fig. 5 Mapping distance to saturation of the surface colors reduces

the prominence of small differences, but causes perceptual issues due

to the blurry appearance

of differences. We experimented with mapping distance to

the saturation of the surface color (Fig. 5). This has the ef-

fect of both surfaces fading to gray as the distance between

them gets smaller. Small differences such as those caused

by noise will therefore also appear gray, rather than the sud-

den change of object color they cause in the original visual-

ization. Unfortunately, changing saturation over the surface

negatively affects the ability to perceive object shapes.

A simpler solution is thresholding the local distance mea-

sure. This way, we allow users to suppress differences that

are considered too small to be relevant. Essentially, this has

the effect of widening the intersection contours into areas of

insignificant differences. We render such areas in an opaque

neutral white color. The result, shown in Fig. 6 and Fig. 1, is

a less cluttered visualization where the user is less distracted

by small fluctuations between the surfaces. The threshold

value can be controlled interactively by the user, to con-

trol the distance from which differences are considered large

enough. This way, we allow different thresholds to be used

when examining different parts of an object, and also en-

able exploring distances interactively by moving the thresh-

old value.

One limitation of the current solution is that while in

white areas the objects are considered similar, the two ob-

jects are still rendered as separate surfaces. This effect can

be seen in the two bottom images in Fig. 6, where thresholds

on the inner surface show up through the holes representing

significant differences. Especially for higher threshold val-

ues, this can cause the already complex visualizations to be

harder to interpret. In future work we aim to address this

limitation by using techniques from illustrative rendering in

order to reduce the visual complexity of the thresholded ar-

eas.



Image-based rendering of intersecting surfaces for dynamic comparative visualization 353

Fig. 6 Using increasing thresholds to hide small differences

4 Implementation

In this section we discuss our image-based implementation

of the intersecting surfaces visualizations and of the en-

hancements described in the previous section.

While not the focus of this work, we implemented both

opacity-modulating glyph textures (as used by Weigle et

al. [1, 23]) and grid textures (see Bair et al. [20]) to help

illustrate the shape of transparent surfaces. The integration

of such techniques in the layered rendering pipeline (de-

scribed next) is considered straightforward. Similarly, our

implementation uses standard shadow mapping [24] to make

the opacity-modulating textures cast shadows on the inner

surface, as recommended by Weigle et al. [1, 23].

4.1 The layered rendering pipeline

We introduce the layered rendering pipeline (Fig. 7) as a

generic basis on which we build our image-based implemen-

tation of the intersecting surfaces technique. Layered ren-

dering combines depth peeling, deferred shading and CSG

in order to create an approach for surface rendering simi-

lar to ray casting, but at interactive rates. In the intersecting

surfaces visualization, this pipeline enables interactive per-

formance even when objects are deformed. It also facilitates

the addition of further enhancements which address limita-

tions of the original visualization.

As stated in our requirements, we would like to be able

to deal with objects of arbitrary complexity, and support ob-

jects which are dynamic or interactively positioned relative

to each other. This requirement means that a geometric ap-

proach to computing the CSG intersection, as used by Wei-

gle et al. [1], is infeasible due to the complexity of such a

computation. We therefore investigated possibilities for an

image-based approach.

While image-based CSG solutions exist [25, 26], the

layered rendering pipeline is an extension of depth peel-

ing [27–29]: All image-based CSG approaches require mul-

tiple passes over the geometry, each extracting separate lay-

ers of geometry distinguished by the number of surfaces

occluding them. Depth peeling, however, also ensures that

the surfaces are extracted (and rendered) in strict front-to-

back order, which is required in order to properly render any

transparent surfaces. We extend the pipeline with a stage in

which deferred shading [30, 31] is applied to each layer ex-

tracted from the geometry. Furthermore, we extend deferred

shading to allow propagation of information between layers.

Weigle [23] described an image-based inside/outside

classification approach based on depth peeling. Weigle’s al-

gorithm, however, is limited to two surfaces and is not a

full CSG algorithm; any fragment appearing deeper than

a fragment already labeled interior is also labeled interior.

This makes, for example, clipping the geometry resulting

from the CSG operation or rendering the intersection with

transparency difficult to achieve. Other combinations of

depth peeling and image-based CSG have been presented

by Guennebaud et al. [32], used to handle transparent ob-

jects in point-based rendering, and Nienhaus et al. [33], who

presented a method for illustrative rendering of CSG mod-

els. These combinations were designed specifically for their

applications, however, and are not easily extended.

The layered rendering pipeline takes inspiration from ray

casting. The ray-casting algorithm takes an image-order ap-

proach, where rays are cast from each image pixel. These

rays traverse the scene and intersect any objects within. Due

to this image-order approach, achieving a correct ordering

for compositing transparent surfaces is inherent in the algo-

rithm. Similarly, CSG operations are implemented easily by

simply keeping track of object intersections along a ray.

The design of the layered rendering pipeline is based

on several observations. Firstly, rendering an object using

traditional rasterization essentially provides the intersection

points of all rays cast from the image simultaneously for a

single layer of geometry. Secondly, the depth peeling algo-

rithm can be used “as is” to process all intersections in the

scene in front-to-back order.

The layered rendering pipeline, therefore (see Fig. 7),

consists of repeated execution of two stages in order to

process the layers in the scene. The scribe stage performs

depth peeling using a dual-depth buffer approach [28] and

stores information about the current layer which is required

for shading in an info-buffer. The information in this buffer

is created by updating the info-buffer from the previous

layer with information from the geometry of the current

layer. This way such information can be propagated through

the scene in a way similar to ray casting. The painter stage

then compares this information with that of the previous

layer(s) in order to create the image for this layer. Similarly



354 S. Busking et al.

Fig. 7 The layered rendering pipeline. The scribe stage uses depth

peeling to process the scene one depth layer at a time in front-to-back

order. It propagates information between layers and also outputs in-

formation about each layer to the painter stage, which creates the im-

age for that layer using a deferred shading approach. These images are

composited to form the final visualization

to deferred shading, the painter stage does not require the

scene geometry to be drawn, as all information required for

shading is present in the info-buffers. The resulting images

are composited using front-to-back blending to create the fi-

nal image.

The total number of layers could be very large, depending

on the depth complexity of the scene being rendered. How-

ever, because each subsequent layer affects at most the same

pixels as the previous layer, and because of the front-to-back

blending used, later layers may not noticeably influence the

final image. Therefore rendering can be terminated after ei-

ther a set number of layers is reached, or when the number

of pixels in a layer is below some (small) fraction of the total

image size. This number is determined using occlusion tests

available in modern hardware.

In the following, we refer to the info-buffer for layer li

as Bi . The data in Bi describes (for each pixel) properties

either of the corresponding layer li , or of the depth slab si ,

which is the volume between li and li+1. An important part

of Bi is the in/out mask, a bit mask which indicates for

each pixel and for each of the objects in the scene whether

si is inside or outside of the object. We assume all objects

are closed, non-self-intersecting surfaces, although our ap-

proach still works with objects that extend into infinity in the

viewing direction (e.g., landscape surfaces such as Fig. 6,

viewed from above). In the scribe stage, the bit correspond-

ing to the visible surface for each pixel is set to 1 if that sur-

face is front-facing, and to 0 if it is back-facing. Other bits

are left unchanged and are copied from Bi−1. The mask for

B0 needs to be initialized according to the camera’s position

w.r.t. the objects in the scene. However, it can generally be

assumed in our visualizations that the camera is positioned

outside of all objects.

The in/out mask provides a simple way to perform arbi-

trary CSG operations on the objects in the scene, as well

as clipping objects to arbitrary geometry. Additionally, it

solves a common problem in depth peeling regarding copla-

nar surfaces. In our implementation, the mask is stored in

one of the 8-bit RGBA channels of the info-buffer texture.

This means we can track up to 8 objects at a time, which

is more than sufficient for the purposes of the intersecting

surfaces visualization.

4.1.1 CSG rendering

The base visualization uses only the CSG intersection of ob-

jects. In future extensions, however, other CSG operations

could be useful as well. For example, such operations could

be used as part of area-of-interest selection in a focus + con-

text visualization.

CSG rendering is as simple as applying the Boolean-

valued CSG expression to the in/out masks for both Bi

and Bi−1 during the painter stage. Surfaces of the result of

the CSG operation are characterized by a change in the value

of this expression. Therefore, if the resulting value for some

pixels on a layer is different from the value on the previous

layer, that part of li is a surface of the object resulting from

the CSG operation, and can be rendered as such (see Fig. 8).

4.1.2 Clipping

One advantage of this approach is that it results in the CSG

surfaces on all depth layers rather than only a single layer.

For instance, the Goldfeather algorithm [25] only provides

the first depth layer of the CSG object. Similarly, Weigle’s

image-based classification technique only locates the first



Image-based rendering of intersecting surfaces for dynamic comparative visualization 355

Fig. 8 Layered rendering for the CSG intersection of two spheres.

In/out masks are shown for each depth slab for positions along the

arrow. Changes in CSG(Bi) correspond to surfaces of the CSG result

intersection surface along the viewing direction. Having cor-

rect CSG surfaces on all layers means it is easy to imple-

ment clipping techniques in the painter stage. These can be

used, for instance, to enable viewing of interior structures of

the CSG model. Furthermore, because we maintain an in/out

mask between layers, the objects in the scene can be clipped

against arbitrary geometry. Clipping against arbitrary closed

objects is done trivially during the painter stage by discard-

ing all fragments for which the bit corresponding to the clip-

ping object is set in the in/out mask (indicating they are part

of surfaces located inside this object).

4.1.3 Coplanarity

One important limitation of the depth-peeling algorithm is

that it does not deal well with coplanar, overlapping sur-

faces. As only depth information is used to distinguish be-

tween surfaces in peeling, in the case of coplanar overlap-

ping surfaces only one of the surfaces will be detected. In

addition to causing visual artifacts when surfaces are not

rendered, this will cause problems for a CSG implementa-

tion such as the one described above.

Our layered rendering approach offers an elegant solution

to the problem. The problem stems from the fact that nor-

mal depth peeling only allows fragments with a depth value

larger than the previous layer. In our coplanarity peeling al-

gorithm, identical depth values are also allowed, as long as

the in/out mask resulting from the previous layer indicates

we have not rendered these before. Our assumption that sur-

faces are not self-intersecting enables us to perform only

a single “greater or equal” test against the previous layer,

rather than testing for equality separately, thereby simplify-

ing the implementation.

Fig. 9 Using depth comparison to filter the contours: silhouettes are

removed while intersection contours remain

4.2 Intersection contours

Like the intersection objects themselves, intersection curves

can be computed geometrically. Such computations, how-

ever, are complicated, hard to generalize and unsuited to

interactive visualization. We use our layered rendering

pipeline to create an image-based derivation for these con-

tours.

In illustrative rendering, a common technique is to de-

rive object silhouettes and feature contours from discontinu-

ities in images containing depth values or surface normals

respectively [31]. Similarly, we use the info-buffer to record,

for each pixel, the identity of the object which contributed

that pixel for the current layer. During the painter stage, we

perform simple edge detection on this buffer by compar-

ing pixels to their immediate 4-connected neighbors. This

approach, however, leads to more than just the intersection

contours (see Fig. 9(a)).

In order to filter this set of contours, we also store the

depth values for each pixel in the layer. Our reasoning is as

follows: if two neighboring pixels are on opposite sides of

a true intersection contour, their depth values will be simi-

lar as well. While this assumption does not hold in general,

we benefit from the fact that in most comparison scenarios

objects are similar. If depth values on opposite sides of a de-

tected edge fall within an epsilon range of each other, the

edge is rendered in the image (Fig. 9(b)). The value of this

epsilon depends on the scale of objects in the scene and is

currently determined empirically on a per-application basis.

4.3 Integrating local distance information

As stated in Sect. 3.2.3, we integrated two types of local

distance cues. Their implementations again take advantage

of the layered rendering pipeline, and are described in the

next sections.

4.3.1 Fogging

When using ray casting to render fog, colors and opacities

are accumulated along the rays while they travel through



356 S. Busking et al.

fog volumes. Similarly, we determine the amount of fog be-

tween two surfaces as a function of the distance between

those surfaces. In our layered rendering pipeline, this means

we can simply compare the depth values for the current

layer li to those of the previous layer li−1 in the painter

stage, in order to determine the distance for each pixel.

Based on this distance, we compute the accumulated fog

opacity for the depth slab si−1 and then blend the fog over

the current layer. Distance can be mapped into opacity lin-

early; however, as multiple slabs may contribute to an area

of fog, an exponential mapping yields better results.

As in CSG rendering, a Boolean expression can be ap-

plied to the in/out mask (in Bi−1) in order to specify the

(combinations of) objects in which fogging should be ap-

plied. An alternative to fogging is distortion (e.g., defo-

cussing, blurring) of the layer image due to refraction or

translucent materials. To implement this, the layer should

be rendered normally, after which the resulting image can

be distorted in accordance with previous layers in order to

produce the desired effect.

4.3.2 Distance fields

As discussed in Sect. 2, many shape (dis)similarity measures

have been proposed in the literature. The values resulting

from these measures change whenever either object is ma-

nipulated by the user. Recomputing the measure for each

point on both surfaces may not be feasible in an interactive

system. We therefore propose a solution based on distance

fields.

A distance field is a sampling of a distance function,

which maps positions in 3D space into the distance of that

position to the surface. The simplest such function uses the

Euclidean distance metric between the position in space and

the position of the closest point on the surface. In the case of

a closed surface, such a distance function could be signed,

i.e., the sign of the distance could indicate whether a point

is inside or outside of the object. Although creating such

fields is computationally expensive, they only need to be

computed once per object.

We use the Closest Point Transform algorithm by Mauch

[34] to precompute (signed) distance fields for our surfaces.

These distance fields are made available during rendering

as 3D textures. When objects are rendered during the scribe

stage of the pipeline, we sample the distance fields in order

to obtain distances between the objects. To accomplish this,

3D locations corresponding to each surface pixel need to be

transformed to the local coordinate frame of the other object,

after which the corresponding 3D texture can be sampled.

This effectively results in the distances of each point to the

closest point on the other object. Additionally, objects can

easily be manipulated in this approach; the corresponding

transformations simply need to be taken into account when

determining lookup locations in the distance fields.

Although this technique technically does not require the

use of the info-buffer, we still benefit from the basic depth

peeling and deferred shading options inherent in the lay-

ered rendering formulation, as well as allowing the visual-

ization of the distances to be handled separately from their

measurement. In our current implementation, the distance

fields only work for static surfaces. In the case where one of

the surfaces is dynamic, the distance field of the static sur-

face can still be used to display the distance on the dynamic

surface. In recent literature, GPU-accelerated methods have

been presented [35] which could enable interactive perfor-

mance in the fully dynamic case. Fogging works for static

and dynamic surfaces, and combinations thereof.

4.4 Relevance

Implementing the relevance-thresholding technique in our

framework is as simple as adding a threshold test after sam-

pling the distance field in the scribe-stage. We replace our

object identification in the layer information buffer by a clas-

sification. This classification can take one of three values. If

for some fragment the distance is smaller than the thresh-

old, the fragment is classified as being “equal.” Otherwise,

the fragment is classified as significantly belonging to one

of the objects.

During the painter stage, we render “equal” fragments as

opaque in a neutral color. Our contour detection approach

can be performed on the new classification buffer (rather

than on the object identification buffer) in order to empha-

size the areas of large difference.

4.5 Performance

We created a prototype implementation of the techniques

presented in this paper in C++, using VTK for data process-

ing and OpenGL for rendering. The OpenGL shading lan-

guage (GLSL) was used to implement all GPU-based algo-

rithms, which require at least NVIDIA GeForce 7 graphics

hardware (or equivalent). The resulting system allows for in-

teractive rendering of the visualization, as well as interactive

manipulation of the surfaces involved in the comparison, the

viewpoint and the parameters of the various techniques.

Our layered rendering implementation makes full use of

deferred shading. For this, our layer information buffer con-

sists of three 32-bit render targets. The first two contain color

and surface normals for use in deferred shading. The third

is used to store surface classifications, the in/out-mask and

surface depth values. As only this third buffer needs to be

propagated between layers, the memory costs of the algo-

rithm are those of five 32-bit images at the display resolution

(see Sect. 4.1). The use of distance fields adds to this re-

quirement; we used two 2563-byte distance volumes, which

provide sufficient accuracy for the purposes of our visual-

izations.



Image-based rendering of intersecting surfaces for dynamic comparative visualization 357

Tests were performed on a single core of an AMD Athlon

2.6 GHz dual core machine with 3 GB RAM and NVIDIA

GeForce 8800 graphics. Images were rendered with shadow

mapping enabled at 1000 × 700 resolution, resulting in

frame rates between 10 and 50 frames per second for four

depth layers (depending on surface complexity), which is

sufficient for most intersecting surfaces visualizations. As

noted, the use of shadow mapping requires scenes to be ren-

dered twice per frame: once from the light’s viewpoint and

once from the camera. This means a doubling of frame rates

can be achieved when shadow mapping is not required.

We used the brain ventricle segmentations (Fig. 1, 79 668

triangles), an artificial height field data set (Fig. 6, 1 044 484

triangles) and the ventricle shape models (Fig. 12, 3788 tri-

angles) for our measurements. Both the number of triangles

and the number of depth layers linearly influence the render-

ing performance. This is expected, as geometry is rendered

once for each layer. Decreasing the maximum number of

layers increases performance, but at the cost of image qual-

ity. A lower number of layers may cause display artifacts

when large numbers of transparent surfaces overlap each

other. In the case of the intersecting surfaces visualization,

depth complexity of the scene rarely exceeds 4, due to the

fact that the inner object is rendered opaque. However, the

use of clipping techniques (as described in Sect. 4.1.2) may

cause an increase of the number of layers required. This is

because clipping is performed in the painter stages, mean-

ing the hidden geometry and the clipping object itself both

contribute to the depth complexity of the scene in the scribe

stages.

The k-buffer architecture proposed by Bavoil et al. [36]

could be used to greatly reduce the number of passes re-

quired to perform depth peeling. However, currently no

hardware implementations of this architecture exist.

Depth peeling based algorithms are usually criticized for

their high memory requirements. We note, however, that in

our technique only information from the current and pre-

vious layer is required in order to render any given layer.

Therefore, we require only two buffers in memory at all

times. Furthermore, rather than storing each layer, we up-

date the final image on the fly. This brings the total memory

requirements of the layered rendering algorithm down to the

memory required for two info-buffers and one final image.

As only a subset of information needs to be propagated be-

tween layers, memory requirements can be further reduced.

The interactive performance achieved by our image-

based implementation of the intersecting surfaces visualiza-

tion enables new uses of such visualizations. As the inter-

section does not have to be computed explicitly, the objects

involved in the comparison do not need to be static. The next

section illustrates an application of the comparison of dy-

namic surfaces.

5 Case study

We performed an expert evaluation study of the techniques

presented in this paper. This section describes our collabora-

tion with two researchers in medical image analysis, who are

experts in creating and analyzing statistical shape models. In

this study, we applied our technique to visualize real-world

statistical shape model data provided by the researchers.

The researchers are also the third and fourth authors of

this paper. They contributed to this work by providing in-

formation on the problem domain and by giving feedback

on our prototypes, but did not work on the implementation

itself. In this context, their role as test users and evaluation

subjects was not compromised.

5.1 Statistical shape models

In medical research, statistical shape modeling [2] is an im-

portant tool for understanding both differences in and vari-

ability of shapes of anatomical features. A shape model is

created by first identifying corresponding points on all indi-

viduals in a population. Principal component analysis is then

applied to determine the average shape of the population, as

well as the principal modes of variation, ranked from most

to least significant.

For this case study, the researchers provided us with

a pair of statistical shape models used in research of

Alzheimer disease (AD). The shape models represent the

variation of the shape of the brain ventricles within two

populations: a group of AD patients and a control group

of healthy patients. It has been shown [37] that brain ven-

tricles enlarge significantly due to the loss of brain tissue

caused by AD. Figure 10 shows a visualization using our

technique of the mean shapes of both groups, in which this

shape difference is clearly visible.

Fig. 10 Comparative visualization using our technique of the mean

ventricle shape of the healthy group (yellow) versus the mean ventricle

shape of the AD group (blue). The visualization clearly shows the latter

shape to be larger, and therefore almost completely shown as transpar-

ent



358 S. Busking et al.

Shape models are a special case of comparison, for which

a known correspondence between points on both meshes

is not only available but in some cases highly relevant to

the comparison. Currently, such correspondence is visual-

ized by the researchers by showing a single surface com-

bined with point-correspondence glyphs (i.e., lines or ar-

rows) pointing from this surface to where the other surface

would be. Additionally, the researchers frequently use color

mapping to visualize measures on a single surface.

5.2 Evaluation method

The evaluation consisted of two meetings, during which we

discussed our visualizations with the researchers. The first

meeting was an informal introduction of our visualization,

consisting of a demonstration of our technique and a dis-

cussion of shape model visualization in general. We used

the information gathered at this meeting to improve our pro-

totype implementation, which was used to formally evalu-

ate our technique in the second meeting. Also, we gathered

information on currently used visualization techniques, and

used the feedback to formulate a set of three shape research

scenarios in which our visualizations could be applied.

1. Exploring shape differences between two static 3D sur-

faces. This scenario has been studied in detail by Weigle

et al. [1].

2. Exploring variation of a single shape model. This in-

cludes both comparing new individuals to an existing

model and examining variation within the model with re-

spect to the mean shape. For this scenario as well as the

next, the user can interactively control the shape model

parameters to explore different shapes.

3. Validation (error-checking) of a shape model. A shape

model is created by moving the vertices of a mesh to

match different individuals in a population. If these ver-

tices move along the surface of the model to match two

individuals, the model may indicate a difference where in

fact there is none. The models are validated by checking

for such errors.

The comparison of two different shape models is another

important topic for shape model visualization. However, this

requires statistical information to be included in the visual-

ization and is therefore considered future work.

We defined eight visualizations (Fig. 11) for exploring

shape differences. The combinations were selected to al-

low for the evaluation of the strengths of each technique

separately while still creating meaningful visualizations. To

achieve this, we included both single surface and inter-

secting surfaces visualizations, intersecting surfaces with

fogging or with shadow-casting glyphs, and combinations

with or without relevance thresholding. To compare the

proposed enhancements to currently accepted visualization

techniques, we also included basic color mapping, point-

correspondence glyphs and Weigle’s original intersecting

surfaces visualization (without our enhancements) in the

evaluation. During the second meeting, the researchers were

asked to grade these visualizations for each scenario.

We used a Likert scale [38] to grade agreement with the

statement “Visualization X is suitable for use in scenario

Y ,” where X and Y formed all combinations of the visual-

izations in Fig. 11 and the three scenarios mentioned above.

Secondly, the researchers were asked to rank the visualiza-

tions in order of preference for each scenario. As a final

Fig. 11 The eight visualizations used in our evaluation



Image-based rendering of intersecting surfaces for dynamic comparative visualization 359

question, we asked the researchers to create their preferred

visualization from the techniques in the prototype applica-

tion.

In order to avoid distortion of the results, the researchers

were explicitly warned about possible biases in using a Lik-

ert scale and told to evaluate each visualization indepen-

dently of the others for the first question, leaving compar-

ison for the ranking question. We limited the evaluation to

the interactive use of each visualization, as such use is the

primary aim of our contribution.

5.3 Software setup

We performed the case study using a specially prepared ver-

sion of our software, which could be toggled between each

of the predefined combinations of techniques. For the pur-

poses of this study, we added an implementation of point-

correspondence glyphs, similar to the glyphs currently in

use by the researchers (shown in Fig. 12) and those used

by Weigle [23].

In analyzing shape models, the researchers are most fre-

quently interested in the statistical properties of the model.

However, there are use cases in which direct shape compar-

isons can be useful. The interactivity provided by our tech-

nique enables the intersecting surfaces technique to be used

on dynamically deforming surfaces. We adapted our soft-

ware to allow for interactive deformation of the shape model

mean surfaces along each of the modes of variation, in or-

der to explore the variability of the statistical model. The

researchers were allowed free use of this functionality for

the evaluation of each technique in the latter two scenarios.

Based on feedback received from the researchers at the

initial meeting, we enhanced the user interface of the proto-

Fig. 12 Point-correspondence glyphs connect corresponding points

on the mean and deformed shape model surfaces. Here they are used to

show the third principal mode of variation in the control group shape

model

type application for the formal evaluation by adding quan-

titative feedback about visualization parameters. We also

added linked views showing the separate shapes involved

in the comparison, with linked cursors between all views.

While the researchers were asked to only use the intersect-

ing surfaces visualization for comparison, they indicated the

simple views were helpful in learning how to interpret the

intersecting surfaces visualizations.

5.4 Evaluation results

After evaluating each visualization, the experts were asked

to explain their grades. The Likert scale grades and rankings

served to provide important structure to this discussion. This

section summarizes the feedback gathered from this process.

In all scenarios, the researchers preferred the intersect-

ing surfaces visualizations over the single-surface visualiza-

tions. In a single-surface visualization, it is hard to deter-

mine the shape of the second surface. The researchers did

note that for certain specific questions, such as examining

statistical relevance of deformations, a color-mapped sur-

face provides enough information.

Fogging and shadow-casting surface glyphs Both fogging

and glyphs are preferred over plain intersecting surfaces, as

without them it is very hard to see the 3D structure of and

separation between both surfaces. However, the researchers

had some concerns regarding the fog, causing them to pre-

fer the glyphs. First, fogging adds visual complexity; opac-

ity is not commonly used in current visualization techniques

to indicate distance, and the fog color adds a third color to

the visualization. Secondly, glyphs also served to emphasize

the shape of the outer surface. Their removal, coupled with

the fact that the fog obscures the inner surface, makes the

shape of both surfaces harder to perceive. The fog color can

be useful, however, to quickly direct attention to areas with

large difference. Other techniques can then be used to ex-

plore surface shapes in detail.

Intersection contours When using the shadow-casting sur-

face glyphs, the researchers noted that intersection contours

are important to help distinguish between glyphs and inter-

sections. The presence of these contours also helped the re-

searchers to better perceive the intersecting surface visual-

izations in general.

Relevance The researchers see the benefit of suppressing

small differences using a threshold. However, they indi-

cated several points where the current visualization should

be improved. First, the visual complexity of the current

implementation is too high. Thresholding being performed

on both surfaces separately clutters rather than suppresses

these areas in the visualization. Because of this clutter, visu-

alizations which included the thresholding technique were



360 S. Busking et al.

ranked very low in the evaluation. More work should be

done to reduce the visual complexity of the masked areas,

e.g., using illustrative techniques. The presence of a third

color (white) is acceptable in these visualizations, as the

color has a well-defined meaning (areas with no relevant

differences). Second, comparing thresholding to color map-

ping, the researchers indicated a need for better visualiza-

tion of the values in non-masked areas. Additionally, a color

scale should be used to highlight particularly large or signif-

icant differences in the unmasked areas.

Point-correspondence information While not normally

available for general surface-to-surface comparison, corre-

spondence information is essential for shape model valida-

tion (scenario 3), and should therefore always be included in

these visualizations. The point-correspondence glyphs ful-

fill this requirement, but can be enhanced in several ways.

Color mapping the glyphs by their length can help show the

distance between corresponding points. Similarly to surface

thresholding by distance, an option should also be added to

filter glyphs that are too short to be relevant by thresholding,

and the user should be able to toggle their display interac-

tively.

One thing to note is that for single-surface visualizations,

point-correspondence glyphs may point inside the surface.

This makes such areas impossible to distinguish from areas

of no change, unless the surface is made transparent (thereby

causing other perceptual issues). The intersecting surfaces

visualizations always show all point-correspondence glyphs.

It was mainly for this reason that this was a preferred com-

bination for the researchers.

5.5 Lessons learned

A recurring concern during the evaluation was the high vi-

sual complexity of the intersecting surfaces visualizations,

especially when deforming surfaces are involved. Despite

this, intersecting surfaces were ranked higher than single-

surface visualizations for all scenarios. Overall, the re-

searchers feel that the visualizations can be easily inter-

preted after some use. However, the initial learning curve

is rather steep, and the additional complexity introduced by

our fogging and thresholding techniques added to this. For

exploration of the variation in a shape model, the researchers

considered information about exact differences less impor-

tant than for the other scenarios. This means techniques like

thresholding, color mapping and the point-correspondence

glyphs are best omitted in this scenario, in order to reduce

visual complexity.

Scenario 3 furthermore showed the importance of tuning

visualizations to application-specific requirements. The pre-

ferred visualization chosen by both researchers consisted of

a basic combination of intersecting surfaces with contours

and shadow-casting surface glyphs to aid perception of the

shape of the transparent surfaces. However, due to the nature

of statistical shape models, this visualization should also in-

clude point-corresponding glyphs, which can be colored by

distance, filtered by relevance and toggled on or off by the

user.

5.6 Summary and outlook

In this case study, we applied our technique to real-world

data and problems to gauge their effectiveness. Our expert

evaluation agrees with most of our own findings as well

as those from Weigle’s studies. However, it also indicates

that more work should be done on reducing the visual com-

plexity of the depth cuing (fogging) and relevance masking

(thresholding) techniques, as well as of the intersecting sur-

faces technique in general. Given this, there is no absolute

winner among the visualizations considered in this study.

Due to this visual complexity, we need to tune the combi-

nation of techniques to answer specific questions rather than

simply including every bit of information. Interactive per-

formance in changing the visualization and its parameters

certainly helps in making this process easy for the user.

We intend to continue the collaboration in future work to

apply our technique to shape model comparison and popula-

tion studies. Additionally, user studies should be performed

at a larger scale to more thoroughly evaluate the techniques.

6 Conclusions and future work

We have presented technique for the interactive visualiza-

tion and exploration of surface differences using intersecting

surfaces. Our main points of contribution are:

– A new image-based formulation of the proven intersect-

ing surfaces visualization, based on our new layered ren-

dering pipeline. Our formulation provides interactive per-

formance, even when the objects being compared are de-

formed or moved relative to each other. This interactivity

enables intersecting surface techniques to be applied in

new domains such as shape model visualization.

– Enhancements to the original intersecting surfaces tech-

nique. These include object-intersection contours, as well

as the integration of local difference measures in the form

of view-dependent depth cues and view-independent dis-

tance fields. Furthermore, we extend the intersecting sur-

faces visualization to a three-way segmentation of surface

differences, where the visual impact of insignificant dif-

ferences is reduced.

– A case study, exploring the usefulness of intersecting sur-

faces techniques for the visualization and comparison of

statistical shape models.



Image-based rendering of intersecting surfaces for dynamic comparative visualization 361

Our layered rendering formulation offers a flexible frame-

work for various rendering techniques which are otherwise

not straightforward to implement. The approach has strong

parallels with ray casting, in that information is propagated

from the viewer into and through the geometric scene. This

enables image-based implementation of various ray-casting-

like algorithms for layered surfaces, such as CSG operations

and fogging inside objects. However, as the method is still

based on rasterization, performance is much higher than that

of a ray-casting technique and the technique can take full

advantage of hardware acceleration. Furthermore, due to the

formulations sharing a common framework, techniques can

be combined in a straightforward way.

Based on the layered rendering formulation, our tech-

nique creates an interactive visualization for the comparison

of surfaces. As indicated by Weigle [23], this interactivity

is an important aid for understanding the shapes of objects

being compared. Interactivity during object manipulations

such as relative movement and/or deformation also enables

new applications for the intersecting surfaces visualization,

such as the visualization of statistical shape models explored

in our case study.

Our visualization addresses the requirements defined in

Sect. 1: The visualization of differences is local and explicit,

and we presented methods for the suppression of irrelevant

differences in the visualization. The distance cues and rele-

vance filtering techniques can be used with various distance

metrics, as long as it is possible to create a distance field for

such a metric.

Furthermore, our enhanced intersecting surfaces tech-

nique addresses most limitations of the original technique:

Contour lines remove ambiguity between intersections, oc-

clusions and surface glyphs, distance cues add additional

inter-surface distance information at any point on the sur-

faces, and relevance filtering hides irrelevant information.

Regarding the visualization of highly different objects or

dealing with occlusion, we provide both suggestions and

(through our framework) opportunities for solving these in

future work.

The resulting visualization can provide an overview of

differences for any given pair of surfaces. This can assist

a researcher in selecting areas of interest and/or choosing

further techniques to apply to quantitatively analyze these

differences. Our evaluation has shown that intersecting sur-

faces can also be a useful technique for comparing dy-

namic objects, provided that: (1) The visualization is prop-

erly adapted to the problem domain, e.g., by adding corre-

spondence feedback in the case of our shape models; (2) The

visual complexity of the visualizations is kept as low as pos-

sible. For example, rather than combining the various tech-

niques and enhancements, a better option is to allow switch-

ing between them one-by-one, based on user interests.

6.1 Future work

Further improvements can be made in the use of texture pat-

terns to show local surface shape as well as differences. In

particular, if a surface is deformed, comparison of the de-

formed pattern to the original may yield more insight into

the nature of the deformation. Texture-based techniques,

possibly shown on cross sections of the data, could help to

illustrate these changes.

The use of (linked) cross-sectional views could also help

to reduce the perceived visual complexity of our visualiza-

tions. On-demand slicing has the potential to show differ-

ences which are hard to interpret in 3D clearly in a 2D plane.

Another option not yet explored in this work is the effect of

adding legends and similar tools to aid interpretation of the

visualizations. For instance, fogging could be easier to in-

terpret if some simple geometry was used as a “legend”: this

legend could consist of two planes intersecting in the middle

along a scale of distances, visualized using the same settings

as the current visualization.

In our case study we applied our technique to the visu-

alization of statistical shape models. The statistical aspects

of these models are currently missing from the visualiza-

tions. In work [39] performed subsequently to that presented

in this paper, we presented an application for the visualiza-

tion of high-dimensional shape spaces. We plan to integrate

the intersecting surfaces techniques into our software in the

future, as well as to extend these visualizations to include

feedback on the statistical properties of the model.

Given two shape models for different populations, statis-

tically significant differences can be determined between the

models themselves [37]. By including such statistical infor-

mation, our visualizations could help to link such statistical

differences to physical differences in shape. This would aid

both in understanding the causes and in validating the statis-

tical models.

Finally, there is a need for intuitive methods for the in-

teractive exploration of differences within the data. Our use

of layered rendering already enables objects to be manipu-

lated interactively. We are looking for ways to guide this in-

teraction in order to select and eliminate certain differences

which are not relevant to the application domain. Addition-

ally, we plan to integrate linked cross-sectional views and

probing tools to provide quantitative statements about dif-

ferences. Combined, these techniques will enable better ex-

ploration and visualization of relevant differences.

Acknowledgements This research is supported by the Nether-

lands Organization for Scientific Research (NWO), project number

643.100.503 “Multi-Field Medical Visualization”.



362 S. Busking et al.

References

1. Weigle, C., Taylor, R.M. II: Visualizing intersecting surfaces with

nested-surface techniques. In: IEEE Visualization, Proceedings,

pp. 503–510 (2005). doi:10.1109/VISUAL.2005.1532835

2. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape

models—their training and application. Comput. Vis. Image Un-

derst. 61, 38–59 (1995). doi:10.1006/cviu.1995.1004

3. Pagendarm, H.G., Post, F.H.: Comparative visualization—

approaches and examples. In: Visualization in Scientific Comput-

ing, pp. 95–108. Springer, Berlin (1995)

4. Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detec-

tion and segmentation of evolving processes in 3D medical im-

ages: application to multiple sclerosis. Med. Image Anal. 6, 163–

179 (2002). doi:10.1016/S1361-8415(02)00056-7

5. Busking, S., Botha, C.P., Post, F.H.: Direct visualization of defor-

mation in volumes. In: Hege, H.C., Hotz, I., Munzner, T. (eds.)

Eurographics/IEEE-VGTC Symposium on Visualization, vol. 28,

pp. 799–806 (2009). doi:10.1111/j.1467-8659.2009.01471.x

6. Subsol, G., Roberts, N., Doran, M., Thirion, J.P., Whitehouse,

G.H.: Automatic analysis of cerebral atrophy. Magn. Reson. Imag-

ing 15, 917–927 (1997). doi:10.1016/S0730-725X(97)00002-7

7. Wilson, D.L., Baddeley, A.J., Owens, R.A.: A new metric for grey-

scale image comparison. Int. J. Comput. Vis. 24, 5–17 (1997).

doi:10.1023/A:1007978107063

8. di Gesú, V., Starovoitov, V.: Distance-based functions for image

comparison. Pattern Recogn. Lett. 20, 207–214 (1999). doi:10.

1016/S0167-8655(98)00115-9

9. Miranda, P.A.V., da Torres, S.R., Falcao, A.X.: TSD: a shape de-

scriptor based on a distribution of tensor scale local orientation.

In: SIBGRAPI, Proceedings, pp. 139–146 (2005). doi:10.1109/

SIBGRAPI.2005.51

10. Veltkamp, R.C.: Shape matching: similarity measures and algo-

rithms. In: IEEE Shape Modeling and Applications, Proceedings,

pp. 188–197 (2001). doi:10.1109/SMA.2001.923389

11. Li, X., He, Y., Gu, X., Qin, H.: Curves-on-surface: a general shape

comparison framework. In: IEEE Shape Modeling and Applica-

tions, Proceedings, pp. 38–43 (2006). doi:10.1109/SMI.2006.8

12. Masuda, T., Imazu, S., Auethavekiat, S., Furuya, T., Kawakami,

K., Ikeuchi, K.: Shape difference visualization for ancient bronze

mirrors through 3D range images. J. Vis. Comput. Animat. 14,

183–196 (2003). doi:10.1002/vis.316

13. Gatzke, T., Grimm, C., Garland, M., Zelinka, S.: Curvature

maps for local shape comparison. In: IEEE Shape Modeling

and Applications, Proceedings, pp. 244–253 (2005). doi:10.1109/

SMI.2005.13

14. Lim, I.S., Sarni, S., Thalmann, D.: Colored visualization of shape

differences between bones. In: IEEE Computer Based Medical

Systems, Proceedings, pp. 26–27 (2003)

15. Pichon, E., Nain, D., Niethammer, M.: A Laplace equation ap-

proach for shape comparison. In: SPIE Medical Imaging, Proceed-

ings, vol. 6141, pp. 373–382 (2006)

16. Tory, M., Möller, T., Atkins, M.S.: Visualization of time-varying

MRI data for MS lesion analysis. In: SPIE Medical Imaging, Pro-

ceedings, vol. 4319, pp. 590–598 (2001)

17. Johnson, C.R., Sanderson, A.R.: A next step: visualizing errors

and uncertainty. IEEE Comput. Graph. Appl. 23, 6–10 (2003).

doi:10.1109/MCG.2003.1231171

18. Rheingans, P.: Opacity-modulating triangular textures for irreg-

ular surfaces. In: IEEE Visualization, Proceedings, pp. 219–225

(1996)

19. Interrante, V., Fuchs, H., Pizer, S.: Conveying the 3D shape of

smoothly curving transparent surfaces via texture. In: IEEE Trans-

actions on Visualization and Computer Graphics, pp. 98–117

(1997)

20. Bair, A., House, D.: A grid with a view: optimal texturing for

perception of layered surface shape. IEEE Trans. Vis. Comput.

Graph. 13, 1656–1663 (2007). doi:10.1109/TVCG.2007.70559

21. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustra-

tive context-preserving volume rendering. In: Eurographics/IEEE-

VGTC Symposium on Visualization, vol. 1, pp. 69–76 (2005)

22. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative

context-preserving exploration of volume data. IEEE Trans. Vis.

Comput. Graph. 12(6), 1559–1569 (2006). doi:10.1109/TVCG.

2006.96. http://www.ncbi.nlm.nih.gov/pubmed/17073377

23. Weigle, C.: Displays for exploration and comparison of nested or

intersecting surfaces. Ph.D. thesis (2006)

24. Williams, L.: Casting curved shadows on curved surfaces. In:

Computer Graphics and Interactive Techniques, pp. 270–274

(1978). doi:10.1145/800248.807402

25. Goldfeather, J., Molnar, S., Turk, G., Fuchs, H.: Near real-time

CSG rendering using tree normalization and geometric prun-

ing. IEEE Comput. Graph. Appl. 9, 20–28 (1989). doi:10.1109/

38.28107

26. Wiegand, T.F.: Interactive rendering of CSG models. Comput.

Graph. Forum 15, 249–261 (1996)

27. Mammen, A.: Transparency and antialiasing algorithms imple-

mented with the virtual pixel maps technique. IEEE Comput.

Graph. Appl. 9, 43–55 (1989). doi:10.1109/38.31463

28. Diefenbach, P.: Pipeline rendering: interaction and realism

through hardware-based multi-pass rendering. Ph.D. thesis (1996)

29. Everitt, C.: Interactive order-independent transparency. Tech. rep.,

NVIDIA (2001). URL http://developer.nvidia.com/attach/6545

30. Deering, M., Winner, S., Schediwy, B., Duffy, C., Hunt, N.: The

triangle processor and normal vector shader: a VLSI system for

high performance graphics. In: ACM SIGGRAPH, Proceedings,

vol. 22, pp. 21–30 (1988)

31. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D

shapes. In: ACM SIGGRAPH, Proceedings, pp. 197–206 (1990).

http://doi.acm.org/10.1145/97879.97901

32. Guennebaud, G., Barthe, L., Paulin, M.: Splat/mesh blending, per-

spective rasterization and transparency for point-based rendering.

In: IEEE/Eurographics/ACM Symposium on Point-Based Graph-

ics, pp. 49–58 (2006)

33. Nienhaus, M., Kirsch, F., Döllner, J.: Illustrating design and spatial

assembly of interactive CSG. In: Computer Graphics, Virtual Re-

ality, Visualization and Interaction in {Africa}, Proceedings, pp.

91–98 (2006). doi:10.1145/1108590.1108605

34. Mauch, S.: A fast algorithm for computing the closest point and

distance transform. Tech. rep., CalTech (2000)

35. Peikert, R., Sigg, C.: Optimized Bounding Polyhedra for GPU-

Based Distance Transform. Springer, Berlin Heidelberg (2006),

pp. 65–77. doi:10.1007/3-540-30790-7_5

36. Bavoil, L., Callahan, S.P., Lefohn, A., Comba, J.L.D., Silva,

C.T.: Multi-fragment effects on the GPU using the K-buffer. In:

ACM i3D, Proceedings, pp. 97–104 (2007). http://doi.acm.org/

10.1145/1230100.1230117

37. Ferrarini, L., Palm, W.M., Olofsen, H., van Buchem, M.A., Reiber,

J.H.C., Admiraal-Behloul, F.: Shape differences of the brain ven-

tricles in Alzheimer’s disease. Neuroimage 32, 1060–1069 (2006).

doi:10.1016/j.neuroimage.2006.05.048

38. Likert, R.: A technique for the measurement of attitudes. Arch.

Psychol. 22(140), 1–55 (1932)

39. Busking, S., Botha, C.P., Post, F.H.: Dynamic multi-view explo-

ration of shape spaces. In: Melançon, G., Munzner, T., Weiskopf,

D. (eds.) Eurographics/IEEE-VGTC Symposium on Visualiza-

tion, vol. 29, pp. 973–982 (2010). doi:10.1111/j.1467-8659.2009.

01684.x

http://dx.doi.org/10.1109/VISUAL.2005.1532835
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1016/S1361-8415(02)00056-7
http://dx.doi.org/10.1111/j.1467-8659.2009.01471.x
http://dx.doi.org/10.1016/S0730-725X(97)00002-7
http://dx.doi.org/10.1023/A:1007978107063
http://dx.doi.org/10.1016/S0167-8655(98)00115-9
http://dx.doi.org/10.1016/S0167-8655(98)00115-9
http://dx.doi.org/10.1109/SIBGRAPI.2005.51
http://dx.doi.org/10.1109/SIBGRAPI.2005.51
http://dx.doi.org/10.1109/SMA.2001.923389
http://dx.doi.org/10.1109/SMI.2006.8
http://dx.doi.org/10.1002/vis.316
http://dx.doi.org/10.1109/SMI.2005.13
http://dx.doi.org/10.1109/SMI.2005.13
http://dx.doi.org/10.1109/MCG.2003.1231171
http://dx.doi.org/10.1109/TVCG.2007.70559
http://dx.doi.org/10.1109/TVCG.2006.96
http://dx.doi.org/10.1109/TVCG.2006.96
http://www.ncbi.nlm.nih.gov/pubmed/17073377
http://dx.doi.org/10.1145/800248.807402
http://dx.doi.org/10.1109/38.28107
http://dx.doi.org/10.1109/38.28107
http://dx.doi.org/10.1109/38.31463
http://developer.nvidia.com/attach/6545
http://doi.acm.org/10.1145/97879.97901
http://dx.doi.org/10.1145/1108590.1108605
http://dx.doi.org/10.1007/3-540-30790-7_5
http://doi.acm.org/10.1145/1230100.1230117
http://doi.acm.org/10.1145/1230100.1230117
http://dx.doi.org/10.1016/j.neuroimage.2006.05.048
http://dx.doi.org/10.1111/j.1467-8659.2009.01684.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01684.x


Image-based rendering of intersecting surfaces for dynamic comparative visualization 363

Stef Busking received both B.Sc.

(2005) and M.Sc. degrees (2006) in

Computer Science from the Tech-

nische Universiteit Eindhoven. He

is currently a Ph.D. candidate at

Delft University of Technology. His

research interests include illustra-

tive rendering, real-time interaction,

comparative visualization and visual

exploration of data sets.

Charl P. Botha is Assistant Profes-

sor in the Visualization Group of

the Delft University of Technology,

the Netherlands, where he leads the

Medical Visualization research ac-

tivities. He is also a visiting scien-

tist at the LKEB research group, De-

partment of Radiology, Leiden Uni-

versity Medical Center. Dr. Botha

holds an M.Sc. in Electronic Engi-

neering (1999) and a Ph.D. in Com-

puter Science (2005).

Luca Ferrarini works as a re-

searcher in the field of neuroimag-

ing/neuroscience at the Division of

Image Processing (LKEB) of the

Leiden University Medical Center

(LUMC), in Leiden, the Nether-

lands. He received his Ph.D. cum

laude in neuroimaging from Leiden

University in 2008, and his M.Sc.

cum laude in Information Engineer-

ing from the University of Modena

and Reggio Emilia (Italy) in 2003.

His research interests include sta-

tistical analysis of morphological

changes in the brain due to neurode-

generative diseases, as depicted by structural MRI, and the character-

ization of functional connectivity networks in the resting brain using

graph theory and resting state fMRI.

Julien Milles is Assistant Profes-

sor in the Department of Radiol-

ogy of the Leiden University Med-

ical Center, the Netherlands, where

he works since 2004. He previously

worked as a research associate at the

Cardiovascular Research Institute

of Maastricht (2003) and the CRE-

ATIS laboratory (Lyon, France) be-

tween 1999 and 2003. He received

his M.Sc. degree in Electrical Engi-

neering from the Polytechnic Insti-

tute of Grenoble and Ph.D. from the

Applied Science Institute of Lyon in

1999 and 2002 respectively. His re-

search interests include cardiovascular and neurological MR imaging,

image enhancement, motion estimation, and quantitative analysis.

Frits H. Post is Associate Professor

of Computer Science at TU Delft,

where he leads a research group

in data visualization. He received

an M.Sc. degree in Industrial De-

sign Engineering from TU Delft in

1979. His research interests include

flow visualization, medical visual-

ization, virtual reality and 3D inter-

action. He has (co-)authored more

than 100 publications in many ar-

eas of data visualization. He is the

chairman of the Eurographics Steer-

ing Committee on Data Visualiza-

tion and a co-founder of the annual

joint Eurographics-IEEE EuroVis Symposium. He is a Fellow of the

Eurographics Association.


	Image-based rendering of intersecting surfaces for dynamic comparative visualization
	Abstract
	Introduction
	Related work
	Domain matching and comparison
	Comparative visualization of 3D surfaces
	Base visualization

	Enhanced intersecting surfaces
	Limitations of the original visualization
	Enhancements
	Image-based implementation
	Intersection contours
	Local distance cues
	Relevance filtering


	Implementation
	The layered rendering pipeline
	CSG rendering
	Clipping
	Coplanarity

	Intersection contours
	Integrating local distance information
	Fogging
	Distance fields

	Relevance
	Performance

	Case study
	Statistical shape models
	Evaluation method
	Software setup
	Evaluation results
	Fogging and shadow-casting surface glyphs
	Intersection contours
	Relevance
	Point-correspondence information

	Lessons learned
	Summary and outlook

	Conclusions and future work
	Future work

	Acknowledgements
	References


