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Abstract. Given a set of images acquired from known viewpoints, we describe a method for synthesizing the
image which would be seen from a new viewpoint. In contrast to existing techniques, which explicitly reconstruct
the 3D geometry of the scene, we transform the problem to the reconstruction of colour rather than depth. This
retains the benefits of geometric constraints, but projects out the ambiguities in depth estimation which occur in
textureless regions.

On the other hand, regularization is still needed in order to generate high-quality images. The paper’s second
contribution is to constrain the generated views to lie in the space of images whose texture statistics are those
of the input images. This amounts to an image-based prior on the reconstruction which regularizes the solution,
yielding realistic synthetic views. Examples are given of new view generation for cameras interpolated between the
acquisition viewpoints—which enables synthetic steadicam stabilization of a sequence with a high level of realism.
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1. Introduction

Given a small number of photographs of the same scene
from several viewing positions, we want to synthesize
the image which would be seen from a new view-
point. This “view synthesis” (Fig. 1) problem has been
widely researched in recent years. However, even the
best methods do not yet produce images which look
truly real. The primary source of error is in the trade-
off between the inherent ambiguity of the problem, and
the loss of high-frequency detail due to the regulariza-
tions which must be applied to alleviate that ambiguity.

In this paper, we show how to constrain the generated
images to have the same local statistics as natural im-
ages, effectively projecting the new view onto the space
of real-world images. As this space is a small subspace
of the space of all images, the result is strongly regu-
larized synthetic views which preserve high-frequency
details.

Strategies for view synthesis are divided into those
which explicitly compute a 3D representation of the
scene, and those in which the computation of scene
geometry is implicit. The first class includes texture-
mapped rendering of stereo reconstructions (Koch,
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Figure 1. View synthesis. (a, b): Two from a set of 39 images taken by a hand-held camera. (c): Detail from a new view generated using
state-of-the-art view synthesis. The new view is about 20◦ displaced from the closest view in the original sequence. Note the spurious echo of
the ear. (d): The same detail, but constrained to only generate views which have similar local statistics to the input images.

1995; Scharstein, 1999; Scharstein and Szeliski,
2002), volumetric techniques such as space carv-
ing (Broadhurst and Cipolla, 2001; Kutulakos and
Seitz, 1999; Matusik et al., 2000; Seitz and Dyer,
1997; Wexler and Chellappa, 2001), and other volumet-
ric approaches (Szeliski and Golland, 1998). Implicit-
geometry techniques (Gortler et al., 1996; Levoy and
Hanrahan, 1996; Matusik et al., 2002; McMillan and
Bishop, 1995) assemble the pixels of the synthesized
view from the rays sampled by the pixels of the in-
put images. In a newly emergent class of technique,
to which this paper is most closely related, view-
dependent geometry (Debevec et al., 1996; Irani et al.,
2000; Koch et al., 2001; Rademacher, 1999) is used to
guide the selection of the colour at each pixel.

What all these techniques have in common, whether
based on lightfields or explicit 3D models, is that there
is no free lunch: in order to generate a new ray which
is not in the bundle one is given, one must solve a form
of the stereo correspondence problem. This is a diffi-
cult inverse problem, which is poorly conditioned: for
a given set of images, many different solutions will
model the image data equally well. Thus, in order to
select between the nearly equivalent solutions the prob-

lem must be regularized by incorporating prior knowl-
edge about the likely form of the solution. Previous
work on new-view synthesis or stereo reconstruction
has typically included such prior knowledge as a pri-
ori constraints on the (piecewise) smoothness of the
3D geometry, which results in artifacts at depth bound-
aries. In this paper, because the problem is expressed in
terms of the reconstructed image rather than the recon-
structed depth map, we can impose image-based priors,
which can be learnt from natural images (Freeman and
Pasztor, 1999; Grenander and Srivastava, 2001; Huang
and Mumford, 1999; Srivastava et al., 2003).

The most relevant previous work is primarily in two
areas: view-dependent geometry, and natural image
statistics. Irani et al. (2002) expressed new view gener-
ation as the estimation of the colour at each generated
pixel. Their representation implies, as does ours, a 3D
geometry for the scene which is different for each syn-
thetic viewpoint, and is thus related to view-dependent
visual hull computation (Matusik et al., 2000; Wexler
and Chellappa, 2001). As they note, this greatly im-
proves the fidelity of the reconstructed image. How-
ever, it does not remove the fundamental ambiguity in
the problem, which this paper directly addresses. In
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addition, their technique depends on the presence of
a dominant plane in the scene, where this paper deals
with the case of a general 3D scene with general camera
motion.

The use of image-based priors to regularize hard in-
verse problems is inspired by Freeman and Pasztor’s
(1999) work on learning priors for Bayesian image re-
construction. Our texture representation, as a library
of exemplar image patches, derives from this and from
the recent tecture synthesis literature (Efros and Leung,
1999; Wei and Levoy, 2000). In this paper we extend
these ideas to deal with the strongly multimodal data
likelihoods present in the image-based rendering task,
allowing the generation of new views which are locally
similar to the input images, but globally consistent with
the new viewpoint.

2. Problem Statement

We are given a collection of n 2D images I1 to In , in
which Ii (x, y) is the colour at pixel (x, y) of the i th
image.1 Colour is expressed as a 3- vector in an ap-
propriate colorspace. The images are taken by cameras
in different positions represented by 3 × 4 projection
matrices P1 to Pn , which are supplied. Figure 2 sum-
marizes the situation. The projection matrix P projects
homogeneous 3D points X to homogeneous 2D points
x = λ(x, y, 1)� linearly: x = PX where the equality is
up to scale. We denote by Ii (X) the pixel in image i to
which 3D point X projects, so

Ii (X) = Ii (π (Pi X)), π (x, y, w) = (x/w, y/w)
(1)

Epipolar lines: Projections of ray X(z)
The stack of epipolar lines is C (i,z)

Input
images

I1
I2

I3

3D Object

View to be
synthesized

Pixel (x,y) to be
generated, with
colour V(x,y)

3D Ray X(z)

Figure 2. Geometric configuration. The supplied information is a
set of 2D images I1..n and their camera positions P1..n . At each pixel
in the view to be synthesized, we wish to discover the colour which
is most likely to be a reprojection of a 3D object point, based on the
implied projection into the source images.

The task of virtual view synthesis is to generate the
image which would be seen by a virtual camera in a
position not in the original set. Specifically, we wish
to compute, for each pixel V (x, y) in a virtual image
V the colour which that pixel would observe if a real
camera were placed at the new location. We assume
we are dealing with diffuse, opaque objects, and that
any deviations from this assumption may be considered
part of imaging noise. The extensions to more general
lighting assumptions are exactly those in space carv-
ing (Kutulakos and Seitz, 1999), and will not be dealt
with here.

The objective of this work is to infer the most
likely rendered view V given the set of input im-
ages I1, . . . , In . In a Bayesian framework, we wish
to choose the synthesised view V which maximizes the
posterior p(V | I1, . . . , In). Bayes’ rule allows us to
write this as

p(V | I1, . . . , In) = p(I1, . . . , In | V)p(V)

p(I1, . . . , In)
(2)

where p(V) is the prior on V , and the data term
p(I1, . . . , In | V) measures the likelihood that the ob-
served images could have been observed if V were the
true colours at the novel viewpoint. Because we shall
maximize this posterior over V , we need not compute
the denominator p(I1, . . . , In), and will instead opti-
mize the function

q(V) = p(I1, . . . , In | V)p(V) (3)

This likelihood has two parts: the photoconsistency
likelihood p(I1, . . . , In | V) and the prior p(V) which
we shall call ptexture(V).

2.1. Photoconsistency Constraint

The colour consistency constraint we employ is stan-
dard in the stereo and space-carving literature. We con-
sider each pixel V (x, y) in the synthesised view sep-
arately, so the likelihood is written as the product of
per-pixel likelihoods

p(I1, . . . , In | V) =
∏

(x,y)

p(I1, .., In | V (x, y)) (4)

Consider the generation of new-view pixel V (x, y).
This is a sample from along the ray emanating from
the camera centre, which we may assume to be the ori-
gin. Let the direction of this ray be denoted d(x, y). It
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can be computed easily given the calibration param-
eters of the virtual camera. Let a 3D point along the
ray be given by the function X(z) = zd(x, y) where z
ranges between preset values zmin and zmax. For a given
depth z, we can compute using (1) the set of pixels
to which X(z) projects in the images I1..n . Denote the
colours of those pixels by the function

C(i, z) = Ii (X(z)). (5)

Let the set of all colours at a given z value be written

C(:, z) = {C(i, z)}n
i=1 , (6)

and the set, C, of all samples—at location (x, y)—be

C = {C(i, z) | 1 ≤ i ≤ n, zmin < z < zmax}. (7)

Figure 3 shows an example of C at one pixel in a real se-
quence. Because the input-image pixels whose colours
form C are the only pixels which influence new-view
pixel (x, y), the photoconsistency likelihood further
simplifies to (writing V for V (x, y))

p(I1, . . . , In | V ) = p(C | V ) (8)

Now, by making explicit the dependence on the depth
z and marginalizing (assuming p(z | V ) is uniform),
we obtain

p(C | V ) =
∫

p(C | V, z) dz

=
∫

p(C(:, z) | V, z) dz (9)

The noise on the input image colours C(i, z) will be
modelled as being drawn from distributions with den-
sity functions of the form exp(−βρ(t)), centred at V ,
where β is a constant specifying the width of the dis-
tribution. Thus the likelihood is of the form

p(C(:, z) | V, z) =
n∏

i=1

exp −βρ(‖V − C(i, z)‖)

(10)

The function ρ is a robust kernel, and in this work is
generally the absolute distanceρ(x) = |x |, correspond-
ing to an exponential distribution on the pixel intensi-
ties. In situations (discussed later) where a Gaussian
distribution is more appropriate, the kernel becomes
ρ(x) = x2.

Figure 3. Photoconsistency. One image is shown from a sequence
of 27 captured by a hand-held camera. The circled pixel x’s pho-
toconsistency with respect to the other 26 images is illustrated in
(a). The upper image in (b) shows the reprojected colours C(:, z) as
columns of 26 colour samples, at each of 500 depth samples. The
colours are the samples C(i, z) where the frame number i varies
along the vertical axis, and the depth samples z vary along the hor-
izontal. Equivalently, row i of this image is the intensity along the
epipolar line generated by x in image i . Below are shown photo-
consistency likelihoods p(C | V, z) for two values of the colour V
(backgrounds to the plots). As this pixel is a co-location of back-
ground and foreground, these two colours form modes of p(C | V )
when z is maximized. This multi-modality is the essence of the am-
biguity in new-view synthesis, which prior knowledge must remove.

In order to choose the colour V , we shall be
computing (Section 3.1) the modes of the function
p(C(:, z) | V (x, y)). As defined above, this requires
the computation of the integral (9), which is compu-
tationally undemanding. However, because the value
of β is difficult to know, and because the function is
sensitive to its value, the integral must also be over a
hyperprior on β, rendering it much more challenging.
Approximating the marginal by the maximum gives us
an approximation, denoted pphoto,

pphoto(V (x, y)) ≈ max
z

p(C(:, z) | V, z) (11)
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Figure 4. The function p(C(:, z) | V, z) plotted for the pixel studied in Fig. 3, with grayscale images, so V is a scalar, and ρ(x) = |x |. The
projected graphs show the marginals (blue) and the maxima (red). The marginalization over colour (V ) has fewer minima than that over z, and
the two modes corresponding to foreground and background are clearly seen.

Figure 5. Minima of Ephoto. (a) Isosurfaces in RGB space of the photoconsistency function Ephoto(V ) at the pixel studied in Fig. 3. Minima are
computed by gradient descent from random starting positions, of which twelve are shown (black circles), with the gradient descent trajectories
plotted in black. Four modes were retained after clustering; their locations are marked by white 3D “axes” lines in (a), and their RGB colours
are shown in (b).

which avoids both of these problems. In the implemen-
tation, the maximum over z is computed by explicitly
sampling, typically using 500 values. Figure 4 shows
a plot of p(C(:, z) | V, z) for grayscale C at a typical
pixel. Figure 5 shows isosurface plots of pphoto(V ) in
RGB space for the same pixel.

2.2. Incorporating the Texture Prior

The function pphoto(V ) will generally be multimodal,
due firstly to physical factors such as occlusion and
partial pixel effects and secondly to deficiencies in
the image-formation model, such as not modelling
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specular reflections or having an inaccurate model
of imaging noise. Thus the data likelihood at the
true colour may often be lower than the likelihood
at other, spurious values. Consequently, selecting the
maximum-likelihood V at each pixel yields images
with significant artefacts, such as those shown in
Fig. 1(c). We would like to constrain the generated
views to lie in the space of real images by imposing a
prior on the possible generated images. Defining such
a prior is in the domain of the analysis of natural im-
age statistics, an active area of recent neurophysiologi-
cal and machine learning research (Grenander and Sri-
vastava, 2001; Huang and Mumford, 1999; Srivastava
et al., 2003). Because it has been observed that correla-
tion between pixels falls off quickly as a function of dis-
tance, we can make the assumption that the probability
density can be written as a product of functions operat-
ing on small neighborhoods. Let the generated image
V have pixels V (x, y). Then the prior has the form

ptexture(V) =
∏

x,y

ptexture(N (x, y)) (12)

where the function N (x, y) is the set of colours of
neighbours of (x, y). Here we use 5 × 5 neighbour-
hoods, so

N (x, y) = {V (x + i, y + j) | −2 ≤ i, j ≤ 2}.
(13)

As the form of ptexture is typically very difficult to
represent analytically (Huang and Mumford, 1999),
we follow (Efros and Leung, 1999; Freeman and
Pasztor, 1999) and represent our texture prior as a
library of texture patches. The likelihood of a particular
neighbourhood is measured by computing its distance
to the closest database patch. Thus, we are given a
texture database of 5 × 5 image patches, denoted
T = {T1, ..., TN } where N is typically extremely large.
The definition of ptexture is then

ptexture(N (x, y)) = exp
(
−λ min

T ∈T

‖T − N (x, y)‖2
)

where λ is a tuning parameter. This is a closest-point
problem in the set of 75-d points (75 = 5 × 5 × 3)
in T and may be efficiently solved using a variety of
algorithms, for example vector quantization and BSP
tree indexing (Wei and Levoy, 2000).

2.3. Combining Photoconsistency and Texture

Finally, combining the data and prior terms, we have
the expression for the quasi-likelihood

q(V) =
∏

x,y

pphoto(V (x, y)) ptexture(N (x, y)).

In the implementation, we minimize the negative log
of q, yielding the energy formulation

E(V) =
∑

x,y

Ephoto(V (x, y)) +
∑

x,y

Etexture(N (x, y))

(14)

where Ephoto measures the deviation from photoconsis-
tency at pixel (x, y) and Etexture measures the a-priori
likelihood of the texture patch surrounding (x, y). From
(11), the definition of Ephoto at a pixel (x, y) with 3D
ray X(z) is

Ephoto(V ) = min
zmin<z<zmax

n∑

i=1

ρ(‖V − Ii (X(z))‖) (15)

The texture energy is the negative log of ptexture, giving

Etexture(N (x, y)) = λ min
T ∈T

‖T − N (x, y)‖2 (16)

The view synthesis problem is now one of minimization
of E over the space of images. This is a difficult global
optimization problem, and making it tractable is the
subject of the next section.

3. Implementation

The optimization of the energy defined above could
be directly attempted using a global optimization strat-
egy such as simulated annealing. However, both the
prior and the data term Ephoto are expensive to evalu-
ate, with multiple local minima at each pixel, meaning
that attaining a global optimum will be difficult, and
certainly time consuming. To render the optimization
tractable, we exploit the simplification of the energy
function conferred by estimating colour rather than
depth. That is, we compute the set of modes of the
photo-consistency term for each pixel, and restrict the
solution for that pixel to this set. Then the texture prior
is used to select the values from this set. This reduces
the problem from a search over a high-dimensional
space to an enumeration of the possible combinations.
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Although the data likelihood p(C | V ) is multimodal,
there are typically far fewer modes than there are max-
ima of p(C(:, z) | V, z) over depth, so we can hope to
explicitly compute the modes of p(C | V ) as the first
step. This means that the optimization becomes a dis-
crete labelling problem, which although still complex,
can be analysed much more efficiently.

3.1. Enumerating the Minima of Ephoto(V )

The goal then is to generate a list of plausible colours
for each rendered pixel V (x, y). One option would be to
sample from pphoto(V ) using MCMC, but this is compu-
tationally unattractive. A more practical alternative is to
find all local minima of the energy function Ephoto(V ).
On the face of it, this seems a tall order, but as Fig. 5
indicates, there are typically few minima in a generally
well-behaved space. Inspection of several such plots
on a number of scenes suggests that this behaviour is
typical. Finding all local minima of such functions is
task for which several strategies have emerged from the
computational chemistry community, and have been
introduced to computer vision by Sminchisescu and
Triggs (2002). The most expensive is to densely sam-
ple the space of V (here 3D RGB space), and this is
the strategy used to obtain the isosurface plot shown in
Fig. 5. A more efficient strategy to isolate the minima
is to start gradient descent from several randomly cho-
sen starting points, and iterate until local minima are
found. Finally clustering on the locations of the min-
ima produces a set of distinct colours which are likely
at that pixel. On the images we have tested, 12 steps of
gradient descent on each of 20 random starting colours
V takes a total of about 0.1 seconds in Matlab, and pro-
duces between four and six colour hypotheses at each
pixel.

3.2. Texture Reference and Rectification

The second implementation issue is the source of ref-
erence textures. To build a general tool for projection
of images onto natural images, a large database of im-
ages of natural scenes would be the ideal choice. In this
case, however, we are operating in a limited problem
domain. We expect that the newly synthesized views
will be similar locally to the input views with which the
algorithm is provided. Therefore, the texture library is
built of patches from the input images. This provides
excellent performance with a small library, and the pho-

toconsistency term means that the system cannot “over-
learn” by simply copying large patches from the nearest
source image to the newly rendered view. For speed,
we can also use the known z range to limit the search
for matching texture windows in source image Ii to the
bounding box of {Pi X(z) | zmin < z < zmax}.

3.3. Optimization

Given the modes of the photoconsistency distribution at
each pixel, the optimization of (14) becomes a labelling
problem. Each pixel is associated with an integer label
l(x, y), which indicates which mode of the distribution
will be used to colour that pixel, with a corresponding
photoconsistency cost which is precomputed. This sig-
nificantly reduces the cost of function evaluations, but
the optimization is still a computationally challeng-
ing problem. For this work, we have implemented a
variant of the iterated conditional modes (ICM) algo-
rithm (Besag, 1986), alternately optimizing the pho-
toconsistency and texture priors. The algorithm begins
by selecting, for each pixel, the most likely mode of the
photoconsistency function, yielding an initial estimate
V 0. Then, at each ICM iteration, each pixel is varied un-
til the 5 × 5 window surrounding it minimizes the sum
Ephoto + Etexture at that pixel. This optimization is po-
tentially extremely expensive, implying the evaluation
of Ephoto(V ) for the value V in the centre of each tex-
ture patch T . However, because the minima of Ephoto

are available, a fast approximation is obtained simply
by writing Ephoto(V ) ≈ ‖V − V r−1‖2, where V r−1 is
the colour obtained at the previous iteration. If all other
pixels inV are fixed, the task is to choose V to minimize
Ephoto + λEtexture, approximated by (using (16))

V r = argmin
V

min
T ∈T

(‖V − V r−1‖2 + λ‖T − N (V )‖2)

(17)

where N (V ) is the image neighbourhood around V .
Splitting the second term into a contribution from the
centre pixel of T and the remainder of the neighbour-
hood, it can be shown that this amounts to setting the
centre pixel to a linear combination of (a) the photo-
consistency mode, and (b) the value that would be pre-
dicted by sampling-based texture synthesis. If V r−1 is
the value predicted by photoconsistency at the previous
iteration, and T is the value at the centre pixel of the
best matching texture patch T , then the pixel should be
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Figure 6. Pseudocode for iterative computation of new view V . The preprocessing is expensive (about 0.1 sec/pixel), the iterations cost as
much as patch-based texture synthesis.

replaced by

V r = V r−1 + λT

1 + λ
(18)

Finally, replacing V r by the closest mode at each it-
eration ensures that the synthesized colour is always
a subset of the photoconsistency minima. Note that
this does not undo the good work of the robust ker-
nel in computing the modes of Ephoto, but allows the
texture prior to efficiently select between the robustly-
computed colour candidates at each pixel. This also
prevents the algorithm from copying large sections of
the texture source. Figure 6 summarizes the steps in the
algorithm.

3.4. Choice of Robust Kernels

In the preceding, the choice of robust kernels for the
photoconsistency likelihood has been mentioned sev-
eral times. In practice, there is a significant tradeoff be-
tween speed and accuracy implied by choosing other

than the squared-error kernel ρ(x) = x2 kernel, as the
mode computation can be significantly optimized for
the squared-error case. The problem arises when there
is significant occlusion in the sequence, as on the exam-
ple pixel in Fig. 3, and it becomes necessary to produce
a view which looks “behind” the foreground pixel. Us-
ing the squared-error kernel, the true colour (in this
case, black) is not a minimum of Ephoto, because the
column C(:, z) at the depth corresponding to the back-
ground contains some white pixels which are signifi-
cant outliers to the Gaussian distribution exp(−ρ(·)).
The true colour is a minimum using the absolute dis-
tance ρ(x) = |x | or Huber kernels, which are less sen-
sitive to such outliers. To provide a rule of thumb, the
squared-error kernel is fast, and works well for inter-
polation, but the absolute distance kernel is needed for
extrapolation.

4. Examples

Image sequences were captured using a hand-held
camera, and the sequences were calibrated using
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Figure 7. Leave-one-out test. Using 26 views to render a missing view allows comparison to be made between the rendered view and
ground truth. (a) Maximum-likelihood view, in which each pixel is coloured according to the highest mode of the photoconsistency function.
High-frequency artifacts are visible throughout the scene. (b) View synthesized using texture prior. The artifacts are significantly reduced. (c)
Ground-truth view. (d) Difference image between (b) and (c).

Figure 8. Steadicam test. Three novel views of the monkey scene from viewpoints not in the original sequence. The complete sequence may
be found at http://www.robots.ox.ac.uk/∼awf/ibr.

Figure 9. 3D composite from 2D images. The camera motion from the live-action background plate is applied to the head sequence, rendering
new views of the face.

commercially available camera tracking software (2d3
Ltd. http://www.2d3.com, 2002). A number of ex-
amples of the algorithm performance were pro-
duced. Single still frames are reproduced here,
and complete MPEG sequences may be found at
http://www.robots.ox.ac.uk/∼awf/ibr.

The first experiment is a leave-one-out test, so that
the recovered images can be compared against ground
truth. Each frame of the 27-frame “monkey” sequence
was reconstructed based on the other 26 frames. Fig-
ure 7 shows the results for a typical frame, comparing
the ground truth image first to the synthesized view
using photoconsistency alone, and then to the result

guided by the texture prior. Visually, the fidelity is
high, and the image is free of the high-frequency ar-
tifacts which the photoconsistency-maximizing view
exhibits. Artifacts do occur in the background visible
under the monkey’s arm, where few of the source views
have observed the background, meaning it does not ap-
pear as a mode of the photoconsistency distribution.
The difference image in Fig. 7(d) is simply the length
of the RGB difference vector at each pixel, but shows
that the texture prior does not bias the generated view,
for example by copying one of the texture sources.

The second example shows performance on a
“steadicam” task, where the scene is re-rendered at a
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Figure 10. Tsukuba. Fine details such as the lamp arm are retained,
but some ghosting is evident around the top of the lamp.

set of viewpoints which smoothly interpolate the first
and last camera position and orientation. The reader is
encouraged to consult the videos on the webpage above
to confirm the absence of artifacts, and the subtle move-
ments of the partial occlusions at the boundaries.

Figure 1 shows example images from one sequence
and illustrates the improvement obtained. The erro-
neous areas surrounding the ear are removed, while
the remainder of the image retains its (correct) solu-
tion. At high magnification, it is in fact possible to see
that the optimized solution has added back some high-
frequency detail in the image. This is because the local
statistics of the texture library are being applied to the
rendered view.

5. Conclusion

This paper has shown that view synthesis problems can
be regularized using texture priors. This is in contrast
to the depth-based priors that previous algorithms have
used. Image-based priors have several advantages over
the depth-based ones. First, depth priors are difficult to
learn from real images, so artificial approximations are
used. These approximations are equivalent to assuming
very simple models of the world—for example, that it
is piecewise planar—and thus introduce artifacts into
the generated views. In contrast, image-based priors are
easy to obtain from the world. If the problem domain
is restricted, as it is here, a small number of images can
be used to regularize the solution to a complex inverse
problem.

There are many areas for further work: (1) image-
based priors as implemented here are expensive to eval-
uate. For a typical depth prior, evaluation of the prior

in a pixel neighbourhood requires computation of the
order of a few machine instructions. As image-based
priors are stored in large lookup tables, the cost of eval-
uating them is many times higher. (2) In this paper, only
one optimization strategy was investigated. It is hoped
that examination of other strategies will lead to signifi-
cantly quicker solutions. (3) Occlusion is handled here
by the robust kernel ρ. More geometric handling of
occlusion, analogous to space carving’s improvement
over voxel colouring, ought to yield better results. (4)
When rendering sequences of images, it is valuable
to impose temporal continuity from frame to frame.
This paper has not addressed this issue, so the ren-
dered sequences show some flicker. On the other hand
this does allow the stability of the per-frame solutions
to be evaluated.
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Note

1. Notation guide: calligraphic letters L are images or windows
from images. Uppercase roman letters L are RGB (or other
colourspace) vectors. Bold roman lowercase x denotes 2D points,
also written (x, y), and bold roman uppercase are 3D points X.
Matrices are in fixed-width font, viz M.
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