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Abstract— We present a novel method for image-based floor
detection from a single image. In contrast with previous
approaches that rely upon homographies, our approach does
not require multiple images (either stereo or optical flow).
It also does not require the camera to be calibrated, even
for lens distortion. The technique combines three visual cues
for evaluating the likelihood of horizontal intensity edge line
segments belonging to the wall-floor boundary. The combination
of these cues yields a robust system that works even in the
presence of severe specular reflections, which are common in
indoor environments. The nearly real-time algorithm is tested
on a large database of images collected in a wide variety of
conditions, on which it achieves nearly 90% detection accuracy.

I. INTRODUCTION

Image-based floor detection is an important problem for

mobile robot navigation. By knowing where the floor is,

the robot can avoid obstacles by navigating within the free

space. Detecting the floor, the robot is also able to acquire

information that would be useful in constructing a map of the

environment, insofar as the floor detection specifically delin-

eates between the floor and the walls. Moreover, localization

using an existing map can be guided by floor detection by

matching the location of the detected floor with the location

of the floor expected from the map. Additional reasons for

floor detection include problems such as computing the size

of the room.

A significant amount of research has focused upon the

obstacle avoidance problem. In these techniques, the primary

purpose is to detect the free space immediately around the

mobile robot rather than the specific wall-floor boundary.

Most of these approaches utilize the ground plane constraint

assumption to measure whether the disparity or motion of

pixels matches the values that would be expected if the points

lie on the ground plane. Sabe et al. [13] use stereo cameras

to accomplish this task, while the methods of Stoffler [14]

and Santos-Victor [17] rely upon optical flow. An alternate

approach was pursued by Lorigo et al. [4], who used a

combination of color and gradient histograms to distinguish

free space from obstacles.

Only a handful of researchers have considered the floor

detection problem in its own right. Similar to the obstacle

avoidance approaches, the techniques employed tend to uti-

lize the ground plane constraint. Kim and colleagues [2],

[3] and Zhou and Li [20] apply planar homographies to

optical flow vectors, while Fazl-Ersi and Tsotsos [19] rely on

stereo homographies. The approach of [20] computes only a

sparse representation of the floor by classifying sparse feature

points, while the other two approaches make a pixelwise

decision to result in a dense floor representation.

In the computer vision community, some impressive re-

sults have been achieved recently for related problems. Lee

et al. [1], for example, have developed a method that is

capable of performing geometric reasoning on a single indoor

image. Inspired by the early line-drawing interpretation work

of Guzman [18], they are able to separate the walls from

the floor and ceiling using intensity edges and geometric

constraints. In another impressive piece of work, Hoiem et

al. [6] also assign labels to pixels based upon image data

and class priors, primarily for outdoor scenes. Although the

results of both of these approaches are promising, neither

operates in real time, thus limiting their application to

robotics at the moment. Moreover, the work of [1] requires

the ceiling to be visible, which is often not the case when

the camera is mounted on a mobile robot that is low to the

ground.

In this paper we introduce a novel method for floor

detection from a single image for mobile robot applications.

Unlike existing techniques, the approach does not make

use of the ground plane constraint and therefore does not

use homographies, optical flow, or stereo information. As a

result, it does not require the camera to be calibrated, not

even for lens distortion. Inspired by the work of McHenry et

al. [12], our technique combines multiple cues to enable the

wall-floor separating boundary to be estimated in the image.

One especially noteworthy aspect of our approach is its

proper handling of specular reflections. It is not uncommon

for indoor scenes to contain significant amounts of reflection

of light off the floor, particularly when the overhead lights

are bright, the sun is shining through a window, and/or

the floor is particularly shiny. These reflections can confuse

homography-based approaches, because they cause pixels on

the ground plane to violate the ground plane constraint. Re-

flections are also known for being difficult to model, causing

spurious intensity edges and altering the color appearance of

the floor. By combining multiple visual cues, our approach

is often able to ignore the spurious edges, distinguishing be-

tween edges arising from the structure of the scene and those

produced by the specular reflections. Another contribution

of this work is the introduction of a rather large database
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Fig. 1. Flowchart of the proposed method for floor detection.

of more than 400 indoor corridor images from dozens of

different buildings, exhibiting a wide range of conditions. On

this challenging dataset, our algorithm is able to successfully

detect the floor on around 90% of the images.

Figure 1 shows an overview of our approach. Horizontal

and vertical line segments are detected, and three cues

are used to evaluate the likelihood of each horizontal line

segment being on the wall-floor boundary. The weighted sum

of these values is thresholded, and the remaining segments

are connected to form the estimated wall-floor boundary.

Note that our approach operates on a single image, without

stereo or motion information.

II. DETECTING LINE SEGMENTS

A. Detecting and classifying line segments

The first step of the approach is to detect intensity edges by

applying the Canny edge detector [8] to the grayscale image.

Then a robust line fitting method is applied to the intensity

edges to obtain a set of line segments. We use the Douglas-

Peucker algorithm [9], with the modification described in

[11] to improve the retention of small line segments that

occur at the bottom edge of doors. Each line segment is

defined by two endpoints in the image. Line segments are

divided into two categories: vertical and horizontal. Based on

over three hundred corridor images and the ground truth, we

determined a tight slope range to the vertical line segments,

so that a line segment is classified as vertical if its slope is

within ±5◦ of the vertical direction. Horizontal line segments

are given a wider slope range: A line segment is classified

as horizontal if its slope is within ±45◦ of the horizontal

direction. All other slopes are discarded.

B. Pruning line segments

Due to the noisy conditions of real-world scenes, the

procedure just described often produces spurious line seg-

ments that are not related to the wall-floor boundary. We

apply two additional steps to prune such segments. First,

we discard segments whose length is less than a threshold

(60 pixels for vertical lines, and 15 pixels for horizontal

lines). Then we compute the intersections of the horizontal

line segment pairs, after which we compute the mean of the

y coordinate of the intersections inside the image to yield

an estimate of the vanishing line. For any pair of horizontal

line segments, the intersection point is calculated by the cross

product between the two line extensions, using homogeneous

coordinates:
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where each horizontal line is described by ax + by + c =
0, and the intersection point [ vx vy ]

T
is determined by

dividing by the scaling factor w. Once the intersection point

has been detected, all horizontal line segments that lie above

the vanishing line are discarded. The result of detection,

classification, and pruning of line segments is illustrated in

Figure 2.

III. SCORE MODEL FOR EVALUATING LINE SEGMENTS

Not all of the horizontal line segments that remain from

the pruning step will be related to the wall-floor boundary.

To determine the likelihood that a horizontal segment ℓh is

near this boundary, we compute a weighted sum of scores

for three individual visual cues:

Φtotal(ℓh) = wsφs(ℓh) + wbφb(ℓh) + whφh(ℓh), (2)

where ws, wb, and wh are the weights, and φs(ℓh), φb(ℓh),
and φh(ℓh) are the three individual scores, which are now

described.

A. Structure Score

We have found that a surprisingly effective cue for dis-

tinguishing the walls from the floor in typical corridor

environments is to simply threshold the image. This approach
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Fig. 2. The wall-floor boundary of typical corridor images is difficult to
determine due to strong reflections and shadows. TOP: Two images, with
the result of the modified Douglas-Peucker line fitting algorithm applied to
Canny edge detection overlaid. The line segments are classified into two
groups: vertical (blue) and horizontal (yellow). BOTTOM: Line segments
have been pruned according to length and the vanishing point, as described
in the text, to reduce the influence of reflections and shadows.

works especially well in environments in which the walls

are darker than the floor, and it also takes advantage of the

fact that the baseboard is often darker than the floor due

either to its painted color, shadows, or collected dirt. In fact,

even when the walls, doors, and floor are nearly white, the

technique is more effective than one might at first expect.

This is partly due, perhaps, to the shadows under the doors

that appear no matter the color of the surfaces in the corridor.

In some environments, the walls are lighter than the floor, in

which case thresholding will still distinguish between the two

but with reverse binary labels compared with those situations

just described.

An important step is to determine the value of the thresh-

old to use. Our proposed approach to thresholding, which

will be described in a moment, involves examining the

structure of the scene, i.e., the intensity edges. In Figure 3,

for example, the top-right image containing the pixels with

large gradient magnitude reveals the edges of the doors,

lights, wall, and so forth. A human observer looking at this

type of image could infer the structure of the scene with

little difficulty, as was observed by Lee et al. [1]. One idea

that we tried is to compute the desired threshold as the av-

erage graylevel intensity of these intensity edges. While this

approach works fairly well, the distracting intensity edges

caused by the reflections on the floor skew the computed

threshold in such a way as to reduce the quality of the

thresholded image. Therefore, we first discard these intensity

edges in a manner described in a moment, in order to result

in a relatively clean thresholded image. Figure 3 illustrates

the process.

For comparison, Figure 4 shows the output of two standard

algorithms based on the gray-level histogram, Ridler-Calvard

[15] and Otsu [16], on the same image. Compared with our

approach, the standard techniques mistakenly label reflective

pixels on the floor, due to the failure of the simplified model

Fig. 3. TOP-LEFT: A typical corridor image. TOP-RIGHT: Pixels with
gradient magnitude greater than a threshold are shown in white. BOTTOM-
LEFT: Using the separating curve from Fig. 5, the edge pixels mostly follow
the boundaries of the wall, door frames, and floor. BOTTOM-RIGHT: The
original image thresholded by a value determined by the separating curve,
thus revealing the structure of the corridor.

of a bimodal gray-level histogram to accurately capture the

subtle complexities of indoor scenes. Table I provides a

quantitative comparison using the images from our corridor

image database. The table shows the percentage of images

for which the thresholded result does not contain spurious

pixels on the floor.

Fig. 4. Results of two standard thresholding algorithms on the same image
as the previous figure: Ridler-Calvard [15] (left), and Otsu [16] (right).
Notice the spurious pixels on the floor due to reflection and shadows.

Ridler-Calvard [15] Otsu [16] Ours

correctness 62% 66% 82%

TABLE I

QUANTITATIVE COMPARISON OF OUR THRESHOLDING METHOD WITH

TWO STANDARD ALGORITHMS. SHOWN ARE THE PERCENTAGE OF

IMAGES WITHOUT SPURIOUS PIXELS ON THE FLOOR.

We now describe our approach to determining the thresh-

old value. The intensity edges that arise due to reflections

on the floor tend to have very high intensity values but quite

low gradient magnitude values, the latter being because of

the inherent blur that occurs because floors are not perfectly

reflective surfaces. To test this hypothesis, we used our

database of over 400 images. We manually selected over 800

points on these images that lie on true edges on the walls in

the world (i.e., they lie on door frames, etc.), and we also

randomly selected the same number of points that are not
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on true edges (i.e., they are on the ceiling or the floor). An

SVM-based classifier [7] was used to find the best separating

hyperplane to distinguish between the two classes of data

using the intensity value and the gradient magnitude of each

point. Figure 5 shows the training values along with the

separating curve. (The hyperplane in the higher dimensional

space defined by the polynomial kernel function becomes a

curve when projected back into the original feature space.)
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Fig. 5. Linear-based classification of pixels on horizontal line segments.
The x coordinate is the intensity of the pixel, while the y coordinate is
its gradient magnitude. From the training data, some pixels are edge points
(red stars), while others are nonedge points (blue circles). A polynomial
kernel based classifier separates the two groups of points by an optimal
curve (black).

From the figure, it is clear that taking both the gradient

magnitude and intensity value into account yields better

separation than using either alone. We define the set ξ′ to

denote the pixels in the image whose intensity value and

gradient magnitude cause them to lie above the SVM-based

separating curve.

The average intensity of the pixels in this set determines

the threshold that is used for extracting the main structure in

a corridor image:

τLC =
1

|ξ′|

∑

(x,y)∈ξ′

I(x, y). (3)

The structure image is therefore defined as the binary image

resulting from thresholding the image using this value:

S(x, y) = (I(x, y) > τLC) . (4)

Since the true edges are generally aligned with the structure

of the corridor, we compute the structure score φs of a line

segment ℓh by measuring the distance of each pixel in the

line segment to the nearest non-zero pixel in the structure

image:

φs(ℓh) =
∑

(x,y)∈ℓh

d[(x, y),S], (5)

where d[(x, y),S] computes the distance between the point

(x, y) and the structure image S. For fast computation, we

use the chamfer algorithm to compute the distance. The score

is normalized using a Gaussian distribution with a standard

deviation σs:

φ̄s(ℓh) = exp

{

−
φs(ℓh)

2σ2
s

}

, (6)

where σs = 10.

B. Bottom Score

The vertical line segments provide an important cue to

provide independent evaluation of whether a given horizontal

line segment is likely to be on the wall-floor boundary. First,

we discard all vertical line segments whose bottom point

does not extend below the middle of the image. This step

helps to ignore vertical line segments that arise due to texture

on the wall or ceiling, since the camera on the robot is low

to the ground and facing straight ahead. Then, we sort the

remaining vertical segments according to their x coordinate

and connect their bottom endpoints to yield a polyline that

extends from the left side of the image to the right side. Even

though this polyline is a rough approximation of the wall-

floor boundary, it is fast to compute and generally reliable

enough to help guide the evaluation. The bottom score of a

horizontal line segment ℓh is computed as the distance of all

of its pixels to the polyline ℓb:

φb(ℓh) =
∑

(x,y)∈ℓh

d[(x, y), ℓb], (7)

where d[(x, y), ℓb] computes the distance between the point

(x, y) and the polyline. To normalize the score, we use the

Gaussian distribution with a standard deviation σb:

φ̄b(ℓh) = exp

{

−
φb(ℓh)

2σ2
b

}

, (8)

where σb = 30.

Figure 6 illustrates this computation for two typical cor-

ridor images. The horizontal line segments that benefit most

from this computation are highlighted with red ellipses.

We can see that this computation is especially helpful for

reducing the likelihood of considering line segments on the

wall to be part of the wall-floor boundary.

Fig. 6. Horizontal and vertical line segments detected in two images.
The red ellipses highlight the horizontal segments with the highest bottom
score, due to their proximity to the bottom endpoints of nearby vertical line
segments.
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C. Homogeneous Score

In many cases, the floor of a typical corridor environment

is fairly homogeneous in its color throughout. In contrast,

there tend to be moderate to high amounts of texture on

the wall regions due to decorations, posters, door knobs,

kick plates, nameplates, windows, and so forth. Similarly,

the lights in the ceiling cause texture in that region as well.

To take advantage of this information, we perform color-

based segmentation of the image to favor horizontal line

segments which are located just above large homogeneous

regions, since the floor is generally the largest homogeneous

region in the image.

We employ the graph-based segmentation algorithm of

Felzenszwalb and Huttenlocher [5] because it is computa-

tionally efficient, requires few parameters (e.g., the minimum

size of a region), and produces reasonable results. The results

of this algorithm on a couple of typical corridor images

are shown in Figure 7. Notice that the floor is the largest

homogeneous region in both images, which is often the

case in our image database. Occasionally, disturbance from

reflection or texture on the floor prevent this cue from being

successful, which helps to motivate the need for multiple

cues.

Fig. 7. The result of graph-based segmentation [5] on two corridor images
used in Figure 6, with each region assigned a random color. Note that the
floor is almost a homogeneous area in both images, while the wall and doors
are divided into several smaller regions.

The homogeneous score of a horizontal line segment is

computed as

φ̄h(ℓh) =
|R|

|Rmax|
, (9)

where |R| denotes the number of pixels in the region R
just below the line segment, and Rmax is the maximum

region size among all the segments found by the graph-based

segmentation.

D. Detecting the wall-floor boundary

Each horizontal segment ℓh for which Φtotal(ℓh) > τφ,

where τφ is a threshold, is retained. These remaining line

segments are then ordered from left to right in the image, and

their endpoints are connected. At the left and right borders of

the image, the lines are extended. This results in a polyline

stretching across the image defining the boundary between

the wall and the floor.

IV. EXPERIMENTAL RESULTS

To test the performance of our algorithm, an image

database of more than 400 corridor images was taken in

twenty different buildings exhibiting a wide variety of dif-

ferent visual characteristics. The images were captured by a

Logitech QuickCam Pro 4000 webcam mounted about 30 cm

above the floor on an ActivMedia Pioneer P3AT mobile

robot. The images were processed by an algorithm imple-

mented in the C++ programming language on a 2.4 GHz

Core 2 processor (Dell XPS M1330 laptop). Although the

computation time varies somewhat according to the number

of detected line segments, the algorithm runs at approxi-

mately 5 frames/sec.1

For all environments, the equation of the SVM-based

separating curve is

[

x y 1
]





3.5 26 475
26 50 −125
475 −125 10









x

y

1



 = 0, (10)

the weights for the individual scores are ws = 1.6, wb =
0.75 and wh = 1.0, respectively, and the total threshold is

τφ = 2.7.

To evaluate the algorithm, the images in the database were

manually labeled by clicking on a number of points and then

fitting a B-spline curve to yield a ground truth wall-floor

boundary. We define the error of the algorithm applied to an

image as the number of pixels misclassified as floor or non-

floor, normalized by the total number of ground truth floor

pixels. Equivalently, the error can be computed as the sum,

over all the columns x = 0, . . . , width − 1 in the image, of

the difference between the ground truth y coordinate y
(x)
GT

and the estimated y coordinate ŷ(x):

rerr =

∑

x

∣

∣

∣
ŷ(x) − y

(x)
GT

∣

∣

∣

∑

x

∣

∣

∣
height − y

(x)
GT

∣

∣

∣

, (11)

where the image is of size width × height, and the sub-

traction in the denominator arises from the convention that

the y coordinate is with respect to the top of the image. We

set a threshold of 10%, so that the detection for an image

is considered a failure for a particular image if rerr > 0.1
for that image. Using this convention, our approach correctly

detects the floor region in 89.1% of the image database.

Figure 8 presents the results of our algorithm on some

typical corridor images. The first row displays wall-floor

boundaries that extend upward from left to right in the

image, while the second row shows the reverse situation.

In the third row, both sides of the corridor are visible, so

that the boundary extends in both directions. And the fourth

row shows floors with extremely strong reflections on the

floor, where the floor and wall are again distinguished using

only low-level information. From these results, we can see

that our approach is capable of detecting floors in corridors

under different illumination conditions and perspectives. In

addition, Figure 9 shows some successful results on images

downloaded from the internet, showing the versatility of the

approach.

1See http://www.ces.clemson.edu/˜stb/research/floor detection for videos
of the results.
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Fig. 8. Examples of floor successfully detected by our algorithm. Note the variety of floor materials, floor reflectivity, relative pose of the floor with
respect to the robot, and lighting conditions (Best viewed in color).

Fig. 9. Results of our algorithm on images downloaded from the web (Best viewed in color).

Some examples where the algorithm fails are shown in

Figure 10. In the first image from the left, the checkered

floor lead to many horizontal line segments that are mistak-

enly interpreted by our score model, and the graph-based

segmentation detects many small pieces on the floor region

rather than a single homogeneous segment. For the second

image, the wall texture also results in many horizontal line

segments that distract the algorithm. For the third image, the

shadows and reflection dominate the line segment detection

due to the poor gain control of the camera, making the final

result less precise. And for the fourth image, the far glass

door with no absolute edges makes it difficult for even a

human observer to precisely locate the wall-floor boundary,

though the results of the algorithm are even worse due to the

lack of horizontal segments in that region of the image.

It is difficult to compare these results with existing tech-

niques. The impressive work of Hoiem et al. [6] is aimed

primarily at outdoor environments, while the recent work

of Lee et al. [1] is designed to reconstruct indoor scenes

when the ceiling is visible. Neither system is real time.

Nevertheless, Figure 11 shows some successful results of our

algorithm working on three of the failure examples given in

the latter paper. Perhaps the closest work to our own in terms

of purpose and scope is that of Kim and colleagues [2], [3],

which requires two image frames to segment the floor from

the rest of the scene. Because their approach does not contain

a specific mechanism to handle strong reflections, it is

doubtful that it would work successfully on the many images

in our database that contain such extreme lighting conditions.

Similarly, the obstacle avoidance system of Lorigo et al. [4]

is not designed to handle strong reflections.
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Fig. 10. Examples for which our algorithm fails to properly detect the floor. From left to right, the failures are caused by strong texture on the floor,
texture on the wall, an overly dark image from poor image exposure, and excessive bright lights at the end of the corridor (Best viewed in color).

Fig. 11. Results of our algorithm working on three failure examples given in Lee et al. [1] (Best viewed in color).

V. CONCLUSION AND FUTURE WORK

We have presented an image-based floor detection algo-

rithm using an uncalibrated camera. The floor is detected

by a camera mounted on a mobile robot, which maintains a

low perspective of the scene. The novel approach combines

the results of applying three different visual cues to test the

validity of horizontal line segments detected in the image.

Our approach achieves nearly 90% detection of the wall-

floor boundary on a rather large database of over 400 images

captured in a variety of environments exhibiting difficult

conditions such as extreme reflection. The algorithm is

suitable for real-time mobile robot applications using an off-

the-shelf camera. One limitation of the current approach is its

tendency to get confused when the floor is highly textured, or

when the image is especially dark due to poor gain control.
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