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ABSTRACT

We report our image based static facial expression recogni-
tion method for the Emotion Recognition in the Wild Chal-
lenge (EmotiW) 2015. We focus on the sub-challenge of the
SFEW 2.0 dataset, where one seeks to automatically classify
a set of static images into 7 basic emotions. The proposed
method contains a face detection module based on the en-
semble of three state-of-the-art face detectors, followed by
a classification module with the ensemble of multiple deep
convolutional neural networks (CNN). Each CNN model is
initialized randomly and pre-trained on a larger dataset pro-
vided by the Facial Expression Recognition (FER) Chal-
lenge 2013. The pre-trained models are then fine-tuned on
the training set of SFEW 2.0. To combine multiple CNN
models, we present two schemes for learning the ensemble
weights of the network responses: by minimizing the log like-
lihood loss, and by minimizing the hinge loss. Our proposed
method generates state-of-the-art result on the FER dataset.
It also achieves 55.96% and 61.29% respectively on the val-
idation and test set of SFEW 2.0, surpassing the challenge
baseline of 35.96% and 39.13% with significant gains.

Categories and Subject Descriptors

I.5.4 [Pattern Recognition]: Applications—computer vi-
sion, signal processing ; I.4.m [Image Processing and Com-
puter Vision]: Miscellaneous

Keywords

Facial Expression Recognition; Convolutional Neural Net-
work; Multiple Network Learning; EmotiW 2015 Challenge

1. INTRODUCTION
Automatically perceiving and recognizing human emotions

has been one of the key problems in human-computer inter-
action. Its associated research is inherently a multidisci-
plinary enterprise involving a wide variety of related fields,
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including computer vision, speech analysis, linguistics, cog-
nitive psychology, robotics and learning theory, etc [38]. A
computer with more powerful emotion recognition intelli-
gence will be able to better understand human and interact
more naturally. Many real world applications such as com-
mercial call center and affect-aware game development also
benefit from such intelligence.

Possible sources of input for emotion recognition include
different types of signals, such as visual signals (image/video),
audio, text and bio signals. For vision based emotion recog-
nition, a number of visual cues such as human pose, action
and scene context can provide useful information. Never-
theless, facial expression is arguably the most important
visual cue for analyzing the underlying human emotions.
Despite the continuous research efforts, accurate facial ex-
pression recognition under un-controlled environment still
remains a significant challenge. Many early facial recogni-
tion datasets [23, 36, 3, 14, 27, 4, 24, 35] were collected under
“lab-controlled” environments where subjects were asked to
artificially generate certain expressions [8]. Such deliberate
behavior often results in different visual appearances, audio
profiles as well as timing [38], and is therefore by no means a
good representation of natural facial expressions [8]. On the
other hand, recognizing facial expressions in the wild can be
considerably more difficult due to the visually varying and
sometimes even ambiguous nature of the problem. Other ad-
verse factors may include poor illumination, low resolution,
blur, occlusion, as well as cultural/age differences.

Recent advances in emotion recognition focus on recog-
nizing more spontaneous facial expressions. The Acted Fa-
cial Expressions in the Wild (AFEW) dataset [8] and the
Static Facial Expressions in the Wild (SFEW) dataset [11]
were collected to mimic more spontaneous scenarios and con-
tain 7 basic emotion categories. The video clips of AFEW
are extracted from movies, while SFEW is a static sub-
set of AFEW. The idea is that movies, although not truly
spontaneous, at least provide facial expressions in a much
more natural and versatile way than lab-controlled datasets.
This year’s Emotion Recognition in the Wild (EmotiW)
2015 Grand Challenge [2] consists two sub-challenges based
on AFEW 5.0 and SFEW 2.0 respectively. Both datasets
present ever more difficulties than many conventional ones
as a result of their more spontaneous characteristics. While
a number of hand-crafted features such as Local Binary Pat-
terns on Three Orthogonal Planes (LBP-TOP) [40], Pyra-
mid Histogram of Oriented Gradients (PHOG) [26] and Lo-
cal Quantized Patterns (LPQ) [5] were proven to work well



on conventional datasets, they obtain significantly lower per-
formances on these two datasets [8].
Deep convolutional neural network has recently yielded

excellent performance in a wide variety of image classifica-
tion tasks [1, 17, 28, 33, 30]. The careful design of local to
global feature learning with convolution, pooling and lay-
ered architecture renders very strong visual representation
ability, making it a powerful tool for facial expression recog-
nition. In this paper, we focus ourselves on the task of im-
age based static facial expression recognition on SFEW with
deep CNNs. Our main contributions can be summarized as
follows: 1. We propose a CNN architecture that achieves ex-
cellent emotion recognition performance. 2. We propose a
data perturbation and voting method that further increases
the recognition performance of CNN considerably. 3. We
propose two novel constrained optimization frameworks to
automatically learn the network ensemble weights by mini-
mizing the loss of ensembled network output responses. Our
best submission, achieved with the above methods, reaches
61.29% overall accuracy on the SFEW test set, surpassing
the baseline of 39.13% with a significant gain of 21.6%. The
proposed framework also achieves the state-of-the-art per-
formance on FER dataset.

2. RELATED WORKS
A number of methods on AFEWwere proposed in the past

two EmotiW Challenges [10, 9]. Several popular approaches
such as multiple kernel learning [29, 7], multiple feature fu-
sion [20] and score-level fusion [32, 21] were reported useful
in boosting the recognition performance. Ionescu et al. [15]
presented a local learning approach to improve bag of words
model for image based facial expression recognition. Other
works include [19], which proposed a facial expression recog-
nition framework through manifold modeling of videos based
on a mid-level representation.
Facial expression and emotion recognition with deep learn-

ing methods were reported in [16, 34, 22, 18, 21]. In partic-
ular, Tang [34] reported a deep CNN jointly learned with a
linear support vector machine (SVM) output. His method
achieved the first place on both public (validation) and pri-
vate data on the FER-2013 Challenge [13]. Liu et al. [18]
proposed a facial expression recognition framework with 3D-
CNN and deformable action parts constraints in order to
jointly localizing facial action parts and learning part-based
representations for expression recognition. In addition, Liu
et al. [21] included the pre-trained Caffe CNN models to
extract image-level features. Finally, the work by Kahou
et al. [16] is probably the most related to our proposed
method. Their method respectively trained a CNN for video
and a deep Restricted Boltzmann Machines (RBM) for au-
dio. “Bag of mouth” features are also extracted to fur-
ther improve the performance. Two large datasets: the
Toronto Face Dataset and the Google dataset were combined
to train the CNN network. The Google dataset happens to
be the very dataset provided to FER-2013 and therefore our
method shares part of the training set with [16]. Despite
such coincidence, our proposed learning strategy differs from
[16] significantly. First, [16] only used the AFEW training
data to train the aggregator SVM, while we choose to pre-
train our CNN model on external data and fine-tune on the
SFEW training data. Fine-tuning proved to be crucial in
boosting the classification performance on SFEW, as it in-
creases the accuracy on validation set from 45% to 53%, a

significant gain. Second, the ensemble weights of different
models in [16] is determined with random search, while our
work proposes to automatically learn the ensemble weights
through optimizing certain loss functions.

3. FACE DETECTION
The SFEW dataset contains labeled movie frames. While

it is possible to directly extract features at frame-level, lo-
cating faces benefits the recognition task and the face de-
tector performance is highly correlated with the recognition
accuracy. Although the face alignment results provided by
EmotiW using Mixtures of Trees (MoT) [41] are accurate
under many challenging scenarios, they contain an unignor-
able amount of missing or false positive faces. Therefore,
we ensemble multiple state-of-the-art face detectors to en-
sure the detection accuracy. Our final face detection module
consists of three detectors: the joint cascade detection and
alignment (JDA) detector from [6], the Deep-CNN-based
(DCNN) detector from [39] and MoT. Before face detection,
all input movie frames are resized to 1024 × 576 pixels in
order to restore their original aspect ratio.

JDA is able to return detected faces with very high align-
ment accuracy and detection precision. As a result we put
this detector on the first layer of the detection module. A
slight drawback, however, is that JDA’s detection recall is
unsatisfactory for profile faces. The DCNN-based detector
shows excellent detection performance for non-frontal and
even profile faces. Under the wild environment of SFEW, it
is a very good complement to JDA. For any frame with mul-
tiple detections, the largest face is returned. This strategy
generally works well except in very occasional cases where
the largest face is not intended for emotion recognition. Fig.
1 gives some examples of detection results using both detec-
tors. The first two examples show that JDA gives slightly
better localizations than DCNN. The third shows a more
difficult case where DCNN complemented JDA. Finally, the
last example shows a mistakenly returned face under mul-
tiple detections. The left larger face is returned while the
right face should be the actual focus.

In rare cases where both JDA and DCNN fail, we include
MoT as the last step of the detection hierarchy. An overview
diagram of the modules is shown in Fig. 2. Table 1 illus-
trates the number of correctly detected faces on the SFEW
test set using single detectors as well as two cascade combi-
nations. Significantly boosted results are obtained by cas-
cading different detectors. Out of the 372 SFEW test frames,
371 faces are correctly detected by the proposed cascade.
Note that “JDA+DCNN” and “JDA+DCNN+MoT” are de-
noted as “1+2” and “1+2+3” for short.

Table 1: Number of correct detections on SFEW
test set using different detectors and cascades.

JDA DCNN MoT 1+2 1+2+3
Det # 333 358 352 363 371

4. FACE PREPROCESSING
Face preprocessing proves to be a crucial step for good

recognition performance. It helps to remove irrelevant noise
and unifies all faces to the same domain. Since we decide
to pre-train our deep network model on FER, the detected



Figure 1: Examples of face detections by JDA (red) and DCNN (blue).
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Figure 2: The system diagram of the proposed face detection module on SFEW 2.0.

faces on SFEW are all resized to 48×48 and are transformed
to grayscale, which is exactly the same as the FER data.
Both the face images from SFEW and FER datasets are

then preprocessed with standard histogram equalization, fol-
lowed by a linear plane fitting to remove unbalanced illumi-
nation. Finally, the image pixel values after plane fitting are
normalized to a zero mean and unit variance vector.

5. THE PROPOSED CNN MODEL
We train the deep network models based on our own C++

and Cuda implementation of a 7 hidden layer CNN. The
architecture and parameters of our CNN model has been
designed to optimize its performance on facial expression
recognition tasks. In the rest part of this section we will
describe the details of the proposed CNN model.

5.1 The Basic Network Architecture
An overview of the network architecture is shown in Fig.

3. The network contains five convolutional layers, three
stochastic pooling layers and three fully connected layers.
We adopted stochastic pooling [37] instead of max pooling
for its good performance given limited training data. Unlike
max pooling which chooses the maximum response, stochas-
tic pooling randomly samples a response based on the prob-
ability distribution obtained by normalizing the responses.
The fully connected layers contains dropout [31], another
mechanism for randomization. These statistical randomness
reduces the risk of network overfitting.
The input to the network are the preprocessed 48 × 48

faces. Both the second and the third stochastic pooling lay-
ers include two convolutional layers prior to pooling. The
filter step height and width for all convolutional layers are
both set to 1. The nonlinear mapping functions for all convo-
lutional layers and fully connected layers are set as rectified
linear unit (ReLU) [25]. For stochastic pooling layers, the
window sizes are set to 3 × 3 and the strides are both set

to 2. This makes the sizes of response maps reduce to half
after each pooling layer.

The last stage of the network includes a softmax layer,
followed by a negative log likelihood loss defined as:

L = −

N
∑

i=1

logP (yi|xi), (1)

where N is the total number of training examples. xi is
the ith training sample, yi is the label of xi, and P (y|xi) is
the network output response on the yth class category given
xi. The network is trained using the adaptive subgradient
method [12] with a batch size of 128 examples.

5.2 Generating Randomized Perturbation
While FER contains more than 35000 labeled samples

which is considerably larger than SFEW, the classification
performance can be further improved if we randomly perturb
the input faces with additional transforms. The random
perturbation essentially generates additional unseen training
samples and therefore makes the network even more robust
to deviated and rotated faces.

A similar method is reported in [16] where the authors
generate perturbed training data by feeding their network
with randomly cropped and flipped 40×40 face images from
the original ones. Due to the difficult and wild nature of
SFEW, the detected faces may contain a wide variety of dif-
ferent poses, cropped scales and deviations. To cover them
as much as possible in training, we consider a much more
comprehensive set of perturbations through the following
randomized affine image warping:
[

x′

y′

]

=

[

c 0
0 c

] [

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

1 s1
s2 1

] [

x− t1
y − t2

]

(2)

where θ is the rotation angle randomly sampled from three
different values: {− π

18
, 0, π

18
}. s1 and s2 are the skew pa-

rameters along x and y directions and are both randomly
sampled from {−0.1, 0, 0.1}. c is a random scale parameter
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Figure 3: Network architecture of the proposed basic convolutional neural network.

defined as c = 47/(47 − δ), where δ is a randomly sampled
integer on [0, 4]. t1 and t2 are two translation parameters
whose values are sampled from {0, δ} and are coupled with c.
In reality one generates the warped image with the following
inverse mapping:

[

x
y

]

= A−1

[

x′

y′

]

+

[

t1
t2

]

, (3)

where A is the composition of the skew, rotation and scale
matrices. The input (x′ ∈ [0, 47], y′ ∈ [0, 47]) are the pixel
coordinates of the warped image. Eq. (3) simply computes
an inverse mapping to find the corresponding (x, y). As the
computed mappings mostly contain non-integer coordinates,
bilinear interpolation is used to obtain the perturbed image
pixel values. For pixels mapped outside the original image,
we take pixel value of its mirrored position. Finally, the
input training faces are also randomly flipped to further in-
troduce additional robustness. The top row of Fig. 4 gives 6
examples non-perturbed faces while the bottom row shows
their corresponding randomly perturbed faces.

Figure 4: Examples of perturbed face with the pro-
posed affine warping strategy.

5.3 Learning and Voting with Perturbation
With the perturbation on training set, the loss function

of our network is modified to consider all perturbations:

L = −

N
∑

i=1

P
∑

p=1

logP (yi|x
p
i ), (4)

where P is the total number of perturbations. xp
i is xi with

the pth perturbation configuration. In practice, one does not
need to truly extend the training set with perturbations. In-
stead, the 128 samples in each batch are randomly perturbed
among the P possible configurations.

An additional crucial improvement in our method is to
output the response of each test image as an averaged voting
of responses from all the perturbed samples:

P (y|Xi) ,
1

P

P
∑

p=1

P (y|xp
i ), (5)

where Xi , {xp
i |p = 1, ..., P}. We have considered other

voting strategies such as majority voting where the final la-
bel prediction is based on counting the predictions of all
perturbations. Overall, averaging output response seem to
render the best performance. In our experiment, voting of-
ten gives a consistent gain of roughly 2− 3%. Conceptually,
the test CNN architecture can be illustrated as Fig. 5.

5.4 Network Pre-training on FER
We pre-train our CNNmodel on the combined FER dataset

formed by train, validation and test set. The initial network
learning rate is set to 0.005 while the minimum learning
rate is set to 0.0001. Each training epoch contains ⌈N/128⌉
number of mini batches, with the samples randomly selected
from the training set and with random perturbation.

The loss and trained network parameters of each epoch
are recorded. If there is an increase of training loss with
more than 25% or more than 5 consecutive times of loss in-
crease, the learning rate is reduced by half and the previous
network with the best loss is reloaded. We found the net-
work hardly overfits due to stochastic pooling and dropout.
Thus after all epochs are finished, we select the network
from the epoch with the best training accuracy as our final
pre-trained model.

5.5 Network Fine-tuning on SFEW
The pre-trained CNN model on FER dataset gives around

45% of accuracy on the SFEW validation set without voting.
While both datasets contain the same set of facial expression
classes, we noticed that there exist certain level of dataset
biases. Domain adaptation, therefore, is necessary for better
recognition performance. Our proposed strategy is to fine-
tune our network on the SFEW training set.

We adopt the same perturbation and voting strategy, as
well as the network learning framework respectively described
in Section 5.3 and Section 5.4. To overcome overfitting, we
freeze the parameters of all the convolutional layers and only
allow the update of parameters at the fully connected layers.
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Figure 5: The improved test CNN architecture with random perturbations and voting.

We also observe that a slightly larger learning rate helps to
reduce the risk of trapping at a local minima and benefits
the fine-tuning performance. As a result the initial network
learning rate is increased to 0.02.

6. MULTIPLE NETWORK LEARNING
On top of the single CNN model, we present a multiple

network learning framework to further enhance the perfor-
mance. A common way to ensemble multiple networks is
to simply average the output responses. We observe that
random initialization not only leads to varying network pa-
rameters, but also renders diverse network classification abil-
ities for different data. In this case, ensemble with averaged
weight is probably sub-optimal as voting is conducted with-
out any discrimination. A better way is to adaptively assign
different weights to each network such that the ensembled
network responses complement each other.
To learn the ensemble weights w, we independently train

multiple differently initialized CNNs and output their train-
ing responses. A loss is defined on the weighted ensemble
response, with w optimized to minimize such loss. At test-
ing, the learned w is also used to compute the ensembled
test response. In this paper, we consider the following two
optimization frameworks:

6.1 Optimal Ensembled Log Likelihood Loss
The first multiple network learning framework seeks to

minimize the following ensembled log likelihood loss:

min
w

−

N
∑

i=1

log

K
∑

k=1

Pk(yi|Xi)wk + λ

K
∑

k=1

w2
k

s.t.

K
∑

k=1

wk = 1

wk ≥ 0, ∀k

(6)

In the objective function, N is the number of training
samples, and K is the number of networks. Pk(y|Xi) is the
kth network output response on the yth category given the
set of perturbed samples Xi. An l2 norm regularizer is im-
posed on the ensemble weights such that the weights are not
concentrated on very few networks and the ensemble does
not overfit. λ is determined by maximizing the validation
accuracy. To maintain a probabilistically meaningful en-
sembled output response, a convex combination constraint
is also imposed on w.

6.2 Optimal Ensembled Hinge Loss
Another considered objective is the following hinge loss:

min
w

N
∑

i=1

∑

y ̸=yi

[

1−

∑K
k=1

(P
i,yi
k

− P
i,y

k
)wk

γ

]

+

+ λ

K
∑

k=1

w2
k

s.t.
K
∑

k=1

wk = 1

wk ≥ 0, ∀k

(7)

where P i,y

k , Pk(y|Xi). The intuition is that the ensembled
output response corresponding to ground truth should be
larger than others with a margin γ. With the hinge loss, any
case where the response difference is larger than γ will not
introduce any penalty. Again, both γ and λ are determined
with respect to the accuracy on validation set.

We could have also included the validation loss in our
objective to potentially generate better results. However,
we decide to strictly adhere to the definition of validation
and only use it to determine the fine-tune epoch number.

7. EXPERIMENTAL RESULTS
We conduct a comprehensive set of experiments on both

FER and SFEW. The following section reports the perfor-
mance of our proposed methods on these two datasets.

7.1 Experiment on FER
We first conduct experiment on the FER dataset with sin-

gle network model. The dataset contains 28709 training im-
ages, 3589 validation(public) images and 3589 test(private)
images. Fig. 6 shows the training and test accuracies with
respect to the number of epochs during training. Note we
show the testing accuracy curves of both voting and non-
voting (no perturbation at testing) based methods. Clearly,
voting with perturbations has a constant gain. The perfor-
mance of multiple network learning and baselines are shown
in Fig. 7, where “Single” refers to the average accuracy of 6
randomly initialized single CNN models (with voting). “Av-
erage” refers to averaged ensemble of these networks. The
results of FER-2013 Champion are also listed. The pro-
posed multiple network learning is also based on learning
with same single CNN models. For the log likelihood loss
framework, sub-sampling is conducted 10 times with the
sampling rate set to 0.1. λ is set to 280. For the hinge
loss framework, γ and λ respectively equals to 0.3 and 7000.
The learned network weights are shown in Table 2.
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0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

Validation Test

A
cc
u
ra
cy

FERWin

Single

SingleInit

Average

LogLike

HingeLoss

Figure 7: Classification accuracies of different meth-
ods on the FER validation and test set.

Both the proposed ensemble frameworks have surpassed
the FER-2013 winner and the average ensemble. Although
randomly initialized single model gives slightly worse per-
formance than the champion, we happen to observe that
a simple initialization with a previously trained network
(without skewing) gives another boost surpassing the cham-
pion. Given the observation, we expect that our method can
achieve even better results with re-trained networks.

7.2 EmotiW 2015 Results
Fig. 8 shows the fine-tuning accuracy curves of both vot-

ing and non-voting based methods on the SFEW validation
set. The CNN model is first pre-trained with the combined
FER dataset. Again one could see that voting based method
constantly outperforms non-voting based method. Finally,
We test the proposed multiple network learning on SFEW
dataset. Fig. 9 shows both the validation and the test ac-
curacies of our methods and several baselines. In addition,
Table 3 shows the corresponding accuracy numbers. In our

Table 2: Learned ensemble weights for each network.

N#1 N#2 N#3 N#4 N#5 N#6
LL 0.2171 0.2481 0.2943 0 0.1119 0.1286
HL 0.2308 0.2345 0.2805 0 0.1068 0.1473
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Figure 8: The fine-tuning accuracies of voting and
non-voting based methods on SFEW validation set.
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Figure 9: Classification accuracies of different meth-
ods on SFEW validation and test set.

EmotiW submissions, we mainly experimented with the fol-
lowing baselines: 1. Single CNN model (Single) with ran-
dom perturbation and voting; 2. Average ensemble with
bagging (Average1) where each single CNN model is ran-
domly initialized, pre-trained with randomly sub-sampled
FER combined set, and then fine-tuned on SFEW; 3. Av-
erage ensemble (Average2) where each single CNN model is
trained similar to 2 except without sub-sampling on FER;
4. SVM ensemble (SVM) where each single CNN model is
the same as 3 and an SVM is trained and tested on the
concatenated network output responses.

Table 3: Classification accuracies (%) of different
methods on SFEW validation and test set.

Acc Single Avg1 Avg2 SVM LL HL
Val 52.29 54.13 54.13 56.19 55.73 55.96
Test 58.06 59.95 59.67 59.14 60.75 61.29

The proposed two ensemble frameworks again achieve the
best performance, with respectively 60.75% and 61.29% ac-
curacy on the test set. In the experiment, λ in the log likeli-
hood loss (denoted as “LL”) framework is set to 600, while γ
and λ in the hinge loss (denoted as “HL”) framework are set
to 0.1 and 400, all based on validation. Fig. 10 and 11 re-
spectively shows the confusion matrices of both frameworks.



Angry Disgust Fear Happy Neutral Sad Surprise

Angry 66.24% 1.30% 0.00% 6.49% 9.09% 5.19% 11.69%

Disgust 8.70% 4.35% 4.35% 26.09% 17.39% 8.70% 30.43%

Fear 27.66% 0.00% 4.26% 8.51% 10.64% 21.28% 27.66%

Happy 0.00% 0.00% 0.00% 87.67% 6.85% 1.37% 4.11%

Neutral 5.48% 0.00% 2.74% 2.74% 53.42% 4.11% 31.51%

Sad 22.81% 0.00% 1.75% 7.02% 8.77% 40.35% 19.30%

Surprise 1.16% 0.00% 2.33% 5.81% 17.44% 0.00% 73.26%

(a) Validation set

Angry Disgust Fear Happy Neutral Sad Surprise

Angry 68.12% 0.00% 1.45% 2.90% 7.25% 5.80% 14.49%

Disgust 5.88% 0.00% 0.00% 23.53% 5.88% 64.71% 0.00%

Fear 21.95% 2.44% 17.07% 2.44% 17.07% 26.83% 12.20%

Happy 2.11% 0.00% 2.11% 83.16% 6.32% 5.26% 1.05%

Neutral 6.90% 0.00% 0.00% 0.00% 72.41% 15.52% 5.17%

Sad 7.27% 1.82% 10.91% 3.64% 18.18% 52.73% 5.45%

Surprise 10.81% 0.00% 18.92% 5.41% 2.70% 2.70% 59.46%

(b) Test set

Figure 10: Confusion matrices of the optimal log likelihood loss ensemble framework on SFEW.

Angry Disgust Fear Happy Neutral Sad Surprise

Angry 61.04% 0.00% 0.00% 7.79% 10.39% 6.49% 14.29%

Disgust 21.74% 4.35% 4.35% 30.43% 13.04% 4.35% 21.74%

Fear 27.66% 0.00% 6.38% 8.51% 10.64% 19.15% 27.66%

Happy 0.00% 0.00% 0.00% 87.67% 6.85% 1.37% 4.11%

Neutral 5.48% 0.00% 2.74% 1.37% 57.53% 5.48% 27.40%

Sad 21.05% 0.00% 1.75% 7.02% 10.53% 38.60% 21.05%

Surprise 0.00% 0.00% 1.16% 5.81% 17.44% 0.00% 75.59%

(a) Validation set

Angry Disgust Fear Happy Neutral Sad Surprise

Angry 68.12% 0.00% 1.45% 2.90% 7.25% 7.25% 13.04%

Disgust 5.88% 0.00% 0.00% 23.53% 11.76% 58.82% 0.00%

Fear 21.95% 0.00% 21.95% 2.44% 12.20% 29.27% 12.20%

Happy 2.11% 0.00% 2.11% 83.16% 5.26% 6.32% 1.05%

Neutral 6.90% 0.00% 1.72% 1.72% 68.97% 15.52% 5.17%

Sad 5.45% 1.82% 10.91% 5.45% 16.36% 54.55% 5.45%

Surprise 10.81% 0.00% 13.51% 5.41% 2.70% 5.41% 62.16%

(b) Test set

Figure 11: Confusion matrices of the optimal hinge loss ensemble framework on SFEW.

8. CONCLUSIONS
In this paper, we have proposed a deep convolutional neu-

ral network based facial expression recognition method, with
multiple improved frameworks to further boost the perfor-
mance. Our proposed method achieves excellent results on
both FER and SFEW dataset, indicating the considerable
potential of our facial expression recognition method.
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